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Abstract—This paper presents a method of 3D localization
using image edge-points detected from binocular stereo image
sequences. The proposed method calculates camera poses using
visual odometry, and updates the poses by reducing the accumu-
lated errors using landmark recognition. Landmark recognition
is done based on robust and scalable image-retrieval using
image edge-points with SIFT descriptors and a vocabulary
tree. A randomized-ICP algorithm is employed to accurately
estimate the 6-DOF camera pose from a landmark image and
an edge-point based 3D map. Experiments show our edge-
point based approach outperforms approaches using corners
and Laplacian points.

I. INTRODUCTION

Mobile robot localization is indispensable for most robotic
tasks. Recently, highly distinctive image features [13] and
efficient image-retrieval techniques [14] have been applied
to mobile robot localization [22], [7], [5], [3]. Since images
have a great amount of information on place and location,
the image-based approach is applicable to localization on a
topological map, which requires less memory and is suitable
for representing a large scale environment. On the other
hand, complicated robotic tasks such as obstacle avoidance
and object manipulation require the accurate shape and pose
(location and orientation) of the objects in the environment.
A dense metric map is prerequisite to represent such precise
information. The combination of image-based localization
and dense metric map will be useful for enhancing robot
capabilities.
This paper presents a method of 3D localization on a

detailed metric map using a highly scalable image-retrieval
technique. With only a stereo camera, the method estimates
the robot pose based on visual odometry and 3D pose
estimation using landmark images and a 3D map. The 3D
map is created using a stereo SLAM scheme [20], which
utilizes image edge points to represent detailed object shape.
The visual odometry is implemented by revising this scheme.
The bag-of-words approach is employed for efficient image
retrieval, and a highly scalable image database is imple-
mented using a vocabulary tree [14].
The contribution of this paper is to provide scalable,

quantitative 3D localization by integrating a vocabulary tree
and 3D pose estimation on an edge-point based map. The
proposed method is applicable to non-textured environments
since edge points can be extracted even from such envi-
ronments. Experiments show the edge-point based approach
outperforms approaches using sparse features such as corners
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and Laplacian points. Furthermore, edge-point based maps
are more suitable than sparse features for obstacle avoidance
and object manipulation since edge points can represent
detailed object shape.
The procedure of our 3D localization is as follows. A

3D map is built beforehand from stereo images [20], and
keyframes in the stereo images are registered as landmarks
in an image database.
(1) Initial pose estimation

At the beginning of navigation, the initial pose is ob-
tained by global localization using the image-retrieval
scheme.

(2) Dead-reckoning using visual odometry
During the navigation, the visual odometry consec-
utively estimates robot poses from captured stereo
images.

(3) 3D localization using landmark recognition
To reduce the accumulated errors in visual odometry
estimates, the system detects landmarks and updates
the robot pose using the landmarks and the 3D map.

By repeating step (2) and (3), the system maintains the
robot pose during the navigation. If the robot gets lost for
some reasons, global localization is performed as step (1).
The scheme should be implemented on a Bayes filter such as
Kalman filter and particle filter, but for simplicity, this paper
does not consider this issue.
There are several differences between the edge-point based

approach and the well-known corner-point based one since
edge points are less distinctive than corner points. For exam-
ple, as mentioned in Section IV, geometric consistency check
is based on similarity transformation instead of epipolar
geometry with RANSAC [6]. The camera pose estimation
is based on a randomized ICP algorithm in connection
with RANSAC-based estimation. Degeneracy check is also
performed to avoid the false matches due to aperture prob-
lems in edge-based matching. The number of edge points is
approximately ten-fold larger than that of corner points, but
the system does not suffer from it in image retrieval due to
the bag-of-words approach, which classifies the edge point
features into a fixed number of visual words. Each image
is represented by the weighted sum of visual words, and
memory consumption and retrieval efficiency is not much
affected by the number of features.

II. RELATED WORK

SLAM using stereo vision has been studied intensively in
the last decade [4], [8], [16], [10]. Most of them utilizes
corner-point features and build sparse feature maps. Some
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of them provide global localization capability using SIFT
descriptors [16], but the image retrieval scheme is not very
scalable.
Recently, visual vocabulary [14], [17] has been applied to

mobile robot localization. Global localization using visual
vocabulary was introduced by [22]. The visual vocabulary
approach has also been applied to topological mapping and
localization [5], and very large-scale topological SLAM [3].
The vocabulary tree [14] provides highly scalable image
retrieval capability (more than million images), and was
utilized for topological mapping and localization [7].
The vocabulary tree approach is also employed for lo-

calization on metric maps. Visual odometry with global
localization using a vocabulary tree was developed by [23]
with two stereo cameras and an IMU. SLAM with global
localization using a vocabulary tree was developed by [11]
with a stereo camera. These systems utilize corner points,
and may be hard to work in non-textured environments.
As mentioned in Section V, we found edge points provides
better results than corners. Also, the corner-based approach
generates sparse maps, and cannot represent detailed shape
of the objects in the environment.
Image edge points have been utilized for stereo SLAM

and object recognition in our previous work [19], [20]. The
edge-based stereo SLAM [20] is utilized to build 3D maps in
this paper, but the vocabulary tree is newly integrated with
the 3D mapping scheme for landmark. The framework of
edge-based recognition and pose estimation in this paper is
based on the previous work [19], but accuracy in 3D pose
estimation is improved by randomized ICP and scalability in
image retrieval is enhanced with the vocabulary tree.

III. MAPPING

A. 3D Mapping Based on Edge Point ICP

A 3D map is built based on the method proposed by [20].
We briefly review the method.
1) Stereo Reconstruction: The method utilizes image edge

points detected by the Canny detector [2]. Note that edge
points can be obtained from not only long segments but also
fine textures. We refer to a pair of left and right images as
stereo frame (frame, for short). Intra-frame reconstruction
(i.e., between the left and right images) is performed based
on the epipolar geometry in parallel stereo. We search the
matching pair of edge points between left and right images
along the scanline since epipolar lines are horizontal for
parallel binocular stereo cameras. The matching criterion is
the normalized correlation of a small window around the
edge point. Also, the orientation of the image gradient at
the edge point is optionally used to reduce outliers. Multiple
candidate matches are inevitably obtained especially when
the edge direction is nearly parallel with the epipolar line.
We employ the DP matching approach [15] to address this
problem. The 3D edge point Pc = (X, Y, Z)T is calculated
from point (xl, yl)T on the left image and point (xr, yr)T

on the right image based on the parallel stereo formula.

2) Camera Motion Estimation and Map Building: The
camera motion from time t−1 to t is estimated by matching
the edge points in frame It−1 and those in frame It. Our
method employs 3D-2D matching, in which the 3D points
reconstructed from It−1 are matched with the 2D points
detected in It. The registration is performed using a variant
of ICP algorithm [1] on the image plane. Let rt be the camera
pose at t, P i

t−1 be the i-th 3D edge point reconstructed at
t − 1, and pi

t−1 be the projected point of P i
t−1 onto image

It. Let qi
t be the image edge point at t which corresponds to

pi
t−1. A cost function F is defined as follows.

F (rt) =
1
N

N∑

i=1

d(qi
t, p

i
t−1) (1)

Here, d(qi
t, p

i
t−1) is the perpendicular distance between pi

t−1

and the edge segment on which qi
t lies.

Camera pose rt and edge point correspondences are
searched by minimizing F (rt) using the ICP. The initial
value of rt is set to rt−1, and the initial correspondence qi

t of
pi

t−1 is set to the edge point which is the closest to pi
t−1 in

terms of Euclidean distance. By repeating the minimization
of F (rt) and edge point matching, the optimal rt and edge
point correspondences are obtained. In this process, outliers
are coped with by a robust cost function [9].
Based on the obtained camera pose, a 3D map is built

by transforming the intra-frame 3D points from the camera
coordinate system to the world coordinate system.

B. Landmark Image Database

Landmark images are sampled from the images used in
3D mapping and are stored in a landmark image database in
order to retrieve them at the localization phase. Landmark
data is a tuple (In, En, rn), where In is the n-th landmark
image, En is the set of edge points detected in In, and rn is
the camera pose from which In was captured. rn is estimated
in the 3D mapping process. Each edge point in En has a
SIFT descriptor [13].
We detect edge points using the Canny detector [2] with

multiple scales. Then, the scale-space analysis is performed
in order to make edge points invariant to scale change [12].
Note the analysis is not performed in the stereo SLAM
because it is time consuming. Using the scale-invariant edge
points, edge-point matching is performed robustly even when
the object size in the input image is different from that in the
landmark image. Each edge point has a quadruple (x, y, θ, s),
that is, location, orientation, and scale.
The vocabulary tree [14] is employed to build an image

database. The vocabulary tree is a tree structure for storing
visual words (quantized descriptor vectors) efficiently based
on hierarchical k-means clustering, and can provide highly
scalable image-retrieval. Each node in the tree corresponds to
a visual word and has an inverted file to store the identifiers
of the images that contain the features corresponding to the
visual word.
We first create a generic vocabulary tree from edge points

detected from generic images (2M points from 200 images
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in the experiment). This generic tree is a skeleton, in which
no images are stored yet. Then, we store landmark images to
the vocabulary tree by adding the image index (Ij , fj,k) to
the inverted files. Here, Ij is the identifier of the j-th image,
and fj,k is the frequency of a visual word vk in Ij . Creating
a generic vocabulary tree is time consuming, but storing a
new image to the tree is very efficient since it just updates
the inverted files.

IV. LOCALIZATION
A. Visual Odometry

Our visual odometry is basically the same with the stereo
SLAM above. Only the difference is that no global maps
are generated by the visual odometry to reduce memory
consumption. The purpose of the visual odometry is camera
motion estimation, and local maps are necessary for it.
Camera motion estimation is performed using a local map
which is created by integrating 3D points from multiple
frames since 3D points reconstructed from one stereo frame
can have large errors.

B. Landmark recognition by Image Retrieval

Some images in the image sequence for the visual odom-
etry are used for landmark recognition. We refer to these
images as query images. Our landmark-based localization
can be performed using monocular images, and either left
or right image in a stereo frame is utilized. First, Edge
points are detected from a query image In in the manner
mentioned in III-B. Then, the landmark images matched
with In are retrieved from the vocabulary tree based on
the TF-IDF (Term Frequency-Inverse Document Frequency)
scoring scheme [17], [14]. The images with top M scores
are employed as candidates (M = 10 in the experiment).

C. Pruning Bad Images

The vocabulary tree provides candidate images very effi-
ciently from a large scale image database, but the candidates
include false positives. We remove them to select a good
image for 3D pose estimation.
1) Geometric Consistency: Each retrieved image contains

many false edge-point matches. The false matches can be
removed based on the geometric consistency that the query
image and the landmark image must have similar layouts.
The epipolar geometry with RANSAC for outlier rejection
is widely used to check the consistency between two images.
However, this method is not suitable for edge points since
edge points are less distinctive than corner points and many
false matches can be obtained. The epipolar geometry check
needs at least five point pairs and the RANSAC will not
be efficient for such less distinctive edge points. Therefore,
we employ the consistency check based on 2D similarity
transformation [21]. We employ a voting scheme to find the
similarity transformation parameters. In our scheme, each
edge point has location (x, y), orientation θ, and scale s.
Thus, we can calculate a set of similarity transformation
parameters from one point pair between the two images.
Then, we cast a vote for each point pair in the parameter

space (translation, rotation, and scale ratio). The maximum
in the voting space is employed as the best similarity trans-
formation between the two images. This method is efficient
since it is based on the voting by one point pair.
We define a score S1 = Nm/Nall, where Nm is the num-

ber of edge points which meets the geometric consistency,
and Nall is the number of all edge points in the query image.
If S1 is below a threshold, the image is removed from the
candidate list.
2) Degeneracy Check: If the geometric layout in the

image is too simple, pose estimation could suffer from de-
generacy and no correct estimates will be obtained. Although
there are many types of degeneracies, this paper considers
the most typical case in 2D space. If the matched edge points
lie on a line or parallel lines, a degeneracy occurs. In indoor
environments, this sometimes occurs when the camera moves
closely to a wall or large planar object with few textures.
Note that sufficient corner-points cannot be detected in this
case.
This type of degeneracy can be detected easily by exam-

ining the distribution of edge point orientations. We make
the histogram of edge point orientations and find the peak of
the histogram. We define a score S2 = Nd/Nm, where Nd

is the number of edge points having the same orientation as
the peak orientation in the histogram and Nm was defined
above. If S2 exceeds a threshold, the image is removed from
the candidate list.
The 2D degeneracy check eliminates many false matches,

but other types of degeneracies in 3D-2D matching can
theoretically occur. The detection of such degeneracies is
future work.

D. Refinement of Edge Point Matching

After the best landmark image is selected based on S1 and
S2, the edge point correspondences for the best image are
refined. The edge points in the best image are transformed to
the query image coordinate frame according to the similarity
transformation parameters obtained in Section IV-C.1. Then,
the candidate edge points in the query image that can be
matched with an edge point ej in the landmark image
are searched within a small region around ej using SIFT
descriptors. This process obtains dense edge-point matches,
which are useful for the ICP-based pose estimation to be
mentioned below.

E. 3D Pose Estimation by Randomized ICP

To estimate the camera pose, we find edge point corre-
spondences between the 3D map and the query image. This
is done based on the edge point correspondences between the
3D map and the stereo image (landmark image) obtained
by the stereo SLAM, and also based on the edge point
correspondences between the landmark image and the query
image obtained in the previous section. Then, we calculate
the camera pose relative to the 3D map by minimizing the
average reprojection errors of the 3D edge points onto the
query image.
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Outlier rejection is a crucial issue in this process. One
solution is a RANSAC-based approach [19]. However,
RANSAC sometimes suffers from large matching errors due
to variation in random sampling especially when using less
distinctive edge points. The ICP algorithm can provide more
accurate pose estimation. However, the ICP used in the stereo
SLAM is not suitable for localization since the camera pose
of the query image can be distant from that of the landmark
image. If we simply use the ICP, it will easily fall into local
minima. Note that, in the stereo SLAM, the camera poses
of two consecutive frames is very close and the ICP rarely
falls into local minima. To address this problem, this paper
proposes a randomized ICP approach, where randomized
initial values are fed to the ICP to avoid falling into local
minima. The procedure is as follows.
(1) Selection of initial pose

An initial camera pose rt is obtained using the
RANSAC-based approach [19].

(2) Creation of initial values to the ICP
Multiple initial values {bk|bk = rt + dk (k = 1, 2, ...)}
are created, where dk is a displacement sampled from
a random distribution in 3D pose space.

(3) ICP execution
For each bk, the ICP algorithm mentioned in Section
III-A is performed.

(4) Selection of the best candidate
The candidate with the best matching score is selected
from the results of step (3). The score here is defined
as S3 = Nf/Nall, where Nf is the number of matched
edge points in the ICP.

In this procedure, if a good initial pose is not obtained by
RANSAC in step (1), good candidates may not be obtained
in step (3). To increase success rate, the procedure is repeated
at most L times until finding a candidate pose whose score
exceeds a threshold (L = 10 in implementation).

V. EXPERIMENTS

We conducted experiments using Point Grey Research’s
binocular camera Bumblebee2. The baseline distance is 120
[mm]. The image size was reduced to 320×240 pixels. 3D
localization was made using only the images captured by the
left camera.
For comparison, we conducted the same experiments using

other features: corners and Laplacian points. Corners were
detected in the same way as the initial point selection in
the KLT tracker [18]. Laplacian points were detected by
finding local maxima of the trace of the Hessian matrix.
The orientation of a corner or Laplacian point is necessary
to compute rotation-invariant SIFT descriptors, and it was
obtained by finding the mode in the histogram of gradients
in the neighborhood of the feature point.

A. Visual Odometry

We evaluated visual odometry for each feature type in two
environments. We refer to each visual odometry as edgel-VO,
corner-VO and Laplacian-VO, respectively.

Fig. 1. VO Trajectories in a textured environment.

TABLE I
VO ERRORS AT POINTS P AND G IN FIG.1
Edgel-VO Corner-VO Laplacian-VO

P 1.2[m] 2.0[m] 1.4[m]
G 3.3[m] 3.0[m] 3.6[m]

(1) Experiment in a textured environment

Images were captured with a stereo camera mounted on
a mobile robot in an outdoor environment shown in Fig.
1(a). A number of edge points, corner points, and Laplacian
points were detected from the road surface and vegetation
under moderate illumination conditions on a cloudy day.
Fig. 1(b) shows the trajectories of each visual odometry

and the gyro-assisted odometry (GO) of the mobile robot.
The accuracy of GO is 1% in distance. Table I describes
the errors of visual odometry measurements compared with
GO’s measurements at points P and G. There are no large
differences between the trajectories due to plenty of textures
and smooth motion by the robot.

(2) Experiment in an environment having non-textured areas

Two image sequences were captured manually with a
stereo camera in an indoor environment which has non-
textured areas. Fig. 2 shows the two image sequences, which
we refer to as A and B. Image sequences A and B followed
almost same paths, but image sequence A was taken one
week after image sequence B.
Each VO was evaluated using image sequence A. Fig. 3

depicts the trajectory of each VO. There is no ground truth
for this manual camera motion. Thus, as a reference, the top-
left figure shows a 3D map and camera trajectory generated
by our stereo SLAM from image sequence B. The 3D map
is well-aligned and can be used as a reference to evaluate the
trajectories qualitatively. Note the path of image sequence A
is shorter than that of B.
As shown in the figures, edgel-VO generated a good

trajectory. On the other hand, corner-VO and Laplacian-
VO generated a distorted trajectory. The trajectories tend to
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Fig. 2. Image sequences captured in the same environment under different
conditions.

Fig. 3. Trajectories estimated by visual odometry.

largely distort when the camera turns in non-textured areas.

B. Place Recognition

Two experiments of place recognition were conducted
in the indoor environment mentioned in Section V-A(2).
Similarly to edge points, image databases were built for
corners and Laplacians. For each feature type, scale space
analysis was done and a vocabulary tree was created.

(1) Place recognition under the similar conditions

Two image sequences were captured manually in only
textured areas of the environment. Note that these images
were different from those in Section V-A(2). The second
image sequence were captured just after the first image
sequence, and they are very similar. An image database was
created for each feature type from 357 images regularly

Fig. 4. Confusion matrices of image retrieval.

TABLE II
RECOGNITION RATES (#SUCCESS WITH TOP SCORE/#ALL IMAGES)

Edge points Corner points Laplacian points
Similar condition 0.97 0.96 0.94
Different condition 0.93 0.51 0.78

sampled from the first image sequence (7140 images). 685
query images were regularly sampled from the second image
sequence (6845 images)
Fig. 4(a) shows the confusion matrices created from image

retrieval results. The horizontal axis is query image ID, and
the vertical axis is database image ID which was retrieved
with the top score. Since the two image sequences followed
the same path, correct recognitions are on the diagonal in
the graph. Image ID is −1 when no retrieval is obtained.
Table II shows the recognition rates, which is the ratio of the
number of successfully retrieved images with the top score
to the total number of the query images. In this experiment,
all the feature types provided good results since two image
sequences were very similar and plenty of feature points were
obtained from the textured areas.

(2) Place recognition under different conditions

This experiment was conducted using the images in Fig.
2. An image database was created for each feature type
from 315 images regularly sampled from image sequence
B (6300 images). 740 query images were regularly sampled
from image sequence A (7400 images).
There are many differences in image sequences A and

B. Image sequence A was taken in the evening and image
sequence B was taken in the daytime. Therefore, their
illumination conditions are different. Also, the camera was
slanted in the opposite direction. Objects including people,
chairs, a whiteboard and many boxes moved during the one
week. Furthermore, due to manual manipulation, the camera
viewpoints are slightly different in A and B, and some areas
are not overlapped.
Fig. 4(b) shows the confusion matrices created from image

retrieval results. Table II shows the recognition rates. The
edge-point based recognition has the best recognition rate.
False recognitions in the edge-point based recognition were
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caused by degeneracies mentioned in Section IV-C.2 and
non-overlapped areas between the two image sequences. In
addition to these factors, false recognitions in the corner-
based recognition were caused by poverty of reliable feature
points in non-textured areas.

C. Global 3D Localization

Experiments of global 3D localization were done using
3D maps and the images retrieved from the image database
with the top score. A 3D map was created for each feature
type using our stereo SLAM. No predictions based on
motion models were used and localization were performed
independently for all the query images.
The experiments were conducted using the images in Fig.

2. As in the previous sections, 3D maps and image databases
were created from image sequence B. 740 query images
were regularly sampled from image sequence A. Remind
that there are many differences in the two image sequences
as mentioned in Section V-B(2).
Fig. 5 shows the estimated camera poses and 3D maps as

a reference. Localization is done with respect to a map, and
the result is good if the estimated camera trajectory is close
to the reference map. For edge points, pose estimation was
done successfully at a high rate and a trajectory similar to
the 3D map was obtained. On the other hand, for corners,
pose estimation failed at many points and dispersion is large.
Fig. 6 shows examples of 3D localization using each

feature type. As shown in the figure, there are plenty of
matched points for edge points, which provides very stable
localization. In the case of corners, there are only a small
number of matched points, which can result in localization
failure due to small conditional changes. Laplacian-based one
lies between the two extremes.
Fig. 7 shows examples of edge-point based localization,

in which corner-based localization failed. In general, the
corner-based approach tends to fail in noisy and non-textured
areas. Localization failures were mostly caused by failures
in place recognition mentioned in Section V-B. Even if
place recognition is successful, pose estimation often fails
for corners. This is because sufficient point correspondences
are not obtained due to sparseness of features.

D. Integration of Visual Odometry and Global Localization

An experiment integrating visual odometry and global
localization was done using edge points under the same
condition as Section V-C. Edgel-VO calculated the camera
pose for every frame in image sequence A (7400 images),
and global 3D localization was performed once for every 100
frames, in which the visual odometry estimate was replaced
with the pose estimated by global localization. In the case
the pose by global localization was largely different from
the previous pose, it was discarded as outlier and the visual
odometry estimate was used. In current implementation, no
probabilistic data fusion was conducted.
Fig. 8 (a) shows the comparison of the trajectory by visual

odometry only and the trajectory by visual odometry and

Fig. 5. Trajectories of consecutive global 3D localization. Top: 3D
maps generated from image sequence B. Bottom: Localization using image
sequence A.

Fig. 6. Comparison of 3D localization. The overlaid red dots represent the
3D map reprojected onto the image according to the estimated pose.

global localization. The discrepancy between them at point
G is 0.87[m].
Fig. 8 (a) shows the trajectory overlaid on the reference

map. The integration of visual odometry and global local-
ization provides a trajectory well matched with the map by
compensating each other. Although a smooth trajectory was
obtained without probabilistic schemes in this experiment,
the accuracy is expected to improve by probabilistic data
fusion. This is future work.

E. Discussion

The experiments show that the proposed method works
well in indoor environments. The edge-point based approach
provides better recognition rates and accuracy than other
features especially in non-textured environments. Corners are
detected sparsely in non-textured areas and it makes place
recognition and pose estimation unstable as seen in Fig. 5.
One practical solution to these problems is to use multiple
stereo cameras for wider field of view and an IMU for robust
motion model [23]. Our approach can provide good results
using only one stereo camera although performance will be
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Fig. 7. Examples of 3D localization done by edge points. The red dots
represent the 3D map reprojected onto the image. Corners failed localization
using these images.

Fig. 8. Trajectories by visual odometry and global localization.

enhanced by such additional devices.
Table III depicts the computation time. Our method is

more time-consuming since the number of points is larger.
This is noticeable in visual odometry. In localization, how-
ever, there are no large differences. This is because scale
space analysis, which is the most time-consuming part, takes
similar computation time for each feature type. Our system is
implemented in Java and runs on top of Core2 Duo 3.06GHz
using only a single core. In our experience, C++ implemen-
tation is three to five faster than Java implementation. This
will make the system much faster.
Our method works well in both textured and non-textured

environments especially in indoors. In our experiences, map
building and visual odometry work in outdoor environments
under various illumination conditions [21]. However, place
recognition and 3D localization work successfully only in
well-textured regions under moderate lighting conditions.
Fig. 9 shows examples. Place recognition easily fails under
poor illumination conditions in outdoors because feature
detection is affected by drastic illumination changes. Solution
to this problem is future work.

VI. CONCLUSIONS
This paper has presented a method of 3D localization with

a stereo camera based on visual odometry and landmark
recognition. The method detects landmarks using a scalable
landmark-image database based on a vocabulary tree, and
estimates 3D camera poses accurately using a randomized
ICP algorithm. Future work includes the introduction of
Bayes filter for data fusion and the incorporation of the
proposed method into a navigation system.

TABLE III
COMPUTATION TIME IN JAVA IMPLEMENTATION [SEC/FRAME]

Edge points Corner points Laplacian points
Visual odometry 0.31 0.12 0.13
Global localization 2.17 1.84 2.02

Fig. 9. 3D localization in outdoor environments. The red dots represent
the 3D map reprojected onto the image.
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