
Laser-Camera Data Discrepancies and Reliable Perception in Outdoor
Robotics

Thierry Peynot and Abdallah Kassir

Abstract— This work aims to promote integrity in au-
tonomous perceptual systems, with a focus on outdoor un-
manned ground vehicles equipped with a camera and a 2D laser
range finder. A method to check for inconsistencies between the
data provided by these two heterogeneous sensors is proposed
and discussed. First, uncertainties in the estimated transforma-
tion between the laser and camera frames are evaluated and
propagated up to the projection of the laser points onto the
image. Then, for each pair of laser scan-camera image acquired,
the information at corners of the laser scan is compared with the
content of the image, resulting in a likelihood of correspondence.
The result of this process is then used to validate segments
of the laser scan that are found to be consistent with the
image, while inconsistent segments are rejected. Experimental
results illustrate how this technique can improve the reliability
of perception in challenging environmental conditions, such as
in the presence of airborne dust.

I. INTRODUCTION

Perception is arguably one of the most critical components
of an unmanned ground vehicle (UGV) system. In recent
decades, great effort has been invested in the development
of better and more accurate perception systems using mul-
tiple sensors, with significant success (e.g. the Darpa Urban
Grand Challenge [1], [2] or the PerceptOR program [3]).
However, state-of-the-art perception systems are still known
to fail in a number of situations, in particular in challenging
environmental conditions such as the presence of smoke or
airborne dust [3], [4], [2]. The typical problem in these cases
is that most perception systems tend to confuse dust clouds
with actual obstacles. This confusion arises because laser
data returns from dust and solid objects can be very similar.
If the laser data is to be fused with data from other sensors
that do not perceive this dust cloud similarly (e.g. a mm-
wave radar [5] or a camera), this fusion will lead to errors
in the perception system unless the consistency of the two
sources of data is checked beforehand.

This work aims at promoting perceptual integrity for
autonomous vehicles by exploiting the differences between
heterogeneous sensors to detect such situations and process
the sensing data appropriately prior to fusion and/or inter-
pretation. In particular, this paper will focus on the very
common case where the vehicle is equipped with a camera
and one or several (2D) laser range finders (LRF). More
specifically, this study aims at comparing the data from
laser scans and camera images to detect inconsistencies or
discrepancies and filter the data accordingly. Using the same
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example as before, the LRF usually detects airborne dust
present in the environment, while the effect often is much
less significant on a visual (or infrared) image, especially
when the density of the dust cloud is low.

A laser range finder provides range and bearing data,
which is intrinsically very different from the information
content of a camera image (an intensity, or colour array
on the camera plane). Thus, a direct comparison of the
data is not possible. Nevertheless, there are some common
characteristics in term of geometry in both types of data.
For example, many corners in the range data, i.e. points
corresponding to a sudden variation of range along the scan,
correspond to an edge in the image, i.e. a sudden variation
of intensity1. A number of applications exploit this type of
commonality for the registration of visual images to laser
range scans, mainly for the perception of indoor scenes
(e.g. [6]). However, in these applications, range images are
needed, which requires a 3D laser scanner, while we only
use 2D lasers in this paper. Furthermore, the success of the
registration is based on the hypothesis that the data contained
in the laser range image and the camera image correspond.
When perceiving an outdoor scene, if, for example, airborne
dust or smoke appears in the environment, this hypothesis
often does not hold anymore [5]. For example, smoke will
not be observed by an infrared camera, and light airborne
dust can significantly affect a laser scan while hardly visible
in a visual image. Therefore, it is critical to check the validity
of this hypothesis and to filter the data accordingly, prior to
registration or fusion. Besides, in such cases where multi-
modal sensors react differently in the presence of challenging
environmental condition, the perception solution obtained
with data from the most affected sensor can be significantly
improved (see Sec. IV).

The purpose of this study is to evaluate that hypothesis
by checking the redundancies in the observations made by
the laser and the camera, and, for each laser point that can
be projected onto the image, to estimate a likelihood that
the sensing data provided by the laser do correspond to
the data in the image. This likelihood will be expressed
as a probability of correspondence to account for important
uncertainties in the perception and comparison processes.

Sec. II describes the method used to compare laser and
camera data to check for discrepancies. Sec. III focusses
on the estimation of a probability of correspondence of that
data. Sec. IV shows an example of application for this work

1However, note that the contrary is often not true. Imagine for example
a planar chessboard, composed of multiple black and white squares.
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and the benefit of checking for discrepancies between the
two different sources of data. Finally Sec. V proposes a
discussion and directions for future work.

II. A METHOD TO COMPARE LASER AND
CAMERA DATA

This section describes the method used to compare laser
and camera data. A critical component of this process is the
ability to project laser points onto the image of the camera,
whenever this projection exists. This requires a prior off-line
calibration process, which is discussed in Section II-A. The
different steps of the on-line comparison of laser and camera
data are then described in the following Section II-B.

Note that in this paper a 2D laser range finder is used,
scanning roughly horizontally with respect to the camera
image. However, the method can easily be adapted to the
case of a LRF set with a different orientation.

A. Uncertain Projection of Laser Points on the Image

First, a calibration process is performed to estimate the
parameters of the transformation between the laser frame
and the camera frame. This means calibrating the camera
using, for example, the well-known camera calibration tool-
box for Matlab [7] developed by Bouget et al. Then, we
estimate this laser-camera transformation using a technique
adapted from [8]. Once this is completed, laser points can
be projected onto this image. After extending that technique,
we also obtain an evaluation of the uncertainty in the
transformation laser-camera. The following details how these
uncertainties are estimated, based on the estimation of the
projection of a laser point.

Consider a point acquired by the 2D laser, defined by a
range and a bearing angle, in a frame associated to the laser.
This point can also be expressed as a vector of 3D cartesian
coordinates in the laser frame of reference: Pl, and a vector
of 3D cartesian coordinates in the camera frame: Pc. The
two vectors can be related by the following equation:

Pl = Φ(Pc −∆) (1)

where ∆ = [δx, δy, δz]
T is the translation offset and Φ is

a rotation matrix defined by the set of three Euler angles
R = [φx, φy, φz]:

Φ =

 cycz cxsz + sxczsy sxsz − cxsycz

−cysz cxcz − sxsysz sxcz + cxsysz

sy −sxcy cxcy

 (2)

where si and ci stand for sin(φi) and cos(φi) respectively.
The extrinsic laser-camera calibration method outlined in
[8] can be used to find estimates for ∆ and R. For con-
venience, we combine the parameters of those two vectors
into one vector of parameters: ρ = [δx, δy, δz, φx, φy, φz].
The calibration process provides the best estimate of ρ
based on extracted data from image-laser scan pairs. Then,
we determine the variances of the elements of ρ using
the Jackknife resampling method originally suggested by
Quenouille [9]. The method is performed by taking Jackknife
samples from the entire dataset. Let Oi be the observed

data from the ith image-scan pair, and n the total num-
ber of image-scan pairs. The ith Jackknife sample Xi is
obtained by omitting the ith pair Oi from the dataset, i.e.
Xi = [O1, . . . ,Oi−1,Oi+1, . . . ,On], leading to a total of n
different samples. For each of these samples Xi, a different
parameter vector estimate ρi is obtained. The parameter
vector variance is then given by:

σρ
2 =

n− 1
n

n∑
i=1

(ρi − ρ̂)2 (3)

where ρ̂ =
∑

i ρi/n.
Let Pli = [u, v]T be the projection of the laser point

Pl = [x, y, z]T onto the image plane, where u and v
are coordinates in the image frame while x, y and z
are coordinates in the laser sensor frame. The projection
is defined by the laser-camera transformation parameters
(Φ, ∆), the intrinsic matrix of the camera K, the set of
nonlinear distortion parameters d, and the function f , such
that Pli = f(Pl,Φ,∆,K,d). The uncertainty in Pli is
represented by a 2 × 2 covariance matrix Σli. Assuming
the error in Pl is negligible with respect to the calibration
error, i.e. the laser range finder is relatively accurate, the
uncertainty which propagates to Pli is mainly the uncertainty
in the calibration parameters. This uncertainty is given by a
16 × 16 covariance matrix Σp representing all 16 param-
eters – 3 rotation parameters, 3 translation parameters, 5
camera intrinsic parameters and 5 distortion parameters. This
covariance matrix can be approximated as the combination
of two covariance matrices Σpt and Σpc which represent
the uncertainty in the laser-camera transformation parameters
(Φ, ∆) and the uncertainty in the intrinsic camera parameters
(K, d) respectively. The resulting matrix becomes:

Σp =
[
Σpt

0
0

Σpc

]
. (4)

Using the Jackknife method, Σpt is approximated by a
diagonal matrix with the individual elements of σρ

2 placed
along the diagonal. Σpc can be calculated using the method
outlined in [10, §5.2]. Finally, Σli can be expressed using
the following equation [11]:

Σli = JfΣpJf
T (5)

where Jf is the Jacobian matrix of f with respect to the 16
parameters listed above.

Therefore, given a laser point Pl, we can compute its
estimated projection Pli onto the image, with the square root
of the diagonal terms of Σli giving the standard deviations
σu and σv of the coordinates of Pli in pixels along the u and
v axes of the image. We can then define a neighbourhood of
uncertainty on the projection as an ellipse centered on Pli

whose major and minor radii are ru = 3σu and rv = 3σv ,
thus representing 95% of probability that the projection lies
in this ellipse, considering a Gaussian distribution. Fig. 1
shows an example of laser scan projection obtained. How-
ever, for convenience, a rectangular neighbourhood Mu,v of
size nu×nv will be used in practice, where nu = (2drue+1),
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nv = (2drve+1), and drue (resp. drve) is the nearest higher
integer to ru (resp. rv).

(a)

(b) Zoom on the blue area in (a)

Fig. 1. Projection of laser points (cyan +) on camera image, with associated
uncertainty represented as cyan ellipses.

B. Comparing Laser Projected Points with Image Content

Once the parameters of the projection of any laser point
on the camera image are estimated, the on-line process of
comparing the data can be realised. This process has been
designed to be simple enough, in terms of computation, to
be applicable on-line without limiting the rate of acquisition
of the data. The following describes the sequence of steps
involved.

1) Data acquisition: A synchronised pair of image and
laser scan is acquired. In practice, both sources of data are
continuously acquired, and accurately time-stamped. Since
the frame rate of the camera is lower than the scanning rate
of the LRF, for each image the closest laser scan (in time) is
used for the comparison. Only a gray-scale image is needed,
therefore, a conversion of the image may be required if a
colour camera is used.

2) Edge detection: Edges in the image are detected using
a Sobel filter2. Without loss of generality, the configuration
of the laser w.r.t. the camera is considered such that the laser
is scanning horizontally. Consequently, the Sobel filter is set
to detect vertical edges in the image. The filtered image can
be obtained by convolution of the original gray-scale image
with the following mask: 1 0 −1

2 0 −2
1 0 −1

 . (6)

Note that the image can be filtered to remove noise, prior to
the edge detection, if needed. If the laser device is set with a
significantly different configuration w.r.t. the camera, edges
in the corresponding perpendicular direction will have to be
detected instead.

2Another edge detection filter, such as Canny, could be used instead.

3) Range filtering: A smoothing filter can be applied to
the range values of the laser scan if needed, as long as it
does not affect the discontinuities, see [12, §24.2].

4) Range Gradient: A gradient of range is computed on
the laser scan data. E.g., it can be obtained by convolution
of the laser scan data with the following mask [12, §24.2]:[

−1/2 0 1/2
]

(7)

5) Corner extraction: Points corresponding to corners in
the laser scan are identified. In this paper, the term corner
refers to a point where the norm of the range gradient
is superior to a pre-defined threshold: gradThreshold, ex-
perimentally set to be clearly above the noise floor. Note
that in many cases, two successive points of the laser scan
correspond to corners, i.e. one laser point on either side of the
laser scan discontinuity, forming a pair of successive corners.

6) Scan segmentation: The laser scan is segmented in
regions of consecutive points that have similar values of
range, separated by corners. Note that most segments are
composed of all the points that are between two successive
laser corners. However, some segments may contain only one
corner.

7) Candidate corner selection: The laser corner points
that should be kept for the matching process are selected.
Hereafter, they will be referred to as candidate corners.

Since the laser is scanning in a plane which is approx-
imately perpendicular to the image plane, among the laser
corners found above, only the ones that are “in front” (i.e.
at a shorter range) are likely to have a corresponding edge
in the image. Imagine a vertical pole in the middle of the
scene perceived by both sensors. At both sides of the pole,
there will be sudden variations of range in the laser scan.
The projections of laser points taken just before and after
the range discontinuity can have a significantly different
locations on the image, due to the difference of perspective
of the two sensors3 (e.g. see the right edge of the bottom
plastic box in Fig. 1(b)). This indicates that the laser corners
considered for matching with the visual data should be the
ones actually belonging to the object, i.e. the points “in front”
(shorter range) rather than the ones further in the back.

In practice, the candidate corner points are selected using
the following process. Consider a laser corner point c, be-
longing to the laser scan segment labeled si. c is considered
as a candidate corner if the range at c is smaller than the
range of the previous segment4 (si−1) or the next one (si+1).
More specifically, c is considered “in front” of segment
si−1 (resp. si+1) if the range at the last (resp. first) corner
belonging to si−1 (resp. si+1) is higher than the range at c.

8) Projection: The laser scan points are projected on the
image and the associated neighbourhoods of uncertainty are
computed (see Sec. II-A).

9) Matching test: For each selected laser point projected
on the image that corresponds to a candidate corner, we look
for a matching edge in the image within the neighbourhood
of this projected point.

3The sensors are physically mounted at different locations on the vehicle.
4It is assumed that the laser points are sorted in increasing order of angle.
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Consider a specific candidate corner. The best estimate
of the projection of this point on the Sobel-filtered image
is a pixel position (u, v) in this image, with an associated
neighbourhood Mu,v , obtained as described before. This
“matching” process looks for a visual edge in this neigh-
bourhood, i.e. points of that neighbourhood with an intensity
superior to a pre-defined threshold imedgeThreshold in the
Sobel-filtered image. In practice, in this embodiment we
are interested in vertical edges, so we consider there is an
edge in the neighbourhood if there are at least m pixels
with an intensity higher than imedgeThreshold that belong
to different consecutive lines and are 8-adjacent [13, §2.5].
Choosing m > 1 allows to exclude a number of edges due
to noise or artefacts and focus more on edges due to the
presence of objects. We used m = 2 to generate the results
presented in Sec. IV.

10) Correspondence likelihood: Knowing the result of the
matching process, for each segment of the laser scan that has
a projection on the image and contains candidate corners, i.e.
for each candidate segment, a probability of correspondence
of the laser data with the camera data can be evaluated. This
is detailed in Sec. III below.

III. LIKELIHOOD OF CORRESPONDENCE

For each laser point of candidate segments, the objective
is to estimate the probability that the laser information
corresponds to the information in the image acquired at the
same time by the camera. This probability mainly depends
on:
• The laser and camera measurement uncertainties. They

can be represented by a sensor model and estimated
thanks to a process of calibration of the intrinsic param-
eters. For the camera, they were estimated in Sec. II-A.
However, for the laser, in our application they are
typically negligible compared to the uncertainties below.

• The uncertainty in the laser-camera transformation, i.e.
in the projection of the laser points onto the image,
represented in this work by a pixel neighbourhood
associated to each projected point (see Sec. II-A).

• For candidate laser corners, the likelihood that they
correspond to an edge in the image.

• For other laser points of candidate segments, the like-
lihood to be in the “same category” (i.e. consistent
or inconsistent with the camera data) as the candidate
corners of this segment.

A. Probability Evaluation

This section details the calculation of the probability of
correspondence for a laser point corresponding to a candidate
corner. Let us consider the estimated projection (u, v) of such
laser point in the image and the corresponding neighbour-
hood Mu,v , as defined in Sec. II-A. We define the following
events:
• A: The laser and camera information correspond. A is

a boolean.
• B: A visual edge is found in the neighbourhood of

projection. B is a boolean.

• C: The projection of the laser point is as computed
using the transformation between the laser frame and
the camera frame initially estimated by the calibration
process (Sec. II-A).

For the current laser corner, we can express the probability
that the local laser and camera information correspond (A),
knowing the location of the projection of the laser data on the
image (C), and knowing whether a visual edge was found in
Mu,v (B). In particular, if such a visual edge was found (i.e.
B = 1), this can represent the probability that this visual
edge actually matches with the laser corner associated to
the current neighbourhood: P (A = 1|B = 1, C). Using the
Bayes theorem, this probability can be expressed as:

P (A|B,C) =
P (C|A,B)P (A|B)

P (C|B)

Developing P (A|B) using the Bayes formula again gives:

P (A|B,C) =
P (C|A,B)
P (C|B)

P (B|A)P (A)
P (B)

where:
• P (B|A) is the probability that a visual edge is found

in the neighbourhood, knowing the laser and camera
information do correspond. It describes the likelihood of
the assumption that if the laser and camera information
do correspond, any laser candidate corner should cor-
respond to a visual edge (see Sec. I). This assumption
is thought to be generally true, with a few exceptions
in quite extreme cases, which means this probability is
close to 1, i.e. knowing the data do correspond (A = 1),
a visual edge should exist in the neighbourhood of the
corner. Therefore, a visual edge should be found in the
neighbourhood unless it does not encapsulate the actual
position of the point.

• P (A) is the a priori probability that the laser data and
camera data correspond. This will be set to a fixed
uncertain value at this point, as we do not have a
priori knowledge on this event. It might be possible to
consider estimating that value based on statistics over
data taken in a “typical” environment, but this would
only be valid for this type of environment and some
ground truth about the correspondence of the data would
be needed.

• P (B) = P (B|A)P (A) + P (B|Ā)P (Ā), with P (Ā) =
1−P (A). P (B|Ā) is the a priori probability of finding a
visual edge in a neighbourhood Mu,v . This can be con-
sidered as the probability to find a visual edge anywhere
in the image (i.e. choosing a location randomly), using
the very same process described before. Let nbPos be
the minimum number of pixel positions in the image
needed to have the neighbourhood (or mask) M of size
nu×nv cover the whole image, and nbEdges ≤ nbPos
the number of positions where a visual edge was found
within M . We can then express the a priori probability
P (B|Ā) as:

P (B|Ā) = nbEdges/nbPos

2628



Intuitively, this term tells us how informative it is to find
a visual edge in such a neighbourhood. Indeed, if there
is a lot of structure (i.e. many edges) distributed over the
image this will mean B is not very informative, while
if there are only a few edges that can be found overall
the image (P (B|Ā) low), this means that when we have
a laser corner and B = 1, the likelihood that the visual
edge found matches the corner is much higher.

• P (C|A,B) is the likelihood of the laser point projection
on the image, knowing the laser and camera data
correspond, and whether a visual edge was found in
the neighbourhood of the laser point projection. This is
related to the uncertainty in the projection of the laser
point on the image, i.e. to the neighbourhood (or mask)
Mu,v , interpreted as an array of size nu×nv containing
the values of probability of this projection.

– If a visual edge was found (B = 1), and
the location in the neighbourhood of the closest
pixel belonging to this visual edge is (i, j), then
P (C|A,B = 1) can be seen as the value of the
Gaussian in the mask at the same location:

P (C|A = 1, B = 1) = Mu,v(i, j)

– Knowing the data correspond (A = 1), under the
assumption mentioned above, there should be a
corresponding visual edge. Thus, if no visual edge
was found (B = 0), this means the location where
to look for this edge, i.e. the actual projection of the
laser point, is not in the estimated neighbourhood.
Therefore, P (C|A = 1, B = 0) can be interpreted
as the probability that the projection of the laser
point is outside of this neighbourhood, i.e.:

P (C|A = 1, B = 0) = 1−
nb∑
i=1

mb∑
j=1

Mu,v(i, j)

• P (C|B) = P (C|B,A)P (A)+P (C|B, Ā)P (Ā), where
P (C|B, Ā) corresponds to the likelihood of the projec-
tion of the laser point onto the image, knowing that the
laser and camera data do not correspond (A = 0) and
that an edge was found or not (B). If the data do not
correspond, then B does not provide more information
for C, thus we can say that P (C|B, Ā) = P (C|Ā). This
term corresponds to the confidence in the calibration,
taken as the best chance for the projection, i.e. the
probability at the centre of the neighbourhood Mu,v .

B. Decision

Once a likelihood of correspondence has been computed
for each candidate corner, a decision on the validity of the
segments containing such corners, i.e. candidate segments,
should be taken before integration and possible fusion of the
sensing data in the perception system:
• If the segment is bounded by two pairs of matching

edges/corners, the points of this segment are likely to
correspond to the information in the image, therefore

Fig. 2. The Argo UGV sensing the static trial area

this segment is validated. This means the laser data can
be combined (or associated) with the image data.

• If the segment is bounded by two non-matching
edges/corners, the laser segment is unlikely to corre-
spond to the information in the image, so it is rejected.
This means that in this area the laser and the camera
are probably not seeing the same elements in the envi-
ronment. For example, the laser may be detecting the
dust cloud while the camera images are not particularly
affected by it (see Sec. IV). Therefore, their data are
considered inconsistent and should not be combined or
fused.

• If the segment is bounded by a matching edge/corner
and a non-matching edge/corner, or contains only one
candidate corner, an unknown status is attributed to this
segment, as no decision can be taken at this point.

IV. EXPERIMENTAL RESULTS

This section aims at showing how this method of com-
paring laser-camera data can be used to improve the quality
and integrity of perception for an unmanned ground vehicle
in challenging environmental conditions. In particular, the
case of the presence of airborne dust clouds, which affect
the sensing of the laser and the camera in different ways, is
considered.

A. Experiment Setup

The datasets introduced in [5] and presented in more
details in [14] are used. They were acquired by a UGV
equipped with multiple sensors (Figs. 2 & 3), including a
colour camera, an infrared camera, and 2D LRFs (SICK LMS
291). The visual camera is a Prosilica Mono-CCD gigabit
ethernet camera, acquiring 3 × 8 bit images of resolution
1360×1024 at 10 frames per second. In this section, the LRF
used is the one labeled as LaserHorizontal in Fig. 3. In some
of the static5 datasets, a scene (see Fig. 2) is observed by all
sensors onboard the motionless UGV, including lasers and
cameras, first in clear conditions, and then in the presence
of various environmental conditions such as airborne dust,
smoke or rain. The laser scans obtained in clear conditions
can be used as a reference scan, to make comparisons with
the scans obtained in other environmental conditions. In
those datasets, all objects are static except for the small tree

5using the notation in [14]
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in the middle of the image (see Fig. 5), which is slightly but
randomly changing shape over time due to wind. Thus, to be
able to use the reference scan as a ‘ground truth’, the laser
points corresponding to the tree were systematically removed
from all scans used to evaluate the results in this section.

Fig. 3. Sensor Frame on the Argo. The data used for the experimental
results presented in this paper are the Visual Camera (top left) and the Laser
Horizontal (bottom).

Note that with the calibration made for this experimental
test, the ceiling of the maximal standard deviation for the
projection on the image was 3 pixels, thus the largest size
of neighbourhood used was 19 × 19 pixels. The threshold
on the gradient (gradThreshold) was 0.5 and the threshold
on the edge intensity in the Sobel image (imedgeThreshold)
was 40.

B. Laser scan filtering in challenging conditions

Fig. 4 shows the laser scan points projected on the image
in clear6 environmental conditions. The validated segments
are shown in green, while the rejected segments are shown
in red. For the other segments, shown in blue, no decision
could be taken, as they are not candidate segments. Note that
the laser scan segments corresponding to both laser poles (on
the left and on the right of the image), the brick pile and the
boxes were validated.

Fig. 5 shows the same type of illustration but in the
presence of some light airborne dust. It can be seen that
most laser points hitting the small dust cloud on the left of
the image are considered as inconsistent with the image data.
This is because the laser hits the dust cloud, whereas the
same scene can still quite clearly be identified in the image;
more specifically, the structural information in the Sobel-
filtered image hardly changed. In particular, the laser scan
does not hit the vertical pole on the left of the image, while
the corresponding laser scan segment had been validated in
the previous illustration, when no airborne dust was present
(Fig. 4).

C. Error Analysis

This section proposes an analysis of the results obtained
after the comparison of laser and camera data, and the
validation or rejection of some segments of the laser scan.
As it was mentioned before, the process only concerns the

6in the absence of airborne dust, smoke or rain

(a) Sobel image with projected laser points.

(b) Corresponding laser scan. The circles show all corner points,
with the candidate corners in green.

Fig. 4. Example of laser points projected on Sobel-filtered image of
the scene (a) and the corresponding laser scan (b) in clear conditions. In
the image: green circles illustrate matching edges/corners while red circles
show corners found in the laser scan for which no matching edge was
found in the neighbourhood of projection on the image Green/red crosses
correspond to laser points that belong to a validated/inconsistent scan
segment, respectively. Dark blue crosses correspond to points in segments
that do not contain candidate corners (i.e. no evaluation of these points
could be made).

points within the segments of the laser scan that contain can-
didate corners (i.e. candidate points). Therefore, the statistics
generated hereafter are calculated using only these candidate
points, as they are the only points for which a decision can
be taken, i.e. the only points that can be affected by this
process.

In this section, priorError is defined as the normalised
sum of errors for all candidate laser points, i.e. the sum of
all those errors divided by the number of terms in the sum.
postError is defined as the normalised sum of errors for all
validated laser points, i.e. the sum of errors when keeping
only the validated points, divided by the number of validated
points. Indeed, both these errors need to be normalised so
that they can be compared.

Fig. 6 shows the evolution of priorError and postError for
a portion of a dataset with presence of airborne dust. It can be
seen that priorError becomes significant as soon as airborne
dust appears, even in the form of a small light cloud. In
these conditions, postError hardly increases, indicating that
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(a) Image with projected laser points.

(b) Corresponding laser scan (blue line) and the reference scan
(green line). The red circles are rejected corners, while the green
ones were validated.

Fig. 5. Example of laser points projected on the original image of the
scene in the presence of light dust (a). Both corresponding current scan
(blue) and reference scan (green) are shown in (b). The laser scans clearly
show that the laser is significantly affected by the dust cloud on the left
hand side, which results in the rejection of a number of points (red crosses
in (a)), as this dust is hardly visible in the image.

the validation of laser points is particularly efficient. Indeed,
while some parts of the laser scan are quite affected by the
presence of dust, most of the time this phenonemon is hardly
visible in the image, creating clear discrepancies between the
data sources. As a result of this validation/rejection process,
the filtered laser scan is much more appropriate for fusion
with the colour information of the image, and also for fusion
with other sensors that are not affected by dust.

Fig. 7 shows the validation rate (rateValidated) and the
rejection rate (rateRejected) obtained for the same dataset
as before, with the presence of airborne dust. The validation
rate is the number of points validated by our system that
do correspond to points with negligible error divided by the
number of validated points (i.e. the true positive rate). The
rejection rate is the number of rejected points that do have a
non-negligible error divided by the number of rejected points
(i.e. the true negative rate).

This evaluation was also made on a larger dataset of
900 images, i.e. 90s at 10 frames per second, with the
presence of dust in various amounts and density (from
localised and light to spread over most of the image and

Fig. 6. Error of raw data (in blue) vs. after validation of the laser scan
segments (in dashed green). The error is the averaged sum of the differences
with the reference scan. Initially, the environment is clear, until airborne dust
appears at image 377. At first, the variable dust clouds remain small and
light: e.g., at Image 383 a small light dust cloud can hardly be seen on the
left hand side of the image, although the laser scan is already affected and
points are successfuly rejected. From Image 405 dust become denser and
larger.

Fig. 7. Rate of validation (%, in dashed green) and of rejection (%, in red)
of laser points for the same dataset as in Fig. 6. Note that up to image 377
rateRejected is equal to zero, as no points are rejected. The peaks where the
rate of rejection is dropping correspond to situation where very few points
are actually validated and/or rejected.

dense) during about 78s. Over this sequence of 780 images,
the average reduction of error obtained, i.e. the average of
(priorError − postError)/priorError, was 65%, with a
validation rate rateV alidated = 84% and a rejection rate
rateRejected = 73%.

V. CONCLUSION

In this paper, a method to check the consistency between
2D laser and camera data has been proposed. It provides
an estimated likelihood of correspondence at some points
of the laser scan (the candidate corners) and a mechanism
of validation and rejection of laser scan segments. It was
shown that rejecting segments of the laser scan that show
discrepancies with the camera data while validating other
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segments with data believed to be consistent can significantly
mitigate the effects in the scan that typically cause inter-
pretation errors in regular perceptions systems. Furthermore,
using this data filter can also contribute in mitigating failures
in perception systems by enforcing the consistency of data
from heterogeneous sensors before combination or fusion.

As an example, in Sec. IV this technique was used to
mitigate the effects of challenging environmental conditions
such as airborne dust on a laser scan. The data comparison
performed is particularly interesting when the camera image
is not affected by dust as much as the laser scan. In this
case, if a trusted laser-camera calibration is available, this
technique can also be used to filter the laser data which will
be used for obstacle detection or mapping.

Although the current study was focussed on the case of
a laser and camera sensors mounted on a UGV, any per-
ception system including this pair of sensors, with sufficient
overlap between their fields of view, could benefit from this
technique.

A. Discussion

Due to the poor actual intrinsic correlation between the
laser data and the camera data, an actual likelihood of
correspondence could only be evaluated for the candidate
corners. Once a decision has been taken for those specific
points, a simple mechanism was proposed to extend this
decision to the other points of candidate segments, assuming
there is high correlation between points in a segment. This
method proved to be quite efficient, as illustrated in the
presence of airborne dust in Sec. IV. However, the extent
of the validity of this propagation remains to be determined.

With the technique proposed in this paper, it was not
possible to evaluate the segments of the laser scan that do not
contain candidate corners (typically the points from the back-
ground of the scene). Therefore, two main ‘strategic’ choices
are possible. The perception system can be very conservative
by rejecting all those points (at the risk of a significant
loss of data), or accept all those segments for interpretation
and fusion. Future work will study the possibility to extend
that estimation of a likelihood of correspondence to all laser
points that do not correspond to candidate corners. In the
absence of clear common characteristics of the information
on those points with the visual information, this will probably
require a mechanism of inference.

In addition to detecting inconsistencies between laser and
camera data, being able to identify their causes could be
extremely valuable. It is believed that the main reasons for
the presence of such inconsistencies are:
• The presence of an element in the scene that provokes

a different effect on the laser and the camera data (e.g.
airborne dust or smoke). This element can cause local
inconsistencies or a global one over the whole laser
scan (or image) if the element is well spread. These
inconsistencies are typically variable over time.

• A significant misalignment, i.e. a situation where the
available estimated transformation between the laser and
the camera is not correct anymore. This will typically

affect the whole set of data consistently over time,
which might allow to distinguish this cause from the
previous one mentioned.

• The difference of perspective of the two sensors, which
also cause inconsistencies that are systematic in time
but whose amplitude depend on the location of the
perceived points. Therefore, a more local analysis may
contribute to distinguishing this cause from the previous
one.

B. Future Work

Future work will aim at determining if the evaluation of
the likelihood of correspondence is possible on the points of
the laser scan that are not candidate corners. This technique
will also be demonstrated using an infrared camera. One of
the main applications in that case is the detection of segments
of laser scans affected by the presence of smoke, as it usually
has no visible effect on infrared images.
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