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Abstract— This paper presents a statistically consistent
SLAM algorithm where the environment is represented using a
collection of B-Splines. The use of B-Splines allow environment
to be represented without having to extract specific geometric
features such as lines or points. Our previous work proposed a
new observation model that enables raw measurements taken
from a laser range finder to be transferred into relative position
information between the control points of a B-Spline and the
robot pose where the observation is made. One of the unresolved
issues in the work was the estimation of the observation covari-
ance, which is addressed through an analytical approach in this
paper. As the uncertainty associated with the observation model
is accurately defined and an optimization approach is used
in the estimation process, the proposed SLAM algorithm can
produce consistent estimates. Both simulation and experimental
data are used for evaluation of the results.

I. INTRODUCTION

Consistency is an important issue in estimation techniques

and algorithms. An estimator is called consistent if the

estimate is unbiased and the covariance calculated by the

estimator matches the actual mean square error [1].

As an estimation problem, simultaneous localization and

mapping (SLAM) also faces the same issue [2]. For the

point feature based SLAM problem, it is recognized that the

Extended Kalman Filter (EKF) SLAM algorithm may pro-

duce inconsistent estimates under various conditions. Large

orientation error of the robot leads to inconsistencies [2][3].

Recently it has also been shown that the major cause of

inconsistency of a SLAM algorithm is due to the fact that

the Jacobian with respect to the same feature/robot pose

is evaluated at different state estimates [3][4]. Results also

show that SLAM algorithms using optimization techniques

can improve the consistency significantly as Jacobians are

re-evaluated over different times [5][6].

Alternative method to solve the SLAM problem is “tra-

jectory based SLAM” [7][8]. In this method relative pose

information between consecutive scan frames are computed

using scan matching techniques and then an optimization

is performed to smooth the whole robot trajectory. Many

promising results have been achieved in this direction. The

consistency of the robot trajectory can be checked provided

that the ground truth of the robot trajectory is available [9].
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However it is impossible to evaluate the quality of the map

due to the fact that, this method does not provide a model

to represent the environment.

A number of research groups have tried to use more

complex geometric primitives to represent the environment.

The Symmetries and Perturbations Model (SP-model) was

introduced in [10]. Some successful applications of SP-

model based SLAM have been reported. However, it is

not easy to use SP-model to represent complex features in

the environment. Furthermore, it has been demonstrated in

[11] that SP-model leads to inconsistent results in indoor

environment.

Nieto et al. [12] proposed the Scan SLAM algorithm,

which is a marriage of EKF-SLAM and scan correlation. In

Scan SLAM, landmarks are no longer defined by analytical

models, instead they are defined by templates composed of

raw sensor data. Although these templates can be augmented

as more data becomes available, the templates themselves are

not included in the EKF state vector. Hence the uncertainty

of the templates can not be represented.

Very recently, Pedraza et al. developed the BS-SLAM

[13] where B-Splines are used to represent the environment.

Using B-Splines to represent the environment has some

clear advantages: 1) B-Splines are able to represent complex

environment. 2) some appealing properties for B-Splines e.g.

any affine transformation can be applied to the curve by

applying transformation to the control points. However, in

[13], it has been observed that the linearization process of

EKF lead to inconsistent estimate in some scenarios.

In [14] we proposed a new observation model for B-Spline

SLAM. The observation model is expressed as a function of

relative positions between the control points of the observed

spline and the observation point. With the new observation

model, the B-Spline SLAM problem can be transferred into

a point-feature based SLAM problem and can be solved by

optimization-based point-feature SLAM algorithms. In [14],

the error of the control points has been considered from two

independent sources: Spline fitting error and the chord length

error. The chord length error is derived empirically. This

makes the proposed algorithm less robust as different sensor

arrangement would result in different chord length error.

This paper shows how to analytically derive the covariance

matrix of the estimated control points. It considers that the

spline fitting error and the chord length error are not inde-

pendent. Simulation and experimental results are presented

to demonstrate the consistency of the proposed method.

This paper is organized as follows. Section II describes the
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basic concept of B-Splines and its key properties. Section III

briefly introduces spline fitting technique. In Section IV, the

covariance matrix estimate for the new observation model is

derived. Implementation issues are discussed in Section V.

Section VI provides some consistency analysis on the new

observation model. Section VII shows results on B-spline

SLAM using both simulation and experimental data. Section

VIII concludes the paper.

II. FUNDAMENTAL OF B-SPLINES

A. Definition of a B-spline

A B-Spline curve of order k, is defined as

s(t) =

n∑

i=0

xiβi,k(t) (1)

where xi(i = 0, ..., n) are the control points, βi,k(t) are

the normalized B-Spline basis functions of order k defined

over the knot vector T = [ε0, ..., εn+k]. A common form for

clamped knot vector [15] for an order k spline is:

T = [0, ..., 0
︸ ︷︷ ︸

k

, εk, ..., εn, 1, ...., 1
︸ ︷︷ ︸

k

] (2)

with 0 ≤ εk ≤ ... ≤ εn ≤ 1.

The basis functions βi,k(t) are governed by the Cox-de

Boor recursion formula [15].

B. Two key properties of a B-Spline

1) Affine invariance property: Affine transformation of a

B-Spline can be achieved by transformation of the control

points. This property makes it possible to solve the B-Spline

SLAM problem using algorithms developed for point feature

based SLAM.

2) Differentiable property: The basis function of a B-

spline is differentiable:

∂βi,k(t)

∂t
=

k − 1

εi+k−1 − εi

βi,k−1(t) −
k − 1

εi+k − εi+1
βi+1,k−1(t)

(3)

and the derivative of a B-spline of order k is :

ds(t)

dt
= (k − 1)

n∑

i=0

xi − xi−1

εi+k−1 − εi

βi,k−1(t) (4)

III. SPLINE FITTING

Deriving a spline function from a set of data points is a

common problem in many areas. To be useful for SLAM the

covariance matrix estimate of control points is also needed.

This can be achieved using parameterized spline fitting.

In the parametrization process, for each data point dj =
[pj , qj ]

T , j = [1, ...,m] a time parameter value tj is assigned.

This results in a time parameter sequence rv = [t1, ..., tm].
The spline fitting problem now becomes a minimization

problem:

min
X

m∑

j=1

‖

n∑

i=0

xiβi,k(tj) − dj ‖2
(5)

where X = [x0, ..., xn]T and xi(i = 0, ..., n) are the control

points and ‖ · ‖ is the Euclidean norm.

Define the positions of the raw data point as a matrix:

M =

[

p1 · · · pm

q1 · · · qm

]T

. (6)

The least square solution for (5) is:

X = [BT B]−1BT M = ΦM (7)

where

Φ = [BT B]−1BT (8)

and B is the collocation matrix:

B =





β0,k(t1) · · · βn,k(t1)
...

. . .
...

β0,k(tm) · · · βn,k(tm)



 . (9)

For B-Spline based SLAM, the time parameter sequence

need to be invariant to the observation point. As length of

a spline is invariant with observation point, chord length

method [16] is used in this paper. The chord length method

uses the ratio between the cumulated chord length and the

total chord length to approximate the time parameter tj :

l1 = 0

lj =
∑j−1

i=1
‖di+1 − di‖

lm−1 =
∑m−1

i=1
‖di+1 − di‖

tj = lj/lm−1.

(10)

IV. COVARIANCE MATRIX OF THE ESTIMATED CONTROL

POINTS

Suppose the covariance matrix of the raw measurement

M in (6) is S, the covariance matrix of control points can

be derived from (7):

Ps =
∂ΦM

∂M
S

∂ΦM

∂M

T

(11)

Since the size of M is m · 2 and size of Φ is n · m, by the

product rule for matrix calculus [17] we have:

∂ΦM

∂M
= (MT ⊗ In)

∂Φ

∂M
+ (I2 ⊗ Φ)

∂M

∂M
(12)

where
∂Φ

∂M
=

∂Φ

∂B

∂B

∂M
=

∂(BT B)−1BT

∂B

∂B

∂M
(13)

Applying product rule on equation (13):

∂Φ

∂M
= ((B ⊗ In)

∂(BT B)−1

∂B
+ (Im ⊗ (BT B)−1)

∂BT

∂B
)

∂B

∂M
(14)

Using matrix calculus, ∂(BT B)−1/∂B can be derived as:

∂(BT B)−1

∂B
= −((((BT B)−1)T ⊗ In)/(In ⊗ (BT B)))

∂(BT B)

∂B
(15)

where

∂(BT B)

∂B
= (BT ⊗ In)

∂BT

∂B
+ (In ⊗ BT )

∂B

∂B
(16)

From (9) and (10), ∂B/∂M becomes:

∂B

∂M
=

∂B

∂rv

∂rv

∂M
(17)

2066



From (3) we have

∂B

∂rv

=






∂B1,1

∂t1
. . .

∂B1,1

∂tm

...
. . .

...
∂Bm,n

∂t1
. . .

∂Bm,n

∂tm




 (18)

And ∂rv/∂M can be derived using chain rule:

∂rv

∂M
=

∂rv

∂E

∂E

∂C

∂C

∂M
(19)

with
E = [△e1, ...,△em−1]
C = [△c1, ...,△cm−1]

(20)

where △ej is the real length of the curve piece j and

△cj = ||dj+1 − dj ||

is the chord length of the curve piece j. From (10) the

Jacobian of tj w.r.t. E can be derived as:

∂tj

∂E
= ∂(lj/lm−1)/∂E
= (lm−1(∂lj/∂E) − lj(∂lt/∂E))/l2m−1

(21)

where
∂lj
∂E

= [
∂lj

∂△e1
, . . . ,

∂lj
∂△em−1

] (22)

As the function of the curve is unknown, it is not possible

to estimate the real curve piece length. But it is possible to

get the limit of the real length in terms of chord length from

[18]:

△ej ≤ △cj +
1

12
△ej

3‖S(t)′′‖2
[tj ,tj+1] (23)

where S(t) is the actual spline equation. As laser scanner has

fine resolution, △cj is approximately equals to △ej . Also

the spline estimate Ŝ(t) and the real spline S(t) should be

sufficiently close. Therefore, we have:

△ej ≤ △cj +
1

12
△cj

3‖Ŝ(t)′′‖2
[tj ,tj+1] (24)

‖Ŝ(t)′′‖[tj ,tj+1] can be derived using (4). Hence ∂E
∂C

and ∂C
∂M

can be calculated.

V. IMPLEMENTATION ISSUES

A. Data association

In traditional feature based SLAM problem, data asso-

ciation process associates the observations to the features

present in the state vector. In comparison with conventional

feature based SLAM, data association for the B-Spline based

SLAM contains two stages: 1). Pairing observation with map

splines. 2). Identifying time parameter sequence rv .

1) Pairing observation with splines in the map: At step

n, a new scan Bn has been acquired. In order to perform

the pairing, the new scan and the map estimate Vn,u, which

contains u splines, need to be in the same coordinate system.

As the odometry may contain large uncertainty, we apply

Iterative Closest Point (ICP) [19] scan matching algorithm

on current scan Bn and previous scan Bn−1 to get a more

reliable relative pose information.

After transforming Bn and Vn,u in the same coordinate

system, the following process can be performed: a). Scan Bn

is segmented result in v segments corresponding to different

spline objects. b). For segment i(1 ≤ i ≤ v) the laser beam

angle of extreme points (Segi,s and Segi,e) are calculated.

These angles are compared against the laser beam angle of

extreme points (Ŝj,s and Ŝj,e) for map spline j(1 ≤ j ≤ u).
Also, taking into account of range information for segment

i, the pairing process completes. Fig. 1. illustrates this.
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Fig. 1. Map estimates are shown in blue line, new scan points are shown
in red crosses. Laser beam angle for extreme points of data from segment

i and map spline j are calculated. If Ŝj,s ≤ Segi,s ≤ Ŝj,e or Ŝj,s ≤

Segi,e ≤ Ŝj,e then segment i is associated with map spline j

2) Identify time sequence for new observations: The pro-

posed algorithm begins with initializing a set of B-Splines

derived from appropriately segmented scan data and include

control points of these splines in the state vector. We use

the term “full spline” to describe the B-splines represented

in the state vector. As new laser scans been acquired, new

observation about “full splines” become available. The new

observation may be about the whole “full spline”, part of the

“full spline” or a previously un-observed part of the “full-

spline”. In the following we use “part of spline” to describe

part of the “full spline” and “extension of spline” to describe

previously un-observed part of the “full-spline”. Whenever

“extension of spline” is observed, the “full-spline” will be

updated to include the extension.

To be able to estimate the same set of control points

of a spline for various observation, the time parameter

sequence rv need to be defined such that it is invariant to

the observation points. Thus we calculate the time parameter

sequence for the new spline data according to the current

“full spline”.

To compute the time parameter sequence for new obser-

vation data, only the start and end point of the observed

spline data need to be associated with the spline estimate Ŝ.

The ray tracing [20] method can be used to find the time

parameter t for the extreme points. Suppose time parameter

for start and end point has been identified as ts and te, time

parameter for remaining spline data points can be calculated

by a modified version of (10):

l1 = 0

lj =
∑j−1

i=1
‖di+1 − di‖

lm−1 =
∑m−1

i=1
‖di+1 − di‖

tj = lj(te − ts)/lm−1 + ts

(25)

B. Spline fitting for new observations

After the new spline data has been correctly associated

with current “full spline” Ŝ, the observation model of the

new spline data can be derived.
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1) Case 1: re-observe “full spline”: If the new observa-

tion is made to whole Ŝ, control points and the associated

covariance matrix for current observation can be derived

using the process detailed in Section III and Section IV.

2) Case 2: re-observe “part of the spline”: When the new

observation corresponds to part of Ŝ, we use the following

process to estimate the control points.

Assume the knot vector for an order k spline is (2),

time parameter sequence for the new observation is rv =
[t1, ..., tm] while 0 ≤ εa < t1 < tm < εb ≤ 1. The

collocation matrix for this is:

Bnew =





βa,k(t1) · · · βb,k(t1)
...

. . .
...

βa,k(tm) · · · βb,k(tm)



 . (26)

Using our proposed method, control points xa to xb and

associated covariance matrix can be derived.

3) Case 3: observe “extension of the spline”: If unex-

plored part of a spline has been observed, Ŝ needs to be

updated. Common area between Ŝ and the new observation

need to be firstly identified (Fig. 2. illustrates this). An up-

dated length of the spline can be calculated. Time parameter

sequence for the new observation according to new length

will be calculated. Estimate of the control points can be

derived from method described in Case 2.
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Fig. 2. Map estimate are shown in blue line, new scan points are shown

in red crosses. Laser beam angle for extreme points of map spline Ŝ are
calculated. Once the common area is identified. the spline length is updated.

VI. CONSISTENCY ANALYSIS IN SIMULATION

In this section, we use simulation to demonstrate the

consistency of the proposed covariance analysis. The consis-

tency of the algorithm is evaluated by computing the average

normalized estimation error squared (NEES) of different runs

and then perform a chi-square test [3].

In our simulation, the range finder observations are gener-

ated by finding the intersection points between the reference

spline and an artificial laser beams from a fixed robot pose.

The field view of the sensor is [−π
2 , π

2 ] and the sensor range

used is 6m. To simulate the real laser data, we use 0.5o

for the laser resolution and a zero mean Gaussian range

measurement noise with 6mm standard deviation.

A. Estimate control points when “full spline” is observed

When “full spline” is observed, we utilize the proposed

spline fitting algorithm in Section III to get the control

points’ estimate. Fig. 3 shows a simulation result of this

situation. The control point estimates and associated 2σ
uncertainty ellipses are compared with the ground truth

control points 1.

To investigate the consistency of the observation model,

50 simulation data sets are generated. The average NEES

obtained is 33.4578, which is within the 95% confidence

gate 33.9244.

−8 −6 −4 −2 0 2 4 6 8 10 12
9.4

9.6

9.8
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10.4

10.6

10.8

11

 

 
"ground truth" control points

spline fitting result

Fig. 3. Spline fitting with noisy data

B. Estimate control points when “part of spline” is observed

A simulation result for the scenario when only “part of

spline” is observed is shown in Fig. 4(a). The uncertainty

ellipses are shown in Fig. 4(b).

Again, 50 simulation data sets with added independent

noise are generated. The average NEES obtained is 16.0368,

which is smaller than the 95% confidence gate 26.2962.
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First scan

second scan

(a) Raw data for observing part of a spline. First scan is “full
spline”, second scan is “part of spline”
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spline fitting

ground truth

(b) Spline fitting result when “part of spline” is observed. The
3 left most control points are not estimated here, as this range
has not been observed

Fig. 4. Spline fitting with noisy data when “part of spline” is observed

1In simulation, the ground truth of the control points can be obtained
using the spline fitting with noise-free data, see [14] for details
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C. Estimate control points when an “extension to the spline”

is observed

A simulation result for the scenario when “extension of

the spline” is observed is shown in Fig. 5.

For this case, after the spline fitting using the second scan,

a new spline fitting needs to be performed using the first scan

(spline re-fitting) since the “full spline” has been updated.

Further consistency analysis of the observation model is

conducted in the next section using SLAM results.
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First scan

Second scan

(a) Raw data for observing extension of a spline. After first
scan was made, the “full spline” length is considered to be L1.
Spline fitting was performed based on current spline length L1.
After second scan was made, section where previously have not
been observed has been identified. The “full spline” length was
updated to L2. Spline fitting was performed based on new full
spline length L2.
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Spline fitting1

Spline fitting using updated length

Ground truth

(b) Spline fitting results. “Spline fitting 1” refers to spline fitting
result using L1. “Spline fitting using updated length” refers to
spline fitting result using L2.

Fig. 5. Spline fitting with noisy data when extension of the spline is
observed

VII. SLAM RESULTS

A. Point feature based I-SLSJF SLAM algorithm

I-SLSJF [21] is a local submap joining algorithm that fuses

the local maps together using Extended Information Filter

(EIF) and least squares approach. I-SLSJF was shown to be

able to produce consistent estimates for point feature based

SLAM problems in an efficient way. When each local map is

built by unrelated observations in a single time step, I-SLSJF

is identical with SAM [6]. However, in the B-Spline based

SLAM, correlations in the observation at certain time step is

unavoidable. Therefore SAM algorithms cannot be directly

used here. Therefore I-SLSJF is used in our implementation.

B. SLAM result using simulation data

A simulation experiment containing 9 splines in the

environment and 46 robot poses was created to further

evaluate the consistency of the proposed SLAM algorithm.

The simulation environment and the SLAM results obtained

using I-SLSJF [21] are shown in Fig. 6. Comparing with

the “ground truth”, the estimate of control points and robot

poses appear to be very accurate. To evaluate the consistency

of the observation model and the SLAM results, the NEES

value is plotted against the 99% confidence gate at each step

shown in Fig. 6(c). The result appears consistent.
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(a) A simulation environment with 9 splines, red dots show
the robot poses, blue triangles show the “ground truth” of the
control points
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(b) SLAM result using the simulation data.Blue crosses show
the “ground truth” control points. Estimated control points
almost coincide with “ground truth”
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(c) Comparison of NEES v.s. 99% confidence gate at each step

Fig. 6. Simulation environment and SLAM result

C. SLAM using real data

In order to validate the proposed algorithm, experiments

have been performed with laser scans collected at University

of Freiburg from the Robotics Data Set Repository [22].

We selected 55 scans from the data set. Due to errors

observed in the ICP based data association, manual asso-

ciation were performed on some scans. In the experiment,

cubic splines with 15 knots were used. Fig. 7(b) shows the

control points estimates obtained from I-SLSJF. The map

contains 60 cubic splines. Each spline contains 11 control

points. Fig. 7(c) depicts the map using cubic splines derived

from the control point estimates.

2069



−10 −5 0 5 10 15 20 25

−10

−5

0

5

10

15

(a) Trajectory SLAM result. Firstly, Scan matching are per-
formed using the selected scans, then optimization is applied
on the relative pose estimate derived from scan matching

−15 −10 −5 0 5 10 15 20
−6

−4

−2

0

2

4

6

8

10

12

14

X(m)

Y(
m

)

(b) Control points and robot pose estimate
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(c) Spline derived from the estimated control points

Fig. 7. SLAM result using the University of Freiburg dataset

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, a method to estimate the covariance matrix

for control points in a B-Spline based SLAM algorithm

is proposed. The errors in the control points estimates

originates from two dependent sources: the raw data error

and the chord length estimate error. It has been shown that,

under various conditions, the proposed error analysis leads

to consistent spline fitting result. Some initial SLAM results

using simulation and real data further proves that the estimate

is consistent.

We plan to make use of more large scale real data sets

with our new observation model and the I-SLSJF algorithm

to further evaluate the proposed approach. In the future, we

aim to improve the data association process such that manual

association is not required. We will also focus on extending

the new observation model to 3D SLAM using 3D splines

as features. Some further theoretical investigation on the

consistency issue for SLAM with B-Spline features is also

underway.
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