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Abstract— This paper presents a novel method of wide-
baseline image matching based on the intersection context
of coplanar line pairs especially designed for dealing with
poorly textured and/or non-planar structured scenes. The line
matching in widely separated views is challenging because of
large perspective distortion and the violation of the planarity
assumption in local regions. To overcome the large perspective
distortion, the local regions are normalized into the canonical
frames by rectifying coplanar line pairs to be orthogonal. Also,
the 3D interpretation of the intersection context of the coplanar
line pairs helps to match the non-planar local regions by
adjusting the region of interest of the canonical frame according
to the different types of 3D non-planar structures. Compared
to previous approaches, the proposed method offers efficient
yet robust wide-baseline line matching performance under
unreliable detection of end-points of line segments and poor
line topologies or junction structures. Comparison studies and
experimental results demonstrate the accuracy of the proposed
method for various real world scenes.

I. INTRODUCTION

Establishing feature correspondences between images un-
der different illuminations, viewpoints, and backgrounds is
an important and fundamental problem in computer vision
and image processing, and recently it has been getting
attention due to its tremendous needs in diverse applications
such as image search, scene modeling, visual recognition,
and augmented reality.

Many of the image matching methods to date have been
proposed under the proposition that interest points can be
detected and matched based on the invariant properties
associated with photometrics. To deal with widely separated
views, local affine/similarity invariant features have been
actively developed and broadly employed in many vision
applications during the last decades, including in maximally
stable extremal regions (MSER) [1], edge based regions
(EBR) [2], and scale-invariant feature transform (SIFT) [3].
The methods and performances of those kinds of local
affine invariant features were reviewed and compared in [4].
Furthermore, Rothganger et al. [5] represented 3D objects
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in terms of local affine invariant features. However, those
approaches are effective only for richly structured scenes
with sufficient textural information that allows them to be
used for the extraction and matching of interest points.
Other than the perspective distortion, in widely separated
views, the local regions of non-planar structures, such as
3D junctions/corners and 3D boundaries/edges, can not be
approximated by local planar regions because they include
multiple planes and are easily occluded by other planes [6].
Therefore, the local features need to be matched in non-
planar structured scenes considering these 3D occlusions.

In real-world situations, it is often the case that scenes may
contain poorly textured objects, obscuring images of interest
[7]. In this case, line features can be good alternative image
features to interest points because man-made objects are
often configured with several well-defined geometric shapes
that offer distinct 3D lines and edges [8], [9]. In applica-
tions such as scene modeling and 3D object recognition,
the detection and matching of line features are required,
regardless of those of interest points. While line features are
regarded as robust to environmental variations for detection
and localization in 2D image planes, they are difficult to
match because of the lack of photometric invariance to be
used for measuring similarity.

In the early years, the line matching approaches were
developed based on the photometric properties by adapting
the interest point-based approaches to line segments. Schmid
and Zisserman [10] automatically matched line segments by
exploiting the intensity neighborhood of the line segments
guided by the epipolar constraints between different camera
views in order to provide point to point correspondences
along the line segments. Werner and Zisserman [11] im-
proved the previous algorithm with resolving the resulting
ambiguity by a search to register the photometric neigh-
borhood. Bay et al. [12] obtained line segment correspon-
dences by comparing the histograms of the neighboring
color profiles in both views, and a topological filter was
used for refinement matching. Those approaches presume
that accurate camera geometry should be estimated or extra
topological relation analysis should be performed prior to
use.

To overcome the poor discriminating power of the photo-
metric properties of line segments, the geometrical properties
have been investigated as an alternative. In [12], a topolog-
ical filter [13] was consecutively followed after histogram
based matching in order to identify correct line matches
while removing mismatches. Wang et al. [14] proposed a
robust line matching method for affine distortion and 3D
viewpoint changes, in which line segments are clustered
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into local groups, or line signatures, according to spatial
proximity. Those approaches have been proved successful
for line matching for widely separated views; however, they
are affected inaccuracies in the end points of detected line
segments.

Another group of researchers has been utilized junc-
tion features for line matching. Vincent and Laganière
[15] matched junctions by estimating the local perspective
distortion between the neighborhoods of junctions, then
estimated a fundamental matrix based on a constrained
minimization assuming crude camera pose estimates. Bay
et al. [16] identified polyhedral junctions resulting from
the intersections of the line segments, then segmented the
images into planar polygons using an algorithm based on a
Binary Space Partitioning tree. Micusı́k et al. [17] detected
and matched rectilinear structures based on vanishing point
detection for widely separated views. However, junction-
based and rectilinear-structure-based approaches can only
be applied to well-structured scenes, in which lines and
junctions are robustly extracted and/or vanishing points are
stably estimated.

To address the challenge of line matching, we rely on
the observation that many parts of man-made objects are
constructed of local planar patches. According to this obser-
vation, the set of local planar patches can be considered as a
good candidate of geometric primitives for the scene model-
ing of man-made objects. We adapt an image feature based
on coplanar line intersections, called the ”Line Intersection
Context Feature (LICF),” which was recently introduced in
[18]. The scenes are modeled by local planar regions using
LICFs, but the scenes do not necessarily need to be piecewise
planar.

In [18], the normalized cross correlation (NCC) is used
as a descriptor for matching LICFs among different views.
Although NCC is found to be very effective for narrow-
baseline stereo matching, it is not adequate for matching
LICFs in widely separated views because the local region
patches of LICFs suffer large perspective distortions.

In this paper, we propose a novel robust region descriptor
of the LICF feature, which is adequate for wide-baseline
image matching by compensating for perspective distortions
and handling non-planar 3D effects. The novelties of the pro-
posed method are as follows. (1) First, we propose a robust
region descriptor of LICFs in order to compensate for large
perspective distortion between widely-separated views. (2)
Second, the 3D interpretation of the intersection context in
non-planar structure scenes facilitates the ability to robustly
match non-planar structures such as 3D boundaries/edges and
3D junctions/corners and the patches on 3D planar patches.
(3) Last, no a-priori knowledge such as camera geometry or
3D scene modeling is given for line matching. Moveover,
when camera geometry is provided, the method can be
simplified to be faster and more robust.

In Section II, the image feature LICF is reviewed and a ro-
bust region descriptor for wide-baseline stereos is proposed.
In Section III, the multi-local feature matching technique
is described. Section IV presents the comparison studies

and experimental results in real world scenes including 3D
line reconstruction. Finally, Section V concludes with a
discussion and ideas for future works.

II. FEATURE EXTRACTION AND DESCRIPTION

A. Review on Line Intersection Context Feature (LICF)

In this section, the LICF is shortly reviewed (refer to
[18] for details). Given line segments extracted in an image,
intersecting lines are paired when both lines are closely
located, i.e., the end point of line segments are located from
their intersection within a certain distance by a proximity
rule. The intersecting line pairs include both coplanar and
non-coplanar in 3D. The discrimination is based on the
fact that, when an intersection of an intersecting line pair
exists in 3D, a match of the intersection can be found in a
second view. Therefore, coplanar line pairs are determined
by finding intersecting line pairs that has correspondence
between different views in the local intersection areas.

The LICF contains geometric information, as well as
photometric information. The former is the positional infor-
mation of the intersection computed from a line pair, and
the latter is the region information of the local image patch
centered at the intersection position. Note that the LICF
includes a region descriptor and a geometric primitive.

The LICFs are represented by the intersection positions
and the corresponding region patches in an image, as follows:

F ≡ {xk,P(xk),Lpair,k}= {xk,P(xk), lπ(k)1 , lπ(k)2}, (1)

where k = 1, · · · ,# of Π. xk denotes the intersection posi-
tions of the corresponding intersecting line pairs Lpair,k(=
{lπ(k)1 , lπ(k)2}), and P(xk) denotes the region patch centered
at the intersection position xk. For convenience, an LICF
(Fk) sometimes refers to only the position (xk) instead of
the set including the position and the neighboring region
patch (P(xk)).

B. Robust Feature Description

Affine/similarity invariant region descriptors such as
MSER, EBR, and SIFT can be considered good candidates
for matching the intersection context in widely separated
views. These descriptors transform a local region into an
affine covariant region, through which the affine distortion
of the local region is compensated. However, those region
descriptors cannot be directly applied to LICF matching
because the intersection context does not contain sufficient
photometric information to normalize the local region using
the analysis of its covariance matrix compared to those of
other interest-point-based local regions.

To cope with large perspective distortion in local region
matching, a novel affine/projective invariant region descriptor
for LICFs needs to be developed. Instead of the covariance
matrix analysis of local regions, the coplanar line pair of
LICF is directly used for the normalization of the local
region.

As shown in Figure 1(a), the angle between a coplanar
line pair significantly changes with viewpoint. To match
LICFs between different views, the perspective distortion
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(a) Canonical frames (b) Rotation and scale variations of a canonical frame (c) 2D LICFs w.r.t. 3D non-planar structures

Fig. 1. Robust region descriptors of LICFs and the 3D interpretation.

of the local region of the intersection context need to be
compensated. This is accomplished by rectifying a coplanar
line pair into a special configuration in which the coplanar
line pair is orthogonal. We call the normalized image region
the ”Canonical Frame” by adapting the term used in the
context of the affine covariant regions [1]. The rectification
process is achieved by estimating 2D homography Hk from
a region patch P(xk) to a canonical frame Ck, and the
transformation is represented by

Ck ≡C(xk) = P(Hkxk). (2)

The homographies can be computed using the four inter-
secting points of the coplanar line pair and the bounding
box of the local region to their corresponding points in the
canonical frame. The size of the bounding box is equal
to that of the canonical frame, which is related to the
region matching process and can be designed by a user by
considering the trade-off between the speed and accuracy
and the degree of plane locality of a given scene. Note
that although the true variation is anisotropic in all image
directions, the isotropic scale variation can be considered a
good approximation in practice.

1) Scale variation and rotational ambiguity: Next, the
region descriptor encodes the scale variation by adjusting
the region of interest (ROI) in the canonical frame. Without
explicit smoothing in scale space, scale variation can be
achieved by adjusting the size of the bounding box in the
intersection context. The ROI in the intersection context is
determined by the predefined scale steps, and the ROI is
resized into the size of the canonical frame using bilinear
interpolation. Given the scale s, the scale matrix is computed

by Ss =

 s 0 0
0 s 0
0 0 1

. The transform resizes the canonical

frame and a bilinear interpolation is followed to normalize
the size into that of the canonical frame. The scale-variant
canonical frame with a scale factor s is represented by

Ss
k ≡ P(SsHkxk). (3)

In addition, the canonical frame has rotational ambiguity
in four classes, so their corresponding rotational matrices
are applied into the canonical frames. The 2D rotational
ambiguities are represented by Rr, where r = {0, π

2 ,π, 3π

2 }.

The extended feature set of an LICF x with a rotation class
r and scale variations s is represented by

RSs,r
k ≡ Pk(RrSsHkxk), (4)

where r = {0, π

2 ,π, 3π

2 } and s = {1, 2
3}. Additional scale

change can be implemented by adding more scale factors
into the cost of the computational complexity. The procedure
is depicted in Figure 1(b).

2) Extension to 3D Non-planar Structures: Many local
region descriptors assume that the scene is locally planar;
however, the assumption is violated for non-planar structures
such as 3D junctions/corners and 3D boundaries/edges [6],
[19]. The more widely the scenes are separated, the more
the local planarity assumption is violated in those non-planar
structures. To deal with those 3D non-planar structures, the
3D interpretations of LICFs are investigated.

The 3D non-planar structures of local image regions can
be classified into three categories: 3D planar patches, 3D
boundaries/edges, and 3D junctions/corners, as illustrated
in Figure 1(c). Other 3D structures can be approximately
categorized into the aforementioned three classes. First, the
3D planar patch meets the local planarity, so the projective
invariant region descriptor of the intersection context is
sufficient. Second, for the 3D boundaries, one member of
the line pair is located on the boundary between an object
and the background and the other is located inside the object.
In this case, only the object side of the intersection context
need to be used for matching. Last, for the 3D junctions, the
coplanar line pair envelopes the junction or the corner of the
object, so the image region corresponding to the object, i.e.,
the quarter of the canonical frame, is used for matching.

According to those 3D interpretations of the LICFs, the
canonical frame, i.e., the scale-variant canonical frame RSs,r

k ,
is extended into the nine local features: one type for the
canonical frame, four types for the 3D boundaries/edges,
and anther four types for the 3D junctions/corners, as pre-
sented in Figure 1(c). Nine local features are constructed
by applying window operations with different ROIs within
the canonical frame. The windows are represented by W11,
{W21,W22,W23,W24}, and {W41,W42,W43,W44} for the planar
case, the 3D boundaries, and the 3D junctions, respectively.
At last, we have the final robust region descriptor represented
by

T s,r,w
k ≡WwRSs,r,w

k ≡WwPk(RrSsHkxk), (5)
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(a) 3D classified feature positions of non-planar structures (b) 3D classified canonical frames

(c) Matching score (NCC) (d) 3D class estimation (e) Rotation (class) estimation (f) Scale estimation

Fig. 2. LICF examples and the analysis of 3D non-planar structures.

where r = {0, π

2 ,π, 3π

2 }, s = {1, 2
3}, and w =

{11;21,22,23,24;41,42,43,44}. Note that the descriptor is
extracted by image warping using the transform RrSsHk and
the following windowing operation Ww only selects the ROI
of the transformed image.

III. FEATURE MATCHING

A. Multi-local Feature Matching

The LICFs in wide-baseline settings are the set of local
features containing multiple rotation classes, multiple scale
steps, and multiple 3D types, which have four classes, two
(or more) steps, and nine ROIs, respectively. Matching all of
the local features between different views not only requires
too much computational complexity, but also it does not
guarantee correct matches. For effective and efficient LICF
matching, a multi-local feature matching scheme based on
NCC is proposed.

For either the multiple scale steps or the multiple rotation
classes, the class with the highest matching score is selected
as a matching candidate. First, the scale changes monotoni-
cally, so we can pick the optimal scale value by choosing the
scale class with the highest NCC score. Given multiple scale
steps (1 and 2/3), the scale steps between different views
cover more scale differences ({2/3,1,3/2}). In the current
implementation, the scale step covers the scale range from
0.5 to 2.0 when the matching power of NCC is considered
[20]. Also, for selection from the multiple rotation classes,
clearly there is one and only solution to resolve the rotation
ambiguity. The selection of the class with the highest NCC
score makes sense.

Conversely, for the multiple 3D types (3D planar patches,
3D boundaries, and 3D junctions), an LICF tends to match
in more than one of the 3D types due to the fact that 3D

type features share the same canonical frame with different
ROIs, as designed, and the 3D effects gradually appear
according to the degree of viewpoint change in the local area.
Therefore, each type of 3D non-planar structure needs to be
considered as a different local feature and should be matched
independently, then combined into one type of local feature
in the final step. Within each type, the matching feature with
the highest NCC is considered as a matching candidate, and
multiply matched positions are combined by choosing the
3D type with the largest ROI regions (i.e., 3D planar patch,
3D boundary, and 3D junction, in that order). To reduce
computational complexity, the feature type of 3D planar
patch is first matched, then the matching LICFs are removed.
Then, the feature type of 3D boundary is matched using the
remaining features, and the same process is performed for
the feature type of the 3D junction. For multi-local matching
of LICFs using NCC, the same process used with interest
points is adopted [21]. Also, after computing NCC scores
from both images, the most strongly correlated matches in
both images are selected.

Finally, a RANSAC-based refinement [18] is used to find
correct LICF matches while simultaneously estimating the
fundamental matrix from the matching candidates using the
multi-local feature matching. The matching LICFs between
two views, I and I′, are represented by

Mx,x′ = {xk,x′k;Lpair,k,L
′
pair,k}, (6)

where k = 1, ...,K, {xk,Lpair,k} ∈ F , {x′k,L ′
pair,k} ∈ F ′,

and K denotes the number of matching LICFs. The fitting
error, given a fundamental matrix F , is defined by the
symmetric transfer error:

Ex,x′ =
1
K

K

∑
i=1

d(x′i,Fxi)2 +d(xi,FT x′i)
2 (7)
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where d(x,y) = (yT x)/
√

y2
1 +y2

2, the distance of point x
from line y.

Figure 2 demonstrates matching LICFs and the matching
details. In Figure 2(a), matching LICFs are presented from
a widely-separated image pair. They are drawn in different
colors according to the 3D type, and the local planar patches
are shown in detail in Figure 2(b). The matching score, the
estimated 3D type, the rotation class, and the estimated scale
are plotted in Figures 2(c), 2(d), 2(e), and 2(f), respectively.
The estimated classifications are reasonable. In the scene,
the rotation class is one because there is no serious 2D
rotation, and the scale changes are mostly due to perspective
distortion in the local areas. The 3D type classification
looks reasonable, but it does not explicitly separate the 3D
type classes. One feature can be assigned to several classes
depending on the degree of 3D effects in the local region
patch. For example, a 3D junction far away from the camera
can be approximated using a local planar patch instead of
3D junction type.

1) Line Segment Matching: Given a matching LICF
Mx,x′ , matching between individual line segments
{lπ(k)1 , lπ(k)2} and {l′

π ′(k)1
and l′

π ′(k)2
} must be resolved from

the matching pairs {Lpair,k,L
′
pair,k}. Using the estimated

epipolar geometry from the matching stage, the angles
between the line segments of the coplanar line pair and the
epipolar line are compared in order to pair them into the line
segment with a smaller angle difference. After the individual
matching of the coplanar line pair, the multiple matches are
discarded. The final matching lines are represented by

Ml,l′ = {lψ(k), l′ψ ′(k)},ψ(k)⊂Π,ψ ′(k)⊂Π
′, (8)

where k = 1, · · · ,# of Ψ and Ψ′. Ψ and Ψ′ denote the index
set of matching line segments from the first and second
views, respectively, and Ψ and Ψ′ have the same number
of elements after one-to-one matching.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method,
it is compared with state-of-the-art technologies: the SIFT
method [3], [22] for general purpose matching and the line-
signature-based matching (LS) method of [14] for wide-
baseline line matching. In the figures, the SIFT method
and the LS method are referred to as ”SIFT” and ”LS,”
respectively. The proposed method provides two separate
matching outputs: matching LICFs and matching lines. The
matching LICFs are not only intermediate matches for the
final individual line matching, but also they provide interest-
point-like matches, so that we can compare the matches with
matching SIFT features. Then, the matching lines, the final
output of the proposed method, are measured and evaluated.
The result of matching LICFs and that of matching lines are
referred to as ”LICF” and ”LICF+Line,” respectively.

For quantitative analysis, the number of matching features
after RANSAC refinement are used, while the conventional
matching evaluation methods count correct matches manu-
ally. The difference is not that large, i.e., no more than 10% in
our experiments, thanks to the RANSAC-based refinement.

In the plot of the numbers of matching features, the absolute
value explains how many features can be correctly matched.
In addition, the relative value with respect to the reference
view, or the graph slope, describes the degradation in the
quality of matching in comparison with the perfect match
because the matching results between the reference view
and itself can be considered as a perfect matching case. In
addition, the symmetric transfer error is also used to evaluate
the matching accuracies of LICF and SIFT features [23],
[18]. Exceptionally large values of the symmetric transfer
error mean that the method failed at feature matching. The
initial minimum consensus sample set is remained as the
solution, so the sample set is considered as a inlier and its
error has extremely large value.

A. Widely Separated Views

For comparison purposes, image pairs from richly textured
outdoor scenes, in which both line features and interest point
features can be detected and matched in the same scene, are
collected through the public data sets [24], [25], [4].

(a) Matching lines between the reference view and Views 2-5

(b) Detailed comparison study between View 1 & 5

Fig. 5. Matching results of the sequence ”Zubud.” In Figure 5(b), matching
LICFs and matching SIFT features are displayed in order, overlaying the
epipolar constraints, in the first two columns. In the right most column, the
blue point on the top is transferred into the epipolar lines on the bottom.
The epipolar lines from the SIFT and the proposed method are shown in
blue and red, respectively.

1) 3D rotation: Figure 3(a) presents an image sequence,
”Zubud,” with different 3D rotational variations of the im-
age plane approximately ranging from 10◦ to 40◦. The
experimental result demonstrates that the matching number
decreases and the symmetric transfer error increases when
the 3D rotation angle increases. Quantitatively, the matching
number and the symmetric transfer error are compared in
the first columns of Figures 4(a) and 4(b), respectively.
Qualitatively, the matching lines are shown in Figure 5(a).
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(a) The sequence ”Zubud”. Views 1-5, in order. The reference view
is View 1.

(b) The sequence ”Kampa”. Views 1-7, in order. The reference view is View 1.

(c) The sequence ”INRIA”. Views 1-7, in order. The reference view is View 3.

Fig. 3. Test image sequences for widely separated views. The reference views are boxed in red. The sequence ”Zubud” is taken from scene #157 in the
Zubud data set.

(a) The number of matching features

(b) The symmetric transfer errors of the estimated fundamental matrix

Fig. 4. Quantitative results. (Left) The sequence ”ZuBud.” (Middle) The sequence ”Kampa.” (Right) The sequence ”INRIA.”

The comparison results show that the proposed method
is comparable to the LS method and superior to the SIFT
with respect to 3D rotational variation in terms of matching
number and symmetric transfer error. (Note that, although the
direct comparison between the LS method by [14] is not clear
because their line matching result is not shown in their paper
and the line detection module also affects the results, the
comparison may be informative and reasonable.) In addition,
the estimated epipolar geometries after refinement are com-
pared between the SIFT method and the proposed method.
While the proposed method give the correct estimation of
the fundamental matrix, the SIFT method fails to match
features, resulting in a large symmetric transfer error. The
point transfer of the position selected from the building wall
shows the difference more clearly.

2) Perspective distortion: Figure 3(b) is an image se-
quence ”Kampa,” with perspective distortions among differ-
ent views. The experimental results show that the proposed
method works well for those kinds of large perspective
distortions, and the results are comparable to those of the
SIFT method. The matching number and the symmetric

transfer error are compared in the middle columns of Figures
4(a) and 4(b), respectively.

When the numbers of matching features (LICFs and
SIFTs) and the symmetric transfer errors are compared, the
symmetric transfer error between the reference view and
View 3 shows that the SIFT method is more accurate than the
proposed method, but the result between the reference view
and View 7 show that the proposed method works well while
the SIFT method fails in terms of the number of matching
features and the symmetric transfer error.

3) Scale change: Figure 3(c) is an image sequence ”IN-
RIA” with scale and 2D rotational variations. The scale
variation ranges from approximately 0.6 to 2.0 times. The
matching number and the symmetric transfer error are
compared in the last columns of Figures 4(a) and 4(b),
respectively.

B. Poorly Textured Indoor Scenes

Furthermore, the proposed method is applied to poorly
textured scenes with widely separated views. These scenes
are more challenging than the scenes in Section IV-A because
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(a) The sequence ”Dinning Table.” Views 1-7, in order. The reference view is View 1.

(b) The sequence ”Kitchen.” Views 1-6, in order. The reference view is View 1.

(c) The sequence ”Tea Table.” Views 1-8, in order. The reference view is View 1.

Fig. 6. Test image sequences of poorly texture scenes.

(a) The number of matching features

(b) The symmetric transfer error of the estimated fundamental matrix

Fig. 7. Quantitative results. (Left) The sequence ”Dinning Table.” (Middle) The sequence ”Kitchen.” (Right) The sequence ”Tea Table.”

they not only lack textural information, but also the line
features are hard to detect when the normal direction of
surface embedding of the lines is close to that of the epipolar
plane.

Figure 6 shows test image sequences taken from poorly
textured indoor scenes. The scenes ”Dinning Table” and
”Tea Table,” shown in Figures 6(a) and 6(c), respectively,
are captured by rotating cameras around tables and chairs,
so they include large perspective distortions due to 3D pose
differences between the camera and the objects. The scene
”Kitchen,” shown in Figure 6(b), is taken by a translat-
ing/approaching camera, so it includes large scale changes
in the sequence.

1) 3D Rotation: The experimental result for the scene
”Dinning Table,” shown in the left column of Figure 7, is
similar to that of the textured outdoor scene ”Zubud,” but the
matching number decreases faster than that of the textured
scene when the rotation angle increases. This is because
the discrimination powers of the features in poorly textured
scenes are weaker than those in textured scenes. Moreover,
when the long edge of the dinning table is aligned with the
horizontal line of the image space, the LICFs belonging to
the dinning table are aligned in same epipolar line. Due to

this kind of matching ambiguity in the scene ”Dining Table,”
the matching results in Views 5-7 are very unstable in terms
of matching number and symmetric transfer error, as shown
in the left column of Figure 7.

However, although the matching results of line segments
are not perfectly correct, they are good enough to explain the
scene structure of the chairs, floor lines, and dinning tables,
as shown in Figures 8(a) and 8(c).

2) 3D Translation: For the scene ”Kitchen,” the exper-
imental results show that both the SIFT method and the
proposed method work well because this kind of translating
camera motion results in only scale changes, and the scene is
approximately modeled by several piecewise planar patches.
The plots of the number of matching features and the
symmetric transfer error, shown in the middle column of
Figure 7(b), demonstrate the stabilities and accuracies of both
methods.

3) Repetitiveness and Symmetry: The scene ”Tea Table”
is very challenging because the tea table and the boxes on
the table have repetitive and/or symmetric structures and
patterns. The number of matching features is very small
compared to those of other previous sequences, and the
symmetric transfer error is very unstable, as shown in the
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(a) Matching lines in the reference view (b) Matching features in the reference view

(c) Matching lines in Views 3, 4, 5, and 6, in order (d) Matching features in Views 2 & 4, in order

Fig. 8. Matching results between the reference view and some sample views. (Left) The scene ”Dinning Table.” (Right) The scene ”Tea Table.” In Figures
8(b) and 8(d), (The first three rows) Matching lines, matching LICFs, and matching SIFT features, in order, between the reference view and View 2. (The
last three rows) Between the reference view and View 4. The figures are best viewed in color and with PDF magnification.

right column of Figure 7.
For instance, Figures 8(b) and 8(d) shows that both the

SIFT method and the proposed method result in failures be-
tween the reference view and View 7. The camera geometry
between the reference view and View 2 corresponds to a
narrow baseline, and the matching result is quite correct.
However, since the reference view and View 4 are widely
separated and poorly textured with regard to repetitiveness
and symmetry in structure, the matching results are very
unstable, showing a case in which the proposed method does
not provide the best solution.

V. CONCLUSION AND FUTURE WORKS

In this paper, a wide-baseline line matching algorithm
was introduced to overcome large perspective distortion and
non-planar local structure using a non-planar robust feature
descriptor based on the intersection context of coplanar line
pairs and its 3D interpretation. The experimental results
showed that the performance is comparable and complimen-
tary to those of state-of-the-art matching methods, such as
the SIFT method and the LS method.

Future works will include the handling of matching am-
biguity due to the symmetry of structure, the repeatability
of texture, and the improvement of matching accuracy by
combining both the SIFT method and the proposed method.
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