
Navigation Among Movable Obstacles in Unknown Environments

Hai-Ning Wu Martin Levihn Mike Stilman

Abstract— This paper explores the Navigation Among Mov-
able Obstacles (NAMO) problem in an unknown environment.
We consider the realistic scenario in which the robot has
to navigate to a goal position in an unknown environment
consisting of static and movable objects. The robot may move
objects if the goal can not be reached otherwise or if moving
the object may significantly shorten the path to the goal.
We consider real situations in which the robot only has
limited sensing information and where the action selection
can therefore only be based on partial knowledge learned
from the environment at that point. This paper introduces an
algorithm that significantly reduces the necessary calculations
to accomplish this task compared to a direct approach. We
present an efficient implementation for the case of planar,
axis-aligned environments and report experimental results on
challenging scenarios with more than 50 objects.

I. INTRODUCTION

Robots would be much more useful if they could move
obstacles out of the way. Navigation Among Movable Ob-

stacles (NAMO) is an important problem in motion planning

because it gives mobile robots the ability to reason about the

environment and choose to manipulate obstacles [14]. Robots

that solve NAMO will accomplish tasks that are otherwise

difficult or impossible. They will operate in cluttered human

environments and strive towards human-level navigation.

In order to accomplish this goal, motion planning must

overcome a number of theoretical and practical challenges.

In this paper, we explore the NAMO problem in prac-

tical scenarios where the robot attempts to reach a fixed

goal position in a reconfigurable but unknown environment.
Starting with no knowledge about the environment, the robot

uses limited sensor information to locally detect objects

and incrementally build and manipulate a world model. The

robot may move objects if the goal cannot be reached or if

moving the object may significantly shorten the path to the

goal. An illustrative example is shown in Fig. 1(a) where

the robot is forced to move objects to navigate towards an

otherwise unreachable goal. With only local and incomplete

information (such as the movability of objects), the robot

must make a decision based on partial knowledge acquired

so far and gradually improve its world model as it navigates

towards the goal (e.g., in Fig. 1(b)).

NAMO in an unknown world poses a fundamental chal-

lenge in planning. Potentially, all possible actions have to be

reevaluated whenever new information is perceived. How-

ever, recomputing the cost of all possible actions for each

environment change is infeasible for realistic domains. We

The authors are affiliated with the Center for Robotics and Intelligent
Machines (RIM) at the Georgia Institute of Technology, Atlanta, Georgia
30332, USA. Emails: hwu43@gatech.edu, levihn@gatech.edu,
mstilman@cc.gatech.edu

GOAL

ROBOT

(a) Initial State

1

2

(b) Final Execution

Fig. 1. Successful NAMO with partial information. Yellow (light) objects
are movable. Blue (dark) ones are not. (a) Dashed lines represent unknown
objects. (b) The evolution of the robots internal map.

investigate a computationally feasible strategy that accounts

for environmental changes.

The main contribution of this paper is the introduction

of a novel algorithm that solves the NAMO problem in an

unknown world and significantly reduces the necessary cal-

culations. The proposed algorithm identifies cases where new

information does not affect previous calculations. Instead of

reevaluating all actions when new obstacles are detected, the

algorithm only performs additional computation when newly

detected information conflicts with the optimality of the

existing plan. We verify the algorithm in dynamic simulation

where the robot controller is guided by our implementation in

a planar, cell-decomposed, and axis-aligned environment. We

demonstrate the performance of the algorithm in challenging

scenarios with more than 50 randomly placed objects.

This paper is organized as follows: Section II gives a

review of related work both in NAMO and planning under

uncertain environments. Section III presents the proposed

algorithm and compares it to a naive baseline algorithm.

Section IV details the experimental results in a dynamic

simulation environment and characterizes the performance

of the algorithms. Section V discusses the limitations of

the algorithm as well as the challenges introduced by the

partial knowledge itself. Finally, Section VI gives concluding

remarks and presents directions for future work.

II. RELATED WORK

Wilfong [17] first proved that motion planning among mov-

able obstacles is NP-hard. Demaine [2] further proved that

even the simplified version of this problem, in which only

unit square obstacles are considered, is also NP-hard.

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1433



Chen [1] designed the first planner that handled multiple

movable objects and a navigation goal. The heuristic planner

first generated a series of subgoals and solved the subgoals

separately by a local planner. Chen’s planner failed to

solve problems in which the order of object manipulations

decides the solution. Stilman [14] presented a planner that

solved a subclass of NAMO problems named LP1 in which

disconnected components of free-space can be connected

independently by moving a single obstacle, reducing the

search space of NAMO by considering the difficulty of the

navigation task rather than the dimensionality of the space.

By formulating a problem in LP1 into a graph structure,

a resolution complete solution can be generated using a

heuristic planner. The planner was able to solve the difficult

problems presented in [1] and was successfully implemented

on the humanoid robot HRP-2 [16]. Beyond LP1, Stilman

further solved the domain where maximally k objects must

be moved to connect two disjoint components and each

object needs to only be moved once [15]. Li [7] constructed

an autonomous system which combined moving objects and

leaping over obstacles with other high-level behaviors using a

unified planning strategy. However, all these methods solved

NAMO given complete knowledge about the environment.

Furthermore, instead of aiming for optimality, heuristics were

used in order to find a resolution complete solution.

LaValle [6] presented a game-theoretic framework for

robot motion planning in uncertain environments. Pirjanian

[10] introduced many approaches to formulate the motion

planning problem as an action selection problem and also

presented an implementation of Multiple Objective Action

Selection for robot navigation [11]. By defining objective

functions for different subgoals, the Pareto optimality was

calculated to find a ”good enough” action for the current

state. Although they introduced promising ways on decision

making under uncertainty, it remains difficult to model the

problem within variant configurations and further guarantee

the optimality of each action.

The D* algorithm [12] [13] incrementally searched paths

in partially known environments by propagating the cost

evaluated from the previous state to the new state. Thus,

repeated replanning can be avoided without losing opti-

mality. Koenig [5] introduced a rather less complicated

algorithm, D* Lite, which only recomputes costs relevant

to new information. However, environments with movable

obstacles would require a significant reformulation of D*

algorithms. In contrast, we propose a set of clear and simple

improvements from the base case of search.

Koenig [4] also established a series of techniques for goal-

directed acting in the presence of incomplete information.

This work suggested applying agent-centered search methods

to minimize the cost of planning as well as plan execution.

Koenig also used partially observable Markov decision pro-

cess (POMDP) to enhance the reliability of planning with

incomplete information. POMDPs maintain and update a

probabilistic model to minimize the cost of plan execution.

Yet, such work was restricted to planning solutions that do

not change the environment.

The Bug algorithm presented by Lumelski [8] approached

the path planning problem for sensor-based robots in un-

known environments. The Bug algorithm provided reason-

able paths to the global goal based on local information and

the lower bound of the path can be guaranteed. Variants

of the Bug algorithm [9] utilized different optimizations

strategies such as reducing the length of the path or the

information needed. However, the Bug family did not handle

reconfiguration of environments and sacrificed optimality for

completeness and planning efficiency. Solution is inevitably

much higher.

III. ALGORITHM

We consider the navigation scenario with a nonholonomic

robot R in a two-dimensional workspace containing movable

and static objects. The robot has to find, with respect to

his current world knowledge, a collision-free path from the

given starting position Rinit to the given goal position Rgoal.

The robot is given its starting and goal position in world

coordinates, but no prior knowledge about the position, size,

or movability of the objects is provided. The robot gains

information about the position and size of objects through

the use of a laser range finder, but movability can only be

determined by interacting with the object. We restricted the

possible interactions with objects to axis-aligned pushes. The

environment is discretized in a N ×N grid and the objects

as well as the robot are modeled as rectangles.

The robot has an internal map of the environment which

is updated upon the detection of new obstacles and new

information about previously known objects, such as updated

size and movability. Every unknown cell in the map is

assumed to be free-space and every object is considered

movable unless a failed push action has been performed.

In addition, we are not considering the possibility of moving

multiple objects in order to create a new path. The immediate

plan is limited to moving at most one object.

For clarity, we will not explicitly mention static objects.

All cells that correspond to a detected static object are

marked as blocking robot and object motion in future plans.

A. Baseline

The direct solution to the NAMO problem in unknown

environments is to calculate plans for all possible actions on

all known objects once any change in the environment is

detected. This approach is outlined in Algorithms 1 and 2.

The algorithm is initialized by calculating a plan with

an A* search from RInit to RGoal using the Euclidean

distance as an admissible heuristic. If no new observations

are made, this plan remains unchanged until the goal is

reached. However, if a new observation is made, then for

all known objects (line 8) all possible push actions (line 9

and 10) are evaluated. This is done in Algorithm 2 where

a plan is constructed that consists of moving to the object

position, pushing the object, and moving from the final object

position to the goal. The procedure is visualized in Fig. 2

where the steps are labelled c1, c2 and c3, respectively.

1434



Algorithm 1 BASELINE(RInit, RGoal)

1: R ⇐ RInit;

2: O ⇐ ∅; {set of objects}
3: popt ⇐ A∗(RInit, RGoal);
4: while R �= RGoal do
5: Onew ⇐GET-NEW-INFORMATION();

6: if Onew �= ∅ then
7: O = O ∪Onew;

8: for each o ∈ O do
9: for each possible push direction d on o do

10: p ⇐ EVALUATE-ACTION(o,d);

11: if p.cost < popt.cost then
12: popt = p;

13: end if
14: end for
15: end for
16: end if
17: R ⇐ Next step in popt;
18: end while

Algorithm 2 EVALUATE-ACTION(o, d)

1: po,d ⇐ ∅
2: c1 = |A∗(R, o.init)|;
3: o.position = o.init;
4: while push on o in d possible do
5: o.postion = o.postion+ one push in d;

6: c2 = (o.postion− o.init);
7: c3 = |A∗(o.position,RGoal)|;
8: p = c1 + c2 + c3;

9: p.cost = c1 ∗ moveCost + c2 ∗ pushCost + c3 ∗
moveCost;

10: Po,d ⇐ Po,d ∪ {p};

11: end while
12: return p ∈ Po,d with min p.cost;

B. Optimized algorithm

In order to gain better scalability for bigger maps with more

objects, we design three techniques that reduce the necessary

calculations in the baseline algorithm given above.

1) Recalculation triggering: First, we do not automati-

cally recalculate plans upon the detection of new objects or

updated object information. Recalculation is required only if

the current plan becomes invalid due to expected collisions

with newly detected obstacle data. The calculation can be

postponed since each plan is computed with assumed free

space in unknown terrain. An obstacle can only increase the

cost of traversing the space that it covers. If the current path

is not blocked, replanning is unnecessary. This is shown in

line 6 of Algorithm 3 and visualized in Fig. 3. Recalculations

are not performed prior to the detection of object 3. If the

plan is blocked, all newly detected objects are evaluated for

possible displacements in line 8-10 of Algorithm 3. Fig. 3

shows a case where recalculation is necessary. If pushing

object 2 is not considered after detection then the original

path is blocked and the goal is unreachable.

�
�

�
��

��

��

��

�

�

��

�������

�

Fig. 2. Visualization of the steps for a plan involving pushing object 1

�
�

�

(a) Time t

�

�

� �

(b) Time tx

Fig. 3. Detection of new objects forces recalculation of previously ignored
objects. (a) No recalculations are necessary. (b) All objects must be checked.

2) Limit A* calls: In order to reduce unnecessary recal-

culations, we limit the number of push action evaluations for

an object. The limit is set by determining an upper bound for

the cost of pushes. In line 5 in Algorithm 4 the upper bound

is determined by the cost of avoiding objects. If the cost of

only pushing an object already exceeds the cost of avoiding

the object, further pushes are not considered. This is due to

the fact that the plan consists out of the three parts c1, c2
and c3 (see Fig. 2 and Algorithm 4 line 10) which all yield

positive cost. Consequently, if c2 already exceeds the cost of

just avoiding the object, any plan involving further pushes

than c2 cannot yield a lower cost. In addition, plans are only

calculated for push actions that create a new opening in the

map. This can be seen in line 7 Algorithm 4 and is visualized

in Fig. 4 where the evaluation of object 2 is reduced to only

two plan calculations.

3) Reduce candidate objects: We do not recalculate plans

involving all previously considered objects. We consider only

those objects where a calculation appears promising. This

is done by retaining a sorted list with lower bounds for

previously computed plans. The list is sorted according to

minCost of a plan, representing partial plan cost. minCost
is set at the time of plan calculation in line 12 of Algorithm

4 and represents an underestimate for the true cost associated

with the plan. This list is traversed and updated plans (with

the current environment information) for the elements in

the list are computed. Traversal can be terminated once

a plan with lower cost than the under-estimated cost for

the next element in the list is found. Notice that objects

that were detected by the robot earlier are typically farther

from the goal. Hence they have have high c3 value and are

not reevaluated. This method is presented in line 14-19 of

Algorithm 3.

The only special case in our algorithm occurs if no

collision-free path avoiding the object could be found for

the optimization step of limited A* calls. In this scenario, the

1435



Algorithm 3 OPTIMIZED(RInit, RGoal)

1: R ⇐ RInit;

2: Psort ⇐ ∅; {list of plans, sorted ascending by

minCost}
3: popt ⇐ A∗(RInit, RGoal);
4: while R �= RGoal do
5: Onew ⇐ Onew∪ GET-NEW-INFORMATION();

6: if popt ∩ Onew �= ∅ then
7: popt ⇐ A∗(R,RGoal);
8: for each o ∈ Onew do
9: for each possible push direction d on o do

10: Psort.insert(OPT-EVALUATE-ACTION(o,d,

popt));
11: end for
12: end for
13: pnext = Psort[0];
14: while popt.cost ≥ pnext.minCost do
15: p=OPT-EVALUATE-ACTION(pnext.o,pnext.d,

Popt);

16: if p.cost < popt.cost then
17: popt = p;

18: end if
19: pnext = Psort.getNext();

20: end while
21: Onew ⇐ ∅;

22: end if
23: R ⇐ Next step in popt;
24: end while

�
�

�

�

(a) Internal map

�
�

�

� � ������� ���

(b) Evaluation of Object 2

Fig. 4. Plans are only calculated upon new path openings and when the
maximum push distance is limited by the cost of avoiding the object. In (b)
only two A* calls, marked with blue circles, are necessary when evaluating
pushing object 2.

upper bound for the costs of a push action in the optimization

step is infinity. We observe that we can detect which objects

are not affecting our ability to find the goal. For example,

this can be done by ignoring one object at a time and then

checking if a path to the goal without this object can be

found. If no path can be found then this object is considered

non-blocking, however if a path can be found without that

object then it is a blocking object. We can now iterate over

the list of blocking objects and in each iteration, we increase

the number of push actions evaluated on each object. Upon

the first detection of a possible opening, we use this value as

an upper bound for evaluating push actions for each object.

This special case is handled in our algorithm but not shown

in pseudocode.

Algorithm 4 OPT-EVALUATE-ACTION(o, d, popt)

1: Po,d ⇐ ∅;

2: c1 = |A∗(R, o.init)|;
3: c2 = 0;

4: o.position = o.init;
5: while push on o in d possible AND c2 ∗ pushCost <

popt.cost do
6: o.postion = o.postion+ one push in d;

7: if push created new opening then
8: c2 = (o.position− o.init);
9: c3 = |A∗(o.position,RGoal)|;

10: p = c1 + c2 + c3;

11: p.cost = c1 ∗ moveCost + c2 ∗ pushCost + c3 ∗
moveCost;

12: p.minCost = c2 ∗ pushCost+ c3 ∗moveCost;
13: p.o = o;

14: p.d = d;

15: Po,d ⇐ Po,d ∪ {p};

16: end if
17: end while
18: return p ∈ Po,d with min p.cost;

All the techniques above reduce the necessary calculations

for finding a path with low cost to the goal. Our experiments

were performed with both the baseline as well as the opti-

mized algorithm. We found no difference in the final plans

calculated by the algorithms. In the following section we

present examples and statistics for results.

IV. EXPERIMENTS AND DISCUSSION

We evaluated our algorithms in dynamic simulation using

srLib [3]. First, we give four representative domains with 3

to 50 obstacles and explain algorithm operation. Second, we

collect statistics from 10 randomized experiments with 10-20

obstacles and compare performance. While the baseline and

optimized algorithms generated identical robot decisions, the

computation times were significantly lower for the latter.

Fig. 1 is a typical scenario that demonstrates how the

robot replans given new information. Fig. 5 and Fig. 6 are

two interesting examples showing that small differences on

the map can significantly affect decisions. In Fig. 5(a) the

robot initially thinks that there exists a less expensive path

to the goal by going around object 1 (o1). After detecting

object 3 (o3) the robot continues to circumnavigate o3 until

its finds that the cost of returning and pushing o1 is lower

in comparison with the length of a path around o3. Failing

to push the unmovable o1, the cost of returning and pushing

o2 are still less than bypassing o1. The robot finally reaches

the goal by pushing o2. In Fig. 6(a) the robot does not know

that all the paths to the goal that do not push o2 are blocked.

It proceeds around o1 until it detects o3 close to the goal.

At this point, the cost of returning to push o2 is very high

and the robot explores a greater region of space. The robot

makes more attempts to push before it is confident that the

estimated value of returning to push o2 is less than the cost

of further exploration.

1436



2

3

1

(a) Initial (b) Goal

Fig. 5. (a) The robot sees object 3 at early stage. (b) The robot goes back
to push when the free path becomes expensive due to new obstacles.

1

2

3

(a) Initial (b) Goal

Fig. 6. (a) The robot moves around object 1 initially because it expects
free path before detecting object 3. (b) The robot realizes all the paths are
blocked so it returns and tries pushing different objects.

In order to evaluate improvements against the baseline

algorithm by each of the three optimizations we use three

metrics. In the following list, for each optimization, the first

bullet is the cost of the optimized algorithm and the later

one is the cost of the baseline. We compare these two values

to measure the improvement due to each optimization.

1) Optimization 1 - Recalculation triggering

• Number of steps on which the path is blocked

• Number of steps during the entire navigation

2) Optimization 2 - Limited A* calls

• Number of A* calls

• Number of all possible push steps

3) Optimization 3 - Reduce candidate objects

• Number of actions after filtering by minCost
• Number of all candidate actions

We conducted experiments on 10 solvable configurations

with random placements of random numbers of obstacles,

ranging from 10 to 20. The result summarized in Table

I shows that most computation can be saved since it has

no influence on the robot’s decision. The performance of

Optimization 1 is highly dependent on the density of obsta-

cles and the robot’s trajectory. If the robot’s plan is always

blocked by new obstacles, recalculation is triggered often.

Optimization 2 demonstrates that only a few candidate push

steps are potential solutions for a given action. Hence, many

A* calls can be avoided. Finally, Optimization 3 shows that

the set of candidate actions, representing candidate objects

can be reduced by 80% by considering overall plan cost.

TABLE I

COMPUTATIONAL ADVANTAGE FOR EACH OPTIMIZATION

Optimizations Triggering Limit Calls Reduce #Cand

Avg Optimized Cost 52.4 473.7 395.2
Avg Base Cost 224.1 19588.3 2033.6
Min Improvement 67% 97% 75%
Max Improvement 85% 98% 88%
Avg Improvement 76% 98% 81%

Fig. 7. Example with 50+ objects.

Fig. 7 and Fig. 8 demonstrate that more information does

not necessarily imply that equally more actions need to

be evaluated. In Fig. 8, the optimized curve grows slowly

because as new objects are detected, some old objects can

be ignored. Similar to [5], our optimization only recomputes

actions relevant to surrounding areas, or actions that will

potentially reduce the cost. Thus, as the robot explores

more areas, the difference between the two curves in Fig.

8 becomes larger.

Our algorithm models human-like learning behaviors when

faced with obstacles with a logical process for machine

intelligence. When searching for solutions with partial infor-

mation, humans intuitively choose the near solutions rather

than far ones. Once an action is confirmed useless, there

is no need to reevaluate it repeatedly as long as the action

will only cost more with more information. Also, in our

model, the robot has to interact with objects to learn their

movability. After failing to move the unmovable objects, the

robot considers other actions. This process resembles natural

human behavior.

V. CHALLENGES

The domain of NAMO with incomplete information has

unsolvable problems. For example, in Fig. 9(a), the robot

first pushes object 2 and intends to move directly to the

goal. Unfortunately, in Fig. 9(b), the robot detects object 3

and tries to push object 3. Since object 3 is unmovable, the

robot can never reach the goal, even with more information.

However, if the robot knows object 3 beforehand, it will

push object 1 first to avoid blocking itself. Given only partial

information, the robot cannot avoid all the negative effects

resulted from reconfigurations. Thus, local solutions will not

always solve the global problem.

1437



� ���
�

���

����

����

����

����

����

����

����

����

����

�	
���
�� ��������

���
���������������������
�	��

�
��
��
 
�

�
�
�
�
�!
�
�
�"
�

�
�

Fig. 8. Growth of action evaluations with more information in Fig. 7.

��

� �

(a) Initial

��

�

�

�� � ������������ ��������

(b) Failed

Fig. 9. Objects 1 and 2 are movable. Object 3 is static. (a) The robot
pushes object 2 and creates a new path. (b) The new obstacle isolates the
robot outside the region that contains the goal.

Our algorithm can not solve problems like Fig. 10, which

requires pushing two obstacles to create new paths. It will

first push objects 3 and 4 and realize that they are static.

Simply pushing either object 1 or 2 does not create any new

openings. However, if the robot considers manipulation of

multiple objects within a single action, it is possible to solve

the problem as shown in Fig. 10(b).

In summary, our approach faces two major challenges.

First, given the premise that partial information is complete,

the best solution for the currently known environment does

not necessarily solve the global problem. Reconfigurations

can even block the solution. Second, our algorithm requires

an appropriate metric to evaluate the cost of reconfigurations.

To address them, future directions include: 1) Find more solid

evaluations for moving and pushing cost; 2) Allow manip-

ulations on multiple objects or multiple actions on a single

object to create new paths; 3) Use current knowledge with

new information to predict effects on the overall environment

instead of always assuming no obstacles in unknown area.

VI. CONCLUSION

In this paper, we explored NAMO in unknown environments.

We proposed an algorithm that only reevaluates actions if

the current plan is intersected by a newly detected object

or becomes invalid due to wrong assumptions such as the

movability of an object. The algorithm also only evaluates

objects that have promise to yield a better solution by

saving the values of previously calculated plans. The actual

calculation of a push action is optimized by setting an

upper bound on the number of simulated pushes and only

performing A* if a new opening in the map has appeared.

�

�

� �

�

(a) Initial

�

�

� �

� �

�

� ��

�

(b) Solution

Fig. 10. Objects 1 and 2 are movable. Objects 3 and 4 are static. (a)
An example that can not be solved by our algorithm. (b) Object 1 must be
moved first in order to create space to push object 2.

We showed that the algorithm is not only capable of

finding a path in an unknown environment with movable and

static objects based on partial knowledge but also reduces

the number of necessary calculations. Furthermore, we were

not able to detect any difference in the final plan to the

baseline approach explained in section III-A. However, our

approach is also limited by the naive assumption about the

environment. Future work includes more precise prediction

on environments and better evaluation of actions.

REFERENCES

[1] P. Chen and Y. Hwang. Practical path planning among movable
obstacles. In In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 444–449, 1991.

[2] E. Demaine, J. O’Rourke, and M. L. Demaine. Pushpush and push-1
are np-hard in 2d. In In Proceedings of the 12th Canadian Conference
on Computational Geometry, pages 211–219, 2000.

[3] Robotics Lab in Seoul National University. Snu robotics library.
http://r-station.co.kr/forum/.

[4] S. Koenig. Goal-Directed Action with Incomplete Information. PhD
thesis, 1997.

[5] S. Koenig and M. Likhachev. Improved fast replanning for robot
navigation in unknown terrain. In in Proceedings of the International
Conference on Robotics and Automation, pages 968–975, 2002.

[6] S. LaValle. Robot motion planning: A game-theoretic foundation.
Algorithmica, 26(3-4):430–465, 2000.

[7] Y. Li and T. Li. A unified approach to planning versatile motions for
an autonomous digital actor. JACIII, 12(3):277–283, 2008.

[8] V. Lumelski and A. Stepanov. Dynamic path planning for a mobile
automaton with limited information on the environment. IEEE
Transactions on Automatic Control, AC-31(11):1057–1063, 1986.

[9] J. Ng and T. Bräunl. Performance comparison of bug navigation
algorithms. J. Intell. Robotics Syst., 50(1):73–84, 2007.

[10] P. Pirjanian. Behavior coordination mechanisms – state-of-the-art,
1999.

[11] P. Pirjanian. The notion of optimality in behavior-based robotics, 1999.
[12] A. Stentz. Optimal and efficient path planning for partially-known

environments. In In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3310–3317, 1994.

[13] A. Stentz. The focussed d* algorithm for real-time replanning. In
In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1652–1659, 1995.

[14] M. Stilman and J. Kuffner. Navigation among movable obstacles:
Real-time reasoning in complex environments. In Proceedings of
the 2004 IEEE International Conference on Humanoid Robotics
(Humanoids’04), volume 1, pages 322 – 341, December 2004.

[15] M. Stilman and J. Kuffner. Planning among movable obstacles with
artificial constraints. In WAFR, pages 119–135, 2006.

[16] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner. Planning and
executing navigation among movable obstacles. In IEEE/RSJ Int.
Conf. On Intelligent Robots and Systems (IROS 06), pages 820 – 826,
October 2006.

[17] G. Wilfong. Motion planning in the presence of movable obstacles.
In SCG ’88: Proceedings of the fourth annual symposium on Compu-
tational geometry, pages 279–288, New York, NY, USA, 1988. ACM.

1438




