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Abstract— In recent SLAM (simultaneous localization and
mapping) literature, Pose Only optimization methods have
become increasingly popular. This is greatly supported by the
fact that these algorithms are computationally more efficient,
as they focus more on the robots trajectory rather than dealing
with a complex map. Implementation simplicity allows these to
handle both 2D and 3D environments with ease. This paper
presents a detailed evaluation on the reliability and accuracy
of Pose Only SLAM, and aims at providing a definitive answer
to whether optimizing poses is more advantages than optimiz-
ing features. Focus is centered around TORO, a Tree based
network optimization algorithm, which has gained increased
recognition within the robotics community. We compare this
with Least Squares, which is often considered one of the best
Maximum Likelihood method available. Results are based on
both simulated and real 2D environments, and presented in a
way where our conclusions can be substantiated.

I. INTRODUCTION

One of the main focuses on current SLAM research is

the development of solutions to improve SLAM efficiency

without compromising the accuracy. SLAM itself can be

considered as an optimization problem, solved by combining

the information gained from sensor observations and robot

odometry. Researchers have typically resorted to simplifying

data and fitting it around point feature based solutions which

aims to compute optimal locations of both features and robot

poses [1].

Recently, Pose Only SLAM approaches have gained pop-

ularity [2] [3]. A Pose Only implementation typically divides

SLAM into two separate phases, one for the identification of

relative pose constraints and the second for the optimization

of robot poses. During the first phase, the consistency of

information use must be monitored and information reuse

must be avoided. For the second phase, the major focus is

on efficiency and accuracy, that is, how to get a good quality

solution quickly.

A popular Pose Only SLAM algorithms is Tree-based Net-

work Optimizer or TORO. It has been evaluated to be much

faster than most standard maximum likelihood approaches

and stated to work well in many different applications [3].

When it is difficult or impossible to extract features from

the sensor data, Pose Only SLAM seems to be a good

choice for optimizing the robot poses and locating the robot

in an unknown environment. However, if there are good
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quality features that can be extracted from the environment,

how much accuracy or consistency is compromised for the

efficiency in TORO or Pose Only SLAM?

In this paper, we assume the point feature based SLAM

set up and ask the above question. We want to know

whether it is necessary to compute the optimal locations of

features at all if accurate feature positions can be gained

from Pose Only SLAM. In other words, how accurate are

the implementations of Pose Only SLAM when compared

with the Full Least Squares solution. Also how does TORO’s

result differ from a Least Squares based optimization where

information use is maximized?

The paper is structured as follows. Section II explains the

three SLAM techniques we used to conduct our experiments.

Section III explains our approach to maintain consistency

when obtaining Pose Only constraints. Section IV describes

our evaluation methods. Section V presents experimental

results and Section VI discusses related work. Lastly, Section

VII draws conclusions on our findings.

II. THREE SLAM ALGORITHMS

A fair comparison to a feature based SLAM solution can

be made by providing a Least Squares benchmark. Unlike

methods such as Extended Kalman Filtering (EKF), the Least

Squares solution keeps all the robot poses and features in its

state vector to avoid any information loss.

The computational efficiency can be improved by means

of map joining or exploiting the sparseness of its information

matrix [6]. The Least Squares result is arguably one of the

most accurate estimations one can achieve.

The basic principle behind Least Squares is the minimiza-

tion of the error function

(Z − F (X))T P−1(Z − F (X)) (1)

where X is the state vector, Z is the measurement infor-

mation and P is the covariance of the measurement. The

problem itself is not always linear therefore the state vector

should be solved iteratively by

(JT P−1J) ·Xk+1 = JT
·P−1(Z −F (Xk) + J ·Xk)) (2)

where J is the Jacobian.

Often the algorithm can be made more robust by using

a Levenberg Marquardt implementation where a damping

factor is introduced to improve the convergence.

In this paper we use Least Squares in two ways.
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A. Full Least Squares SLAM (F-LS)

Assuming the measurement Zpf contains both robot

odometries and observations. A F-LS solution optimizes the

whole state vector Xpf in one go using this information.

The state vector Xpf in this algorithm thus contains all

the robot poses and all the feature positions. That is

Xpf = (R1, R2, · · · , Rm, L1, L2, · · · , Ln)

= (xr
1, y

r
1, φ

r
1, · · · , x

l
1, y

l
1, · · ·)

where Ri is the global robot pose and Li is global feature

(landmark) position.

The measurement vector Zpf contains all the available

odometry and observation information

Zpf = (R(01), O(0,1), O(0,2), · · ·R(12), O(1,1), O(1,2) · · ·).

Here R(01), R(12) are the odometry (constraint between 2
adjacent poses) and O(i,j) is the observations made from

pose i to landmark j.

A major issue associated with the F-LS approach, is that

when the environment becomes complex with too many

features the algorithm can becomes inefficient with a high

computation cost. In terms of the accuracy, the F-LS can

be considered as a benchmark for testing other SLAM

algorithms.

B. Pose Only Least Squares (PO-LS)

If we can somehow transfer the original pose-to-feature

observation information into relative pose constraint infor-

mation, then we can apply the Pose Only SLAM techniques.

When the relative pose constraints information is given, it can

be argued that a Least Squares implementations will provide

the best achievable solutions for optimizing only poses.

In this case, the state vector contains robot poses only and

is expressed by

Xpo = (R1, R2, · · · , Rm).

The measurement information available is now

Zpo = (R(0,1), R(0,3), R(0,4), · · · , R(1,3), R(1,4) · · ·)

where R(i,j) is the relative pose from pose i to pose j.

C. TORO

The input to TORO is also Zpo. TORO is an efficient Pose

Only SLAM algorithm combining the ideas of Grisetti et al.

[3] and research done by Olson et al. [13], who was one

of the first to introduce Stochastic gradient decent (SGD) to

graph based approaches. The results have given rise to faster

processing times as compared to traditional least squares

approaches.

The SGD equation is governed by

Xt+1
po = Xt

po + λ · KpoJ
T
poP

−1
po (Zpo − Fpo(X

t
po))

Here the state vector Xt
po contains only poses. Jpo is the

Jacobian of the error function, and (Zpo − F (Xt
po)) is the

residual and Kpo is a pre-conditioning matrix computed from

the Hessian matrix.

The method argues that by selecting more important con-

straints to use, optimization can still produce a near accurate

solution in most cases [10]. The major drawback of TORO

which is not present in a F-LS solution, is the inability to

handle non spherical covariances. Thus TORO can only be

used in Pose Only SLAM instead of feature based SLAM.

III. OBTAINING RELATIVE POSE CONSTRAINTS

Before applying the Pose Only SLAM approach, we find

getting information Zpo from Zpf becomes a critical step.

The process needs to be carefully performed such that

information can be extracted with limited or no information

loss or information reuse. For example, we can not simply

use the observations made from robot pose i many times to

obtain the relative pose constraints between pose i and other

poses.

In this paper, we propose two different methods to ob-

tain the constraint without information reuse. Both methods

are based on the following idea: under Gaussian noise

assumption, a single observation Li,j with covariance Pi,j

is equivalent to k observations each with covariance k×Pi,j

in terms of information content. While these methods are

not completely novel approaches, they are satisfactory in

addressing our Pose Only SLAM evaluations.

A. Method 1

Only using adjacent poses, to calculated SLAM, is a

popular techniques used by many researcher. However there

will be some information loss present in these methods. The

reason for using Method 1 in this paper, is to validate how

much information may be lost when Pose Only SLAM is

applied to this type of approach.

In Method 1 observations are only ever used once or twice,

which implies that the relationships are built up only between

adjacent poses. e.g. R(0,1), R(1,2), R(2,3), ..., R(n,0).

Algorithm 1 Adjacent Relative Pose Extraction Method

1: Associate features between only adjacent poses.

2: Check if observations are used once or twice.

3: Loop for all poses

4: Double the covariance of all observation which are used

twice.

5: Obtain relative pose constraint using least squares

6: End.

Odometry information are used in the calculation of all

relative poses except for constraint R(n,0). For computing

the relative pose constraint, a F-LS SLAM is first performed

using the observation and odometry information within the

two steps, then the features are marginalized out from the

state vector to get the relative pose.

B. Method 2

In Method 2 we aim to maximize the information usage by

trying to build as many relative pose relationships as possi-

ble. Information reuse is avoided in an offline perspective and

by, k × Pi,j , where k is the frequency observation O(i,j) is
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used and Pi,j is the corresponding measurement covariance.

The full potential of Pose Only SLAM optimization can be

exploited without any information reuse.

Algorithm 2 Multiple Relative Pose Information Extraction

1: Obtain observations from all poses.

2: Choose pose pairs with at least 2 common features to

find constraints.

3: Include odometry information for only adjacent poses.

4: Multiply covariance of observation by observation fre-

quency.

5: Obtain relative pose constraints by least squares.

6: Loop for all poses and build up constraints vector Zpo

with new covariance Ppo.

7: End

Fig. 1. Method 2

Fig.1 shows an example of information usage in Method

2. Here we assume there are only three robot poses and three

landmarks. When computing relative pose R(0,1), odometry

R(01) and observations O(0,1), O(0,2),O(0,3), O(1,1), O(1,2) ,

O(1,3) are used; when computing relative pose R(1,2), we use

R(12), O(1,1), O(1,3),O(2,1), O(2,3); when computing relative

pose R(0,2), we use O(0,1), O(0,3),O(2,1), O(2,3).

Given that O(0,2) and O(1,2) are only every used once in

this simulation, their covariance remain the same. The rest

of the observations are used exactly twice and need to be

multiplied by 2. Covariance multiplication does not apply

to odometry information however, since it is only ever used

once. To confidently obtain non adjacent constraints from

least squares optimization without divergence, an adequate

amount of features must be associated. For example, to cal-

culated R(0,2) at least 2 common features must be observed

from R0 and R2.

IV. QUANTIFICATION OF ESTIMATION RESULTS

We now have three different approaches to solve the

SLAM problem.

A. input Zpf , [F-LS], output Xpf .

B. input Zpf , [Method 1 or 2], transfer to Zpo, [PO-LS],

output Xpo.

C. input Zpf , [Method 1 or 2], transfer to Zpo, [TORO],

output Xpo.

How can one compare the results obtained? What are the

measures that should be compared?

In this paper, the comparisons will focus on estimation

consistency and accuracy. Estimation consistency is a crucial

requirement for any algorithm. Roughly speaking, an estima-

tion algorithm is consistent if the uncertainty predicted by the

algorithm accurately represents the actual estimation error.

Four tests are conducted to evaluate our three algorithms.

A. 2σ bound check on consistency

When the ground truth is available, one simple way to

evaluate the consistency is by comparing the actual estima-

tion error with its 2σ bound. This can be done for a single

simulation run.

B. NEES, Consistency check on robot pose estimate

Another more accurate way of quantify the consistency is

to run the simulation a few times (each time with difference

random noise seed) and then compute the average normalized

estimation error squared (NEES). Commonly known as a

(χ2) Chi Square test with n degree of freedom.

An average NEES can only be done where ground truth is

available. This test allows us to see the exact consistency of

each of the three SLAM algorithms, TORO, PO-LS, and F-

LS. Before we can do this test however, poses and respective

covariances must be extracted from the F-LS result.

X̂pf → X̂po, P̂pf → P̂po

Performing NEES on TORO gives rise to another issue.

TORO itself does not return an information matrix hence no

P̂po is obtained directly from the algorithm. We resolve this

by using the resultant X̂po estimate from TORO to calculate

its Jacobian. The information matrix P̂−1
po can then be derived

easily.

The NEES equation is

(Xtrue
po − X̂po)

T P̂−1
po (Xtrue

po − X̂po)

where Xtrue
po is ground truth robot poses. X̂po is estimated

robot poses obtained from the algorithms, and P̂po is the

covariance matrix of the estimate.

The comparison can now be made against 95% probability

region of the χ2 distribution. Also known as the Gate.

C. χ2
po, Accuracy of Pose Only methods

Where ground truth is not available, an χ2
po on relative

pose constraint error can be performed when evaluating

the accuracy of TORO when compared with PO-LS. The

aim is to examine how much information is lost through

approximations used in TORO.

To test the χ2
po using constraint information, the following

equation is used.

χ2
po = (Zpo − Fpo(Xpo))

T P−1
po (Zpo − Fpo(Xpo))
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Here Zpo is the relative pose constraint, and Ppo is the

corresponding covariance matrix, F (Xpo) is the function

relating the poses Xpo to the constraints Zpo.

D. χ2
pf , Accuracy comparison to feature based SLAM

Where ground truth is not available, one way to compare

all three algorithms (TORO, PO-LS and F-LS) is by compar-

ing their outputs with the initial input data Zpf . To justify

an accurate comparison all state vectors must be equal. Our

issue that needs addressing is the fact that Pose Only SLAM

does not produce landmark location estimates.

To overcome this, we can simply take the robot poses

obtained from TORO (or PO-LS), fix their values and find

the corresponding feature that best fit the data Zpf , to obtain

an estimate of X̂pf [6]. After X̂pf is obtained, the equation

for computing the χ2 error is

χ2
pf = (Zpf − Fpf (X̂pf ))T P−1

pf (Zpf − Fpf (X̂pf ))

In this test Zpf and Ppf are the initial data and covariance

values used for F-LS, X̂pf is the estimate generated by each

of the three SLAM algorithms now containing both landmark

locations and robot poses.

V. EXPERIMENTS

A. Comparing Method 1 and Method 2 for relative pose

extraction

Firstly, we aim to identify the respective accuracies of

the two relative pose extraction methods. The data for this

experiment comes from simulation number 3 with noise seed

(a). See Fig.3 and Table I. We use PO-LS in optimization

and check the performance based on their 2σ bound and

(Xtrue
po − X̂po) error values.

Fig. 2. PO-LS, Method 1 (black) and Method 2(green) 2σ Bound
Comparison

When looking at Fig.2 we can see that although both the

two estimate are consistent (staying within their 2σ bound),

the uncertainty of the estimate obtained from Method 1 is

Fig. 3. Simulated Trajectories Top Left:1, Right:2, Bottom Left:3, Right:4

much greater then that of Method 2, with some 2σ values

reaching 18 meters. Clearly using Method 2 is more mean-

ingful for evaluating Pose Only SLAM. Thus the method

described in Section III(B) is used in all the rest of the

simulation results.

B. Simulation set up

The simulation set up follows the procedure outlined

below.

• Simulate a trajectory, obtain odometry and observation

information.

• Get constraints from Method 2.

• Apply PO-LS and TORO optimizer.

• Conduct a F-LS on initial data.

• Evaluate results by testing NEES and χ2 .

Four trajectories shown in Fig. 3 were used in the eval-

uation. The environment consists of 225 point features all

uniformly distributed. Fig. 3 shows the four scenarios, two

with 82 Poses and two with 420 Poses. The more complex

trajectories consist of several points where loop closure

occurs.

For each step the robot moves 0.5 meters and rotates at

a predefined angle, then observes any features within its

sensor range (5m with 180 degree field of view). For each

trajectory we test for three different noise level: (a) regular

environment where the sensor and odometry noise is low;

(b) changes in terrain resulting in higher odometry noise; (c)

environmental effect resulting in higher sensor noise. The

noise values are distributed using a Gaussian model, with the

standard deviation values as described in Table I. Simulations

for each noise type were repeated 10 times. The mean and

standard deviation of corresponding NEES and χ2 values are

listed in Tables II,III.

The DLR-Spatial-Cognition data was selected as our

real data to be evaluated. This data set is available at

https://svn.openslam.org/data/svn/2d-i-slsjf. Data was col-

lected with a robot equipped with a camera, moving around

in a building scattered with artificial landmarks (white/black
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circles) placed on the ground. The images acquired from the

camera has been preprocessed and the relative position of the

observed landmarks with respect to the observation point, are

provided. This data contains both odometry and landmarks

with good uncertainty measurements. Preprocessing of data

has been performed with known data associations. There

is a total of 3296 poses, 539 landmarks results in 14163
observation. Method 2 was used to obtain constraints in order

to compute relative pose. As ground truth is not known only

the χ2 tests can be performed.

TABLE I

STANDARD DEVIATION FOR GENERATING GAUSSIAN NOISE SEEDS

Noise
Type Odometry Observation

dx(m) dy(m) dθ(rad) dx(m) dy(m)

a 0.1 0.1 0.05 0.1 0.1

b 0.2 0.2 0.2 0.1 0.1

c 0.1 0.1 0.05 0.3 0.3

C. Results

As seen in Table II NEES values for PO-LS and F-LS

stay very constant in every noise situation. Also PO-LS

out performs F-LS in the optimization of robot positions

when compared against ground truth. TORO however shows

a lot of inconsistency, high mean and standard deviation.

Especially in the case of noise (b), where sensor noise is

high. When larger trajectories are used, TORO’s accuracy

drops dramatically, in all cases surpassing the gate values.

χ2
po results from Table II confirms PO-LS to be a much

more robust technique. Relative poses are optimized with far

better accuracies than that of TORO.

A very interesting observation can be made when looking

at the outcome of χ2
pf , shown in Table III. When using

PO-LS there is high indication that only a small amount

of information is lost from the original data. This is evident

when we compare the PO-LS values with F-LS values. There

is only a slight increase in PO-LS error which leads us

to believe that optimization of landmark is not such a big

component when it comes to SLAM.

Finally, results from the DLR data set, Table IV, supports

our claim with its result reflecting those of the simulations.

TORO still shows very high inconsistency. Looking at Fig.

4, rotational error appears to be the contributing factor.

VI. DISCUSSION AND RELATED WORK

When Method 2 is applied the approximation effects of

TORO are definitely noticed. The NEES test justifies Pose

Only SLAM to be quiet effective in optimizing error, staying

below the gate value during the majority of tests. When we

do a full comparison with the F-LS, indicated in χ2
pf , we

can see little information is lost in PO-LS.

Nowadays more and more SLAM algorithms are being

developed. Evaluation of different SLAM algorithms is be-

coming an important issue and has attracted more attention

in the past few years. For example, Burgard et. al [5] and

Kummerle et.al [12] provided an objective benchmark for
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Fig. 4. DLR results (Green: F-LS Pink: PO-LS Blue: TORO)

comparing different trajectory based SLAM algorithms. The

metric used is the relative position of poses for comparing the

accuracy of the trajectories obtained from different SLAM

algorithms, which allows us to compare SLAM approaches

that use different estimation techniques or different sensor

modalities since all computations are made based on the

corrected trajectory of the robot. In [6], some performance

metrics for comparing the consistency, accuracy and effi-

ciency of different point-feature based SLAM algorithms are

proposed. Moreover, a number of research groups [7][8] have

collected large-scale experimental data with accurate ground

truth such that different SLAM algorithms can be evaluated

using real data.

One important issue in SLAM or any other information

fusion techniques is information reuse. One way to deal with

information reuse is first use whatever information available

to get the estimate, then using Covariance intersection (CI)

(see [14] and [15]), that facilitates combining two correlated

pieces of information, when the extent of correlation itself is

unknown is used to fuse these two estimates. Another way

to separate the observations made from a particular pose into

two parts, one part is used to compute the relative pose with

respect to the previous pose and the other part is used to

compute the relative pose to the next pose [9]. However,

both there methods cause some information loss.

In this paper, we dealt with this issue in a different way.

We assume the Gaussian noise assumption and separate one

single observation into different parts - each with reduced

amount of information (enlarged covariance matrix). This

provides us the information fusion results without informa-

tion reuse and without information loss.

VII. CONCLUSION

After careful evaluation we can say that PO-LS is able

to achieve results accurately without much information loss,

provided that the relative pose information is extracted prop-

erly. Thus PO-LS can be regarded as a promising alternative

for F-LS when the computational cost of F-LS becomes an

issue.

It is evident that approximations involved in TORO does

seem to affect its ability to fully optimize its solution in some

scenarios, as compared with PO-LS. However without more
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TABLE II

NEES AND χ2
po TESTS, MEAN(STANDARD DEVIATION) VALUES FROM 10 SIMULATIONS

Trajectory NEES NEES NEES NEES χ2
po χ2

po

Noise Type GATE PO-LS TORO F-LS PO-LS TORO

1(a) 280.36 152.76 (9.60) 413.73 (391.54) 190.74 (14.09) 33.96 (5.76) 301.73 (359.16)

1(b) 280.36 128.79 (19.26) 179.76 (74.7) 189.35 (16.90) 18.47 (3.13) 67.78 (48.66)

1(c) 280.36 188.33 (12.42) 2280.94 (354.64) 193.19 (11.30) 34.13 (5.74) 2145.99 (351.48)

2(a) 280.36 157.80 (12.79) 193.73 (18.49) 195.88 (10.51) 29.08 (3.29) 82.85 (12.82)

2(b) 280.36 125.33 (12.0) 144.53 (17.8) 192.56 (11.77) 16.62 (2.84) 39.08 (12.67)

2(c) 280.36 181.44 (12.42) 722.07 (110.32) 189.25 (12.0) 31.45 (4.64) 613.88 (111.5)

3(a) 1340.59 628.77 (14.62) 2561.88 (328.61) 957.89 (39.06) 697.97 (12.95) 2958.97 (328.76)

3(b) 1340.59 551.32 (24.26) 3022.718 (3288.33) 968.88 (49.23) 562.01 (14.88) 3120.39 (3328.61)

3(c) 1340.59 798.08 (42.39) 10688.30 (692.99) 965.68 (46.8) 736.19 (17.04) 11180.28 (701.09)

4(a) 1340.59 661.12 (14.62) 2273.29 (328.61) 987.11 (39.06) 641.43 (12.95) 2523.50 (328.76)

4(b) 1340.59 581.17 (41.02) 1475.20 (466.24) 975.03 (35.2) 392.25 (196.43) 1351.07 (727.41)

4(c) 1340.59 809.64 (42.39) 8851.06 (692.9) 980.33 (46.8) 674.88 (17.04) 9264.40 (701.09)

TABLE III

χ2

pf
TESTS, MEAN(STANDARD DEVIATION) VALUES FROM 10

SIMULATIONS

Trajectory
Noise Type PO-LS TORO F-LS

1(a) 539.13 (80.77) 1039.25 (669.99) 327.50 (16.79)

1(b) 612.41 (104.46) 1010.63 (471.12) 339.15 (21.05)

1(c) 362.40 (16.06) 2505.23 (358.56) 327.76 (14.11)

2(a) 501.19 (31.38) 569.44 (69.19) 339.05 (11.10)

2(b) 501.28 (26.05) 614.02 (96.61) 336.09 (16.3)

2(c) 398.41 (23.02) 1004.85 (120.62) 342.19 (17.87)

3(a) 3290.44 (90.83) 7146.97 (743.58) 3135.11 (46.89)

3(b) 3252.42 (49.24) 8666.17 (6520.58) 3137.72 (48.59)

3(c) 3264.81 (42.69) 15581.44 (1236.35) 3121.31 (30.23)

4(a) 3248.97 (90.83) 6826.11 (743.58) 2970.42 (46.89)

4(b) 3254.75 (56.74) 6550.57 (1258.82) 2652.96 (536.5)

4(c) 3187.42 (42.69) 13135.66 (1236.35) 2988.83 (30.23)

TABLE IV

χ2 ERROR COMPARISON USING DLR DATA SET

χ2
po PO-LS TORO

8750 1291644

χ2

pf
PO-LS TORO F-LS

36232 1343662 27678

testing using larger data sets, the tradeoff between efficiency

and accuracy involved in TORO is still undetermined.

In the future, we are planning to use more large-scale data

sets to compare the three algorithms in both 2D and 3D

scenarios. Some performance comparison with other SLAM

algorithms based on local map joining will also be very

interesting.
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