
Adaptive Replanning in Hard Changing Environments

Hong Liu and Weiwei Wan

Abstract— Replanning is a powerful tool for high dimensional
mobile agents in changing environments. However, most works
employ replanning periodically. In order to fully exert the
merits of this powerful tool, we should concentrate on the
time interval employed for each replanning (that is ”when to
replan”) and carry out replanning adaptively. In this paper,
an adaptive strategy is proposed to govern replanning in hard
changing environments. The key point of this adaptive replan-
ning strategy is to perform local environment accumulation
by using grids method, which is a derivative of degenerated
potential field. Since the accumulation is only performed locally
in the regions between subgoals and only computed towards the
changes of obstacles, it increases little computational complexity
to parent anytime planners. Our adaptive replanning strategy
works as a plug-in to state-of-the-art algorithms and can gen-
erate heuristics by using information from projected spaces to
overcome high dimensionality. Experiments on different mobile
agents in various hard changing environments (environments
with crowded and unforseen obstacles) with lDRM-gRRT and
lRRT-gRRT showed that the adaptive strategy can improve
the performance and robustness of parent anytime planners
significantly.

I. INTRODUCTION

In the field of motion planning, intensive researches have
been devoted to static or moderate changing environments.
The contributions from these researches won successful
position in robotics, computer animation, drug design, etc.
However, in order to have more pragmatic utility in these
areas, especially robotics, motion planning for high-DOF
agents in hard changing environments remains a challenge.

Hard changing environments usually involve crowded and
unpredictable obstacles, large scenario scales and many
other constraints. The characteristics arisen from these con-
straints make it rather different from classical solutions.
As well known, there are many available technique for
planning in static or moderate changing environments. These
techniques range from geometrical[1][2] to probabilistic
approaches[3][4]. Nevertheless, on one hand although geo-
metrical approaches can be competent to motion planning
in changing environments, they cannot break through the
curse of dimensionality. On the other hand, probabilistic
approaches fulfill the completeness of high-DOF planning,
which means if a solution exists, it will be eventually
found. But they can only be shifted to moderate changing
environments where obstacles are predictable and not too
crowded[5][6][7][8]. In hard changing environments, CT-
Space becomes a tough tool since unpredictable obstacles

Hong Liu is with the Key Lab of Machine Perception and Intelligence
and the Key lab of Integrated Micro-System, Shenzhen Graduate School,
Peking University, China. hongliu@pku.edu.cn

Weiwei Wan is with the Key Lab of Machine Perception and Intelligence,
Peking University, China. wanweiwei@cis.pku.edu.cn

cause frustration to the calculation of CTobstacles[9] and
the efficiency of the improved probabilistic approaches is
harmed since the randomly formed narrow passages caused
by crowded obstacles. Therefore, new ways should be ex-
plored.

In this paper, a novel strategy is proposed to assist the
general anytime planning algorithms. To be exactly, we
will employ workspace information as heuristics to assist
replanning. Many works talked about auxiliary strategies by
considering workspace information, such as[10]. However,
they are limited to certain environments and are invalidated
in front of large scenario scales. Recent progresses believe
replanning[8][11][12] a powerful tool to solve these chal-
lenges and this assumption motivated us to develop the
assistant strategy proposed here. Quite different from CT-
Space, replanning does not require temporal information and
remains a promising solution to hard changing environments.
Tsianos’s work[12] carries out replanning periodically and
demonstrated good performance in their experiments. In our
last work[13], potential field was employed to instruct the
regeneration of dynamic subgoals, which were designed as
pivots for replanning. However, in order to fully exert the
merits of replanning, ”when to replan” should be taken into
account. Periodical replanning wastes lots of computational
resources and replanning should only be carried out when
needed. In this case, the novel strategy proposed in this paper
instructs replanning adaptively. Replanning is performed
according to the changes of workspace information (which
is generated by ideas borrowed from geometrical planning
algorithms) at different temporal intervals, indicating a major
contribution of this paper.

The contributions of this paper are as follows.

• Adaptive replanning, a plug-in to anytime planners
• Geometrical grids as workspace heuristics
• Integration of workspace-configuration mapping, colli-

sion detection and environment recording

Based on these contributions, a powerful tool, which can
be used as a plug-in to general anytime planners is finally
implemented.

Here is the organization of this paper. Preliminaries of our
work and some discussion about its performance are listed
specifically in Section II. Section III shows an overview of
the adaptive strategy. In Section IV, implementation details in
two different parent anytime planners are presented respec-
tively. Simulation experiments in 3D virtual environments are
demonstrated and analyzed in Section V. Section VI draws
the final conclusions followed by acknowledgements.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5912

II. PRELIMINARIES

This paper talks about an adaptive replanning strategy
which can be employed as plug-ins and heuristics to parent
anytime planners. Firstly, this section will focus on the pre-
liminaries of the adaptive strategy such as anytime planners,
projections and grids.

A. Anytime Planner

CT-Space is a powerful tool for planning in known or
predictable environments. Nevertheless, this is not always
the case in hard changing environments especially where
obstacles are unforseen. See Fig.1 for example.

Fig. 1. An illustration of CT space obstacles and the idea of ts.

When trajectories of obstacles are static, known or pre-
dictable, CTobstacles is like explicit C-Space obstacles along
time dimension. The first, second and third (from left to
right) objects in Fig.1 demonstrate a static, a known and a
predictable CTobstacle respectively. When the environment
is unpredictable, CTobstacles cannot be represented in a
particular shape anymore. We could only roughly tell that
the obstacles in such cases are contained in a truncated
cone (see the right object of Fig.1). Here the slope of the
frustum surface is subject to the differential constraints of
the environment. The higher the surface slope is, the smaller
the distance between the two red lines will be. It results in a
smaller ts and requires more efficient planners. Therefore, to
solve the problem caused by strong differential constraints
or unpredictability, we need anytime planner. An anytime
planner is a fast planner that could be employed online and
could generate paths instantaneously[14][13].

In hard changing environments, as shown in Fig.1, CT-
Space is no longer a powerful tool since it will not be
efficient enough to generate a pragmatic future shape of
CTobstacles with accessible temporal information. A possible
solution is to generate paths from time to time (replanning),
which indicates an online or anytime planner. Consequently,
replanning is promising and becomes an alternative or addi-
tional tool to CT-Space.

As introduced in Section I, replanning should be an effi-
cient procedure which invalidates many state-of-the-art algo-
rithms and projected information is employed as heuristics to
assist replanning. In this work, dynamic subgoal planner[13]
is employed as the parent anytime planner. Thanks to the
local strategy developed in dynamic subgoal planner, only
the projected information in local areas needs to be recorded.
The reduced information makes it efficient enough to work

in various scenario scales. In the next subsection we will
concentrate on projection.

B. Projection

It has been proved that planning of high-DOF agents
are computationally infeasible[15]. Although probabilistic
approaches can fulfill the completeness of high-DOF plan-
ning, they are far from the efficiency requirements of an
anytime planner. In this case, many researchers refer to space
reduction[16] and dimension reduction[17][18]. In the aspect
of dimension reduction, planning is performed in projected
spaces. Suppose that projection space is denoted by Θ(C),
then using Θ(C) instead of C can avoid computational blow-
up when trying to generate pragmatic Cobstacles. This is
an approximation based on the assumption that if roadmap
covers Θ(C) well, it also covers the configuration space well.
Despite that projection has already been widely used, the
assumption only performs well in certain spaces. It remains
handwork to choose a satisfying projection.

Reference[17] tries to select the best projection by online
performance evaluation and aims to choose projection au-
tomatically. However, in our strategy where the key point
is efficiency, there will not be enough time for evaluation
and selection. Since the Θ(C) assumption doesn’t hold for
any manual projection, paths might be omitted in a hand-
chosen space. These two reasons finally lead us to perform
planning in raw C-space and employ projected information
as heuristics.

Although manual chosen, heuristical projection should
not be performed arbitrarily. Space should be projected
to dimensions with top importance. Such importance can
be evaluated according to energy consumption, end-effector
trajectories or safety, etc. In our realization, projection is
performed by borrowing ideas from distance metrics[19]
for local planners, indicating safety. Joints with top sweep-
volume will be finally chosen as projection dimensions.

Here is an example of the projection idea on plenary
mobile agent. It is easy to find that the position and orien-
tation of plenary mobile agent base has major contribution
to workspace sweep-volume and it is far important than the
other dimensions. Therefore, heuristical space could be C
projected to (x, y, θ). However, in this case, the projected
space still requires online generation and cost lots of compu-
tational resources. For instance, an extra three dimensional
configuration space (C∗ as opposed to C) might be built
online as projected space (this is feasible but still cost much).
Considering the role of our heuristical projection (it is only
employed as heuristics but Θ(C))), we only need rough
approximation. Therefore, (x, y, z), which is ready-made and
doesn’t require online rebuilding, should be enough. In this
conversion, z information is used to play the role of θ. Since
(x, y, z) is exactly the workspace, few resources are needed
online.

Another view of the projection in this work is the utiliza-
tion of workspace information. Many works have endeavored
to employ workspace information[20][10][21]. In our work,

5913

the workspace information is accumulated in grid weights
locally, making it a promising online plug-in.

C. Grids

Grids act as a structure to accumulate the information
from projected space. As introduced in Section I, potential
field methods[1] are effective approaches since they do not
require explicit geometric computation. In potential fields,
the workspace or low-dimensional configuration space is
discretized into grids (in 2D space) or voxels (in 3D space)
and the obstacle settings of the environments could be stored
into the weights of these grids or voxels. Grids weights will
be iteratively generated until a path could be back traced.
However, the adaptive replanning strategy only uses pro-
jected information as heuristics and hence it is unnecessary
to compute weights for all the grids. Here only the idea of
potential fields, namely grids are employed.

The most important factor that influences the effectivity
of grids is their sizes. Choices of sizes will be discussed in
the following paragraphs from two aspects.

1) Agent Size: An effective heuristic should be both effi-
cient and complete, which means that it must give some hints
if a possible path exists. In order to guarantee completeness,
sizes of grids should chosen according to the following
equation.

Binner < Sgrid < Bouter (1)

Here, the size of grids Sgrid should be smaller than the
minimum outer box Bouter of mobile agents and should
be larger than the maximum inner box Binner. If Sgrid is
too small, there might be too much redundant information
recorded in the weights and may waste lots of computational
resources. If Sgrid is too large, some important changes of
the obstacles might be overlooked and the planner may fail
even though paths exist.

2) Integration with Collision Detection and Mapping:

Binner and Bouter constrained the range of possible sizes,
while exact choice are by integration with collision detection
and mapping. On the one hand, hierarchical voxels are
efficient tools to detect collision[22]. On the other hand, W-C
mapping, which is essential to DRM[23], requires workspace
division or voxels, too. These voxels can be reutilized in our
heuristical grids and the grid size is finally determined as
follows.

Sgrid = nmin·min(Svoxel) (2)

Here nmin is determined by

Binner < argmin(n·Svoxel) < Bouter (3)

The weights of grids are updated at each time interval
(updating interval in Fig.2), this is like traditional usage
of replanning. See Fig.2 to better understand the difference
between grids updating and replanning. Grids updating is
carried out at each updating time interval (denoted by upper
shadow boxes in the figure) whereas replanning is performed

at necessary time intervals (denoted by lower shadow boxes
in the figure). Since replanning is invoked adaptively, the
time steps of each replanning interval are not fixed. Although
grids are updated at each updating interval, it costs little
(refer to the following analysis).

Fig. 2. Time intervals

Fig.3 shows the procedure of grids updating. Firstly, voxel
(grid) weights in local areas will be initialized with biased
wavefront propagation to subgoals (left procedure in Fig.3).
Then, grids difference (right procedure in Fig.3) at each
updating interval will be weighted as the final heuristics.
Note that the grids different employed here is weighted by
the result of biased wavefront propagation, which makes the
heuristics both safe and convergent.

Fig. 3. Grids updating

Algorithm 1 shows the details of this heuristics generation
algorithm. Note that the generation will be performed in the
projected C∗ space between C

∗(i)
sinit and C

∗(i)
sgoal. In Algorithm

1, subscript i is used to identify updating intervals. Vobt and
Vstat denote the state voxels (weighted) and obstacle voxels
(raw obstacle occupation) respectively. Finally heuristical
information hi

heur will be generated by Algorithm 1 and will
be utilized for adaptive tuning.

It is easy to find that the computational complexity is
O(n), which means that computational complexity linearly
increases with the number of predefined voxels. Since the
accumulation is only performed locally in the regions be-
tween subgoals and only computed towards the changes
of obstacles, it increases little computational complexity to
parent anytime planners.

III. ADAPTIVE REPLANNING STRATEGY, ARS

The strategy is developed as a plug-in to ready-made
anytime planners. In this section we are going to talk about
the role of Adaptive Replanning Strategy (ARS) in a planning

5914

Algorithm 1: Heuristics generation

Input: V i−1
stat , V

i
obt, C

∗(i)
sinit, C

∗(i)
sgoal

Output: V i
stat, h

i
heur

1 V i
stat.init(C

∗(i)
sinit, C

∗(i)
sgoal);

2 Vtmp.init(V
i
obt);

3 for j in range(Vtmp.size()) do
4 if not V i−1

stat [j].bvalid() then
5 V i

stat[j]←V i
stat[j]×Vtmp[j];

6 end
7 else
8 V i

stat[j].invalidate();
9 end

10 end
11 hi

heur←0;
12 for j in range(V i

stat.size()) do
13 hi

heur←hi
heur + V i

stat[j];
14 end
15 return V i

stat, h
i
heur

approach. The overview of an anytime approach is shown in
Fig.4.

Fig. 4. Overview flowchart of ARS

As shown in Fig.4, ARS will perceive environment in-
formation at each updating interval whereas whether will it
invoke replanning depends on the strategy selected by the
”Rule selector”.

When a path is returned by the parent anytime planner,
lazy evaluation will be carried out before agents’ execution.
Adaptivity may lie in the lazy evaluation part or lie in
invoking of the replanner (both denoted by dashed line in the
figure). In static environment, ARS becomes invalid and the
approach degenerates into classical algorithms. In the worst
case where the environment changes drastically, ARS may
call replanning at each updating interval that it degenerates

into a fixed-interval approach.

IV. CANDIDATE APPROACHES

Details of the plug-in were introduced in the previous
sections while in the following part of this paper two
different implementation of anytime approaches (with the
help of our strategy) will be demonstrated. The core of the
parent approaches here involves two procedures, the global
generator and the local runner. On the one hand, a set of high-
level subgoals is generated dynamically by a rough planning
strategy that could tailor itself adaptively. On the other
hand, the local runner will compute a specific path between
the high-level subgoals. Finally, these two procedures will
collaborate according to the ARS plug-in.

A. lDRM-gRRT with ARS

The lDRM-gRRT approach is an anytime planner pro-
posed in reference[13] where the two procedures are collab-
orated by using exact collision detection and distance eval-
uation with potential field. This strategy is fixed and cannot
meet environment changes in certain cases (refer to creplan
in the experiment section of [13]). Consequently, ARS is
plugged into lDRM-gRRT to achieve better performance.

1) Local Dynamic Roadmap method: Dynamic Roadmap
Method (DRM) is an excellent PRM derivative and could
generate paths with computational complexity O(n) even in
hard environments. The performance of DRM should owe to
two preprocessed mappings, Workspace-Configuration space
(W-C) node mapping and W-C edge mapping.

Φv(ω) = {vi∈V |Ω(vi)∩ω �=Ø} (4)

Φe(ω) = {ei∈E|Ω(eij)∩ω �=Ø, eij∈ei} (5)

Please refer to [23][13] for details of these two formu-
lae. Although the two mappings could guarantee an O(n)
complexity (this makes the complexity of DRM mainly
depend on A* search), DRM fails on mobile robots since the
computation of the mappings themselves encounter curse of
dimensionality in mobile environments.

Therefore, local DRM is proposed. A local DRM tries to
plan a local path for mobile robots locally. It only plans paths
in a local C-Space without considering the whole W-Space
which is both impossible to be known in advance or mapped
in polynomial time.

2) Global Director: Since RRT can rapidly select large
Voronoi regions for expansion, it is employed to generate
high-level subgoals or pivots. The aim of a global director
is to generate subgoals rapidly and tendentiously. It is the
subgoal but the path that plays an important role. Therefore,
the time step δq and probability of expanding towards the
final goal Pb of RRT are tailored to satisfy our requirements,
indicating a gRRT[13].

Finally, lDRM will be carried out between subgoals gen-
erated by the global director.

In ARS, ω from lDRM is utilized as min(Svoxel) in equa-
tion (2). As referred in Section II, information accumulation
is performed in the local area of local DRM. In order to

5915

employ ARS, several rules are defined, refer to Algorithm 2
for details.

Algorithm 2: ARS in lDRM-gRRT
Input: Vstat, Vobt, C

∗
sinit, C

∗
sgoal

Output: rstrategy
1 hheur←heuristics(Vstat, Vobt, C

∗
sinit, C

∗
sgoal);

2 switch hheur do
3 case hheur∈range(A)
4 rstrategy←R1;
5 break;
6 endsw
7 ...
8 otherwise
9 rstrategy←Rdef ;

10 endsw
11 endsw
12 return rstrategy

To be exactly, in ARS aided lDRM-gRRT collision detec-
tion is performed according to hheur. R0, R1, ... correspond
to hheur in range(A), range(B), ... respectively. The rules
are defined as follows. In these items we suppose the current
configuration being eij and there are n points in all along ei
• R0, invoke replanning as long as ei(1

3n)
is obstructed

• R1, invoke replanning as long as ei(1
2n)

is obstructed
• Rdef , invoke replanning if eij is obstructed
Although these Ri are chosen empirically, it is rational.

The motivation behind these rules is replanning should be
performed more intensively as the environment becomes
harder.

Fig.5 demonstrates a flow chart of this anytime approach.
Note that the redline indicates the connection where adap-
tivity is performed, corresponding to the dashed line that
connects ”Rule selector” and ”Lazy evaluation” in Fig.4. In
lDRM-gRRT approach, heuristical information from accu-
mulation is employed to tailor the lazy evaluation procedure,
as listed in the previous items.

Fig. 5. Overview flowchart of ARS

B. lRRT-gRRT with ARS

lDRM could update roadmap instantaneously as obstacle
changes. However, it do face two severe drawbacks. Firstly,

since the mapping is preprocessed and cannot be changed (it
will cost much), it is hard to guarantee completeness[24].
Secondly, paths from PRM derivatives are not pragmatic
and demands a postprocessing procedure to take dynamic
constraints into account. Therefore, the lRRT-gRRT approach
is proposed. lRRT-gRRT is another anytime planner proposed
in[13], but it is not ”anytime” enough and gets stuck in
certain cases due to fixed parameters (δq and Pb). ARS allows
lRRT to choose Pb adaptively according to environment
changes, which makes it as effective as lDRM-gRRT while
much easier to deal with dynamics.

The lRRT-gRRT approach is like multiple RRT-connect
(by comparing with RRT-connect). The major originality lies
in (1) Only immediate subgoal pair is connected (2) Path
changes dynamically with ARS. Fig.6 demonstrates a flow
chart of ARS in lRRT-gRRT. Like Fig.x, the redline indicates
the connection where adaptivity is performed, corresponding
to the dashed line that connects ”Rule selector” and ”Inner
replanner” in Fig.x. The ”Rule selector” module of ARS
tailors Pb for ”Inner replanner” adaptively.

Fig. 6. Overview flowchart of ARS

V. EXPERIMENTS

To evaluate the proposed methods, simulation experiments
are implemented in 3D workspace with different scenar-
ios in hundreds of times. The experimental design mainly
focuses on the hard changing environments occupied with
ambulatory or flying obstacles (especially in the presence
of large scenarios and unpredictable changing obstacles),
and the results indicate that the method achieves interactive
performance. In this section, we will discuss a number of
experiments in detail, all of which are carried out on a
personal computer with a single core of an Intel Core I5
2.67GHz CPU and 4GB memory.

Fig.7 demonstrates the scenarios of our environments.
Three different scenarios are designed to test the proposed
algorithm. In the first scenario, random flying obstacles are
introduced to obstruct the path of a mobile manipulator
(Fig.7.a). In the second scenario, these flying obstacles are
changed into ambulatory obstacles aiming at simulating
unpredictable pedestrians (Fig.7.b). As demonstrated previ-
ously, ARS is an adaptive strategy that could tailor itself
according to environments adaptively. Therefore, a mixed
environment with flying and ambulatory obstacles hovering
in different regions is designed as the third scenario (Fig.7.c).

Moveover, different scenario scales and different obstacle
intensities are applied to each scenario, indicating three

5916

(a) Scenario I (b) Scenario II

(c) Scenario III

Fig. 7. The scenario of experiment group I, II and III

groups of experiments. Fig.8 demonstrates the runtime figure
of a certain scenario.

Fig. 8. Scenarios with different intensity and scale

Since the proposed algorithm mainly concentrates on hard
changing environments, no stationary obstacles are intro-
duced into the scenarios. In fact, stationary obstacles could
be processed in the preprocessing phase of lDRM-gRRT or
could be processed by an OBRRT[21] derivative of lRRT-
gRRT as long as there are no too dramatic narrow passages.
Maze-like scenarios with moving obstacles in them are very
challenging and they constitute future works.

Table I shows the settings of each experiments. The mobile
manipulator in our experiments is modeled by parameters of
a practical 6 DOF Kawasaki manipulator (FS03N) mounted
on a mobile base. Here, foi and aoi denote the size of
flying and ambulatory obstacles respectively while nf and
nf denote their quantity. no is the number total obstacles in
each experiment. To generate a hard changing environments,
we define obstacle motions according to reality. They are
depicted by six parameters indicating the random walk steps
and rotation steps along the three Cartesian coordinates. The
random walk steps are randomly chosen in (-5, 5) while the
random rotation steps randomly selected in (-60, 60).

lRRT-gRRT with ARS and lRRT-gRRT with ARS are both
carried out on each experimental setting. In lRRT-gRRT
with ARS, Pb is chosen adaptively according to different
hheur while in lDRM-gRRt lazy evaluation is performed

adaptively. Table II shows the adaptive strategy adopted in
our experiments.

TABLE II
THE ADAPTIVE STRATEGY

hheur (0, 100) (100, 200) (200,∞)

ARS0 Pb = 1
3

Pb = 1
5

Pb = 1
7

ARS1 validate(eij) validate(ei(1
3
n)) validate(ei(1

2
n))

Note that maneuvers in ARS1 is incremental. For instance,
validate(ei(1

3n)
) means perform invoking if validate(eij)

or validate(ei(1
3n)

). The ranges (0, 100), (100, 200) and
(200,∞) are tailored according to the local workspace of
lDRM or lRRT which changes with robot shapes. Since our
Kawasaki manipulator model has a reachable work region
of (−78, 82) × (−122, 122) × (0, 136), we map the local
workspace of the model approximately 2 times of the local
region, namely (−120, 120)×(−120, 120)×(0, 136). In such
a region there are 153000 voxels totally. However, we found
environment changes could be dramatic even if there are only
100/153000 changes. Therefore, 100 and 200 are chosen as
threshold for choices. Indeed, the thresholds for ARS only
depend on robot shapes which could be taken into account
before planners are built. In this way, ARS proposed in this
paper is pragmatic and could be tuned for different robots
before installment.

Table III listed the results of these experiments (each one is
based on 20 times of execution). Note that 3000 vertices are
preprocessed for lDRM[13]. nri and nr denote the average
replanning times for different strategy and the times in all.
nlo is employed to indicate the average number of obstacles
in local workspace. ti shows the average planning time of
different strategies while tavr indicates the total amount of
time. The last column of Table III tfix denotes the average
planning time without ARS.

Due to the limited space, we won’t analyze the data in
detail here. It is obvious that our ARS strategy improved the
efficiency of the raw anytime planner significantly. Besides,
lRRT-gRRT, which was considered an impossible combina-
tion (refer to [13] to fix the idea), becomes valid with the
help of ARS.

VI. CONCLUSIONS

An adaptive replanning strategy which acts as a plug-in
to state-of-the-art anytime planner is proposed in this paper.
The adaptive strategy makes it possible to take different re-
planning schemas according to the changes of environments.
Experimental results show that our ARS could improve
replanning efficiency significantly in hard changing environ-
ments (in the presence of unpredictable moving obstacles
and large scenario scales). ARS may save some impossible
planners (such lRRT-gRRT in our experiments), indicating a
promising plug-in.

VII. ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foun-
dation of China (NSFC, No.60875050, 60675025), National

5917

TABLE I
EXPERIMENTAL SETTINGS

Groups Experiments Scale fo0 nf ao0 ao1 ao2 na no

Grp1 Exp1 720× 960× 136 10× 15× 10 200 − − − − 200
− Exp2 720× 960× 136 10× 15× 10 400 − − − − 400

Grp2 Exp1 720× 960× 136 − − 6× 6× 40 6× 6× 80 6× 6× 120 30, 30, 30 120
− Exp2 720× 1440× 136 − − 6× 6× 40 6× 6× 80 6× 6× 120 70, 70, 70 210

Grp3 Exp1 720× 1440× 136 10× 15× 10 150 6× 6× 40 6× 6× 80 6× 6× 120 50, 50, 50 300
Grp3 Exp1 720× 2880× 136 10× 15× 10 300 6× 6× 40 6× 6× 80 6× 6× 120 100, 100, 100 600

TABLE III
EXPERIMENTAL SETTINGS

Groups Experiments Strategy nr0 nr1 nr2 nr nlo t0 t1 t2 tavr tfix
Grp1 Exp1 ARS0 16.5 4.0 4.0 21.0 17 0.294 0.315 0.324 0.297 1.196
− − ARS1 17.0 3.5 3.0 22.0 15 0.098 0.101 0.107 0.099 0.143
− Exp2 ARS0 9.0 19.5 52.0 80.0 37 0.313 0.317 0.340 0.339 � 2.000
− − ARS1 7.5 24.5 50.0 78.5 42 0.097 0.102 0.106 0.104 0.174

Grp2 Exp1 ARS0 6.5 5.5 1.5 12.0 15 0.351 0.365 0.374 0.359 −
− − ARS1 4.0 7.0 3.0 14.0 13 0.137 0.140 0.142 0.140 −
− Exp2 ARS0 17.0 16.5 7.0 43.5 11 0.350 0.360 0.369 0.354 −
− − ARS1 20.0 17.0 5.5 41.0 11 0.139 0.142 0.143 0.140 −

Grp3 Exp1 ARS0 21.0 12.0 4.5 35.0 16 0.324 0.336 0.343 0.330 −
− − ARS1 20.0 13.5 3.0 36.0 15 0.138 0.141 0.147 0.139 −
− Exp2 ARS0 23.0 9.5 4.0 33.0 15 0.319 0.332 0.323 0.323 −
− − ARS1 19.5 10.0 6.0 34.5 14 0.140 0.143 0.142 0.141 −

High Technology Research and Development Program of
China (863 Program, No.2006AA04Z247), Shenzhen Sci-
entific and Technological Plan and Basic Research pro-
gram (No.JC200903160369A), Natural Science Foundation
of Guangdong(No.9151806001000025).

REFERENCES

[1] A. Zelinsky, ”Using path transforms to guide the search for findpath
in 2D”, in International Journal of Robotics Research, pp. 315-325,
1994.

[2] A. R. Willms and S. X. Yang, ”Real-time robot path planning via
a distance-propagating dynamic system with obstacle clearance”, in
IEEE Transactions on System, Man, and Cybernetics, pp. 884-893,
2008.

[3] L. E. Kavraki, P. Svestka, J. C. Latombe and M. H. Overmars,
”Probabilistic roadmaps for fast path planning in high-dimensional
configuration spaces”, in IEEE Transactions on Robotics and Automa-
tion, pp. 566-580, 1996.

[4] J. J. Kuffner and S. M. LaValle, ”RRT-connect: an efficient approach
to single-query path planning”, in IEEE International Conference on
Robotics and Automation, pp. 995-1001, 2000.

[5] L. Jaillet and T. Simeon, ”A PRM-based motion planner for dynami-
cally changing environments”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1606-1611, 2004.

[6] D. Hsu, R. Kindel, J. C. Latombe and S. Rock, ”Randomized kin-
odynamic motion planning with moving obstacles”, in International
Journal of Robotics Research, pp. 233-255, 2002.

[7] J. P. van den Berg and M. H. Overmars, ”Roadmap-based motion
planning in dynamic environments”,in IEEE Transaction on Robotics,
pp. 885-897, 2005.

[8] J. P. van den Berg, D. Ferguson and J. Kuffner, ”Anytime path planning
and replanning in dynamic environments”, in IEEE International
Conference on Robotics and Automation, pp. 2366-2371, 2006.

[9] J. P. van den Berg, Promotor: M. H. Overmars, ”Path planning in
dynamic environments”, Ph.D. Thesis, 2007.

[10] J. P. van den Berg and M. H. Overmars, ”Using workspace information
as a guide to non-uniform samping in probabilistic roadmap planners”,
in IEEE International Conference on Robotics and Automation, pp.
453-460, 2004.

[11] D. Ferguson, N. Kalra and A. Stentz. ”Replanning with RRTs”, in
IEEE International Conference on Robotics and Automation, pages
1243C 1248, 2006.

[12] K. I. Tsianos and L. E. Kavraki, ”Replanning: A powerful planning
strategy for hard kinodynamic problems”, in it IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1667-1672, 2008.

[13] H. Liu and W. Wan, ”A dynamic subgoal path planner for unpre-
dictable environments”, in IEEE International Conference on Robotics
and Automation, 2010.

[14] J. Vannoy and J. Xiao, ”Real-time adaptive motion planning(RAMP)
of mobile manipulators in dynamic environments with unforeseen
Changes”, in IEEE Transactions on Robotics, pp. 1199-1212, 2008.

[15] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard and
L. Kavraki, ”Principles of robot motion: theory, algorithms, and
implementation”, The MIT Press, pp.197-202, 2005.

[16] O. Brock and L. E. Kavraki, ”Decomposition-based motion planning:
A framework for real-time motion planning in high-dimensional
configuration spaces”, in IEEE International Conference on Robotics
and Automation, pp. 1469-1474, 2001.

[17] I. A. Sucan and L. E. Kavaki, ”On the performance of random
linear projections for sampling-based motion planning”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2434-
2439, 2009.

[18] G. Sanchez and JC. Latombe, ”A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking”, in International
Journal on Robotics Research, pp. 403-417, 2003.

[19] J. J. Kuffner, ”Effective sampling and distance metrics for 3D rigid
body path lanning”, in IEEE Inernational Conference on Robotics and
Automation, pp. 3993-3998, 2004.

[20] H. Kurniawati, ”Workspace-based sampling for probabilistic path
planning” , Ph.D. Thesis, 2007.

[21] S. Rodriguez, X. Tang, J. Lien and N. M. Amato, ”An obstacle-based
rapidly-exploring random tree”, in IEEE International Conference on
Robotics and Automation, pp. 895-900, 2006.

[22] http://www.ode.org.
[23] M. Kalmann and M. Mataric, ”Motion planning using dynamic

roadmaps”, in IEEE Transactions on Robotics and Automation, pp.
4399-4404, 2004.

[24] H. Liu, D. Ding, W. Wei and H. Zha, ”Predictive model for path
planning by using k-near dynamic bridge builder and inner parzen
window, in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2133-2138, 2008.

5918

