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Abstract— This paper addresses the deployment problem
for a swarm of autonomous mobile robots initially randomly
distributed in 3 dimensional space. A fully decentralized
geometric self-configuration approach is proposed to deploy
individual robots at a given spatial density. Specifically, each
robot interacts with three neighboring robots in a selective
and dynamic fashion without using any explicit communication
so that four robots eventually form a regular tetrahedron.
Using such local interactions, the proposed algorithms enable
a swarm of robots to span a network of regular tetrahedrons
in a designated space. The convergence of the algorithms is
theoretically proved using Lyapunov theory. Through extensive
simulations, we validate the effectiveness and scalability of the
proposed algorithms.

I. INTRODUCTION

Recently, increasing attention has been paid to autonomous

operations of swarms of unmanned vehicles and sensors

to provide airborne, undersea, and terrestrial surveillance

and exploration. These applications often require individual

agents to autonomously configure themselves into a desig-

nated space. To achieve and maintain such capabilities, many

studies have addressed the effectiveness of decentralized

coordination approaches in self-configuration [1][2], pattern

generation [3], flocking and tracking [4][5][6] in flat 2 di-

mensional space. These approaches are mainly based on local

interactions between individual robots with limited sensing

and communication capabilities, and can be classified into

biologically-inspired [3], behavior-based [2][7], and virtual

physics-based [1][5][8] approaches. The behavior-based and

virtual physics-based approaches use some sort of inter-robot

force balance such as spring forces [1], gravitational forces

[5], potential fields [8], and other forces. This is because

the force-based interaction rules are considered simple yet

effective, and provide an intuitive understanding on individ-

ual behavior. Moreover, such local interactions may result in

lattice-type configurations that offer effective area coverage

with redundant connections. Along the same line, but in 3

dimensional space, we propose a geometric approach that

enables robots to organize a network of regular tetrahedrons

using a partially-connected topology [9].

The 3 dimensional deployment of a robot swarm has been

gaining recognition and popularity in very recent years. The

‘I-SWARM’ project [10] was an attempt to deploy micro-

robot swarms for automatic execution of tasks in the small

world. Michael et al. [11] proposed a planning and control

scheme for robot swarms based on abstraction reducing its

G. Lee, Y. Nishimura, K. Tatara, and N.Y. Chong are with the
School of Information Science, Japan Advanced Institute of Science
and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
{geun-lee,y.nishimura,k tatara,nakyoung}@jaist.ac.jp

complexity in the 9 dimensional space which is a product

structure of the 6 dimensional Euclidean group and a three-

dimensional shape. In [12], several different swarm flocking

solutions were investigated in two and three-dimensional

spaces and their stability was analyzed. Paul et al. [13]

presented a coordinated formation flight and reconfiguration

of unmanned aerial vehicles (UAVs) based on potential fields

using a virtual leader and considering the vehicle’s velocities.

Chaimowicz et al. [14] reported a hierarchical coordination

architecture where a few number of UAVs is used to com-

mand, control, and monitor swarms of unmanned ground

vehicles (UGVs) for urban search and rescue. Meanwhile,

little attention has been paid to the configuration control of

robot swarms in 3 dimensional space.

Our previous works on the 2 dimensional configuration

control problem [2] relied on a set of artificial behavior

rules, enabling robots to create equilateral triangle lattices.

Through the local behavior rules, a swarm of robots could

configure themselves into an area at a uniform interval,

aiming to provide enhanced coverage and connectivity. In

this paper, we intend to extend this concept to 3 dimensional

space. This extension raises several new challenges due to

an increase in the degrees of freedom of robot movement.

There appears to be a need for a novel interaction method to

enable robots to form a 3 dimensional shape. Here we use

the geometric tetrahedron model, as it is the simplest shape

in 3 dimensional space, and accordingly will reduce the

computational burden of calculating inter-robot interactions.

The convergence of the proposed algorithms are shown based

on Lyapunov theory, leading to asymptotic stability of the

desired configuration from an arbitrary distribution. We also

perform extensive simulations to demonstrate that a swarm

of robots can establish a regular tetrahedral network in a

scalable manner according to a given spatial density.

II. PROBLEM STATEMENT

We consider a swarm of mobile robots denoted as

r1, · · · , rn. It is assumed that an initial distribution of all

robots is arbitrary and their positions are distinct. Each robot

autonomously moves in 3 dimensional space. Robots have

no leader and no identifiers. They do not share any common

coordinate system, and do not retain any memory of past

actions. They can detect the positions of other robots only

within their limited sensing range. In addition, each robot

does not communicate explicitly with other robots.

Based on these assumptions, let us consider a robot ri

with its local coordinates ~rx,i, ~ry,i, and ~rz,i. The position

of ri is given by pi = [pi,x pi,y pi,z]
T (for simplicity, pi

hereafter). pi is (0, 0, 0) with respect to ri’s local coordinates.
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The distance between the robot ri’s position pi and another

robot rj’s position pj is defined as dist(pi, pj). The desired

inter-robot distance is denoted by du. Also ri has a limited

sensing boundary denoted by SB. Then ri detects the position

{p1, p2, · · · } of other robots located within its SB, yielding a

set of the positions, denoted by Oi, with respect to its local

coordinates. From Oi, ri selects three robots rn1, rn2, and

rn3 that we call the neighbors. The set of positions of the

neighbors {pn1, pn2, pn3} is denoted by Ni. Given pi and

Ni, the tetrahedral configuration, denoted by T
3
i , is defined

as a set of the four distinct points (i.e., {pi, pn1, pn2, pn3}.

Given T
3
i , we can express the distance permutations with

respect to ri as the following matrix D3
i :

D3
i =

{

(dist(pm, pn) − du)2 if m 6= n,

0 otherwise,
(1)

where pm, pn ∈ T
3
i . We will denote (dist(pm, pn) − du)2

for simplicity as (dk − du)2. Now we define the regular

tetrahedron configuration, denoted by E
3
i , as the config-

uration in which all the distance permutations of T
3
i are

equal to du. Using T
3
i and E

3
i , we formally define the local

interaction as follows: Given T
3
i , the local interaction allows

ri to maintain du with ri’s neighbors at each time (toward

forming E
3
i ). Based on the local interaction, we address the

self-configuration problem as follows:

Given a swarm of robots r1, · · · , rn with arbitrarily dis-

tinct positions in 3 dimensional space, how to enable the

robots to configure themselves into E
3
i .

Now, we propose a self-configuration solution to the above

problem, which is composed of two parts: local interaction

(ALGORITHM-1) and neighbor selection (ALGORITHM-2).

ALGORITHM-1 enables four neighboring robots to gener-

ate E
3
i of side length du from an arbitrary T

3
i . Through

ALGORITHM-2, ri determines three neighbors rn1, rn2, and

rn3, to be interacted, among Oi. The self-configuration exe-

cutes for the input Oi with respect to ri’s local coordinates

to output ri’s next movement position every time.

III. GEOMETRIC LOCAL INTERACTION

A. Algorithm Description

ALGORITHM-1 LOCAL INTERACTION (code executed by ri)

FUNCTION ϕinteraction({pn1, pn2, pn3}, pi)
1 centroid pct: (pct,x, pct,y, pct,z)
2 normal vector ~ni: [αi βi γi]

T

3 straight-line equation:
x−pct,x

αi
=

y−pct,y

βi
=

z−pct,z

γi
= µi

4 parameter µi:
√

6

4

√

α2

i
+β2

i
+γ2

i

du

5 next movement point pti: (pti,x, pti,y, pti,z)

Let us consider ri and its three neighbors rn1, rn2,

and rn3. As illustrated in Fig. 1-(a), the four robots are

configured into T
3
i whose vertices are pi, pn1, pn2, and pn3,

respectively. First, ri calculates the centroid of T
3
i , denoted

by pct (=(pct,x, pct,y, pct,z)), with respect to its local

coordinates. Then, as shown in Fig. 1-(b), a surface normal

vector ~ni =[αi βi γi]
T to the plane △pn1pn2pn3 formed

ip

1np

2np

3np

ir

ctp

(a) centroid pct in T
3
i

tip

1np

2np

3np
ctp

in
r

rd

ip
ir

(b) next movement point pti

Fig. 1. Illustration of ALGORITHM-1

by the neighbors is defined, where αi, βi, and γi denote

its direction ratios with respect to ri’s local coordinates. By

using the so-called symmetric form, the straight line equation

passing through pct and parallel to ~ni is defined by

x − pct,x

αi

=
y − pct,y

βi

=
z − pct,z

γi

= µi, (2)

where µi ∈ R denotes a parameter increasing or decreasing

as ri travels along the line. Let pti (= (pti,x, pti,y, pti,z))
denote the goal of the next movement. Note that the radius

dr of the circumscribed sphere of E
3
i with side length du is√

6
4

du. Then, pti is decided to be located
√

6
4

du away from

pct on the straight line of (2). Now, the three parametric

line equations passing through pct and pti along ~ni are

derived: pti,x = αiµi + pct,x, pti,y = βiµi + pct,y, and

pti,z = γiµi + pct,z. Accordingly, dist(pct, pti) is given as:

dr =
√

(pti,x − pct,x)2 + (pti,y − pct,y)2 + (pti,z − pct,z)2.

µi is then given by

µi =

√
6

4
√

α2
i + β2

i + γ2
i

du. (3)

Finally, using (2) and (3), pti is obtained as follows: (pct,x+
αi

√
6du

4
√

α2

i +β2

i +γ2

i

, pct,y + βi

√
6du

4
√

α2

i +β2

i +γ2

i

, pct,z + γi

√
6du

4
√

α2

i +β2

i +γ2

i

).

As illustrated in Fig. 2-(a), at time t, ri in T
3
i (t) determines

pti(t) such that the line segment pctpti(t) is dr in length

and is perpendicular to △pn1pn2pn3(t). In other words, at

t+1, pctpti(t) is the circumradius of T
3
i (t). Similarly, since

rn1, rn2, and rn3 also execute the same algorithm, it is

easily seen that pct(t) at t is the orthocenter H(t) at t + 1.

By repeatedly running ALGORITHM-1 every time, the four

robots eventually configure themselves into E
3
i .

B. Geometric Interpretation

Here we examine the geometric relation between pct and

H . Let us consider a regular tetrahedron pipn1pn2pn3 whose

centroid is G (=pct) and side length is du. In Figs. 2-(b), (c),

and (d), pi, pn1, pn2, and pn3 are denoted, for simplicity, as

O, A, B, and C, respectively. The point D is the projection

of O onto the equilateral triangle △ABC. The vectors
−→
OA,−−→

OB,
−−→
OC ,

−−→
OD, and

−−→
OG are denoted hereafter as ~a, ~b, ~c,

~d, and ~g, respectively. Since ~d ⊥ △ABC, the following

relations hold:
~d · −−→AB = 0
~d · −−→BC = 0

. (4)

5074



tip
)( ip=

1np

2np

3np

OH

O
ir

)( H=ct
p

(a) position vector
−−→
OH

O

A

B

C

D

G

(b) centroid G(= pct)

O

A

B

C
P

(c) circumcenter P

O

A

B

C
H

(d) orthocenter H

Fig. 2. Geometric interpretation of ALGORITHM-1

Now ~d,
−−→
AB, and

−→
AC can be represented as ~d = ~a +

−−→
AD,

~b−~a, and ~c−~a, respectively. Using the linear independence

of
−−→
AB and

−→
AC, ~d can be rewritten in the following form:

~d = ~a + x
−−→
AB + y

−→
AC

= ~a + x(~b − ~a) + y(~c − ~a)

= (1 − x − y)~a + x~b + y~c,

(5)

where x and y are scaling coefficients that can be determined

by substituting (5) into (4) given by

{(1 − x − y)~a + x~b + y~c} · (~b − ~a) = 0

{(1 − x − y)~a + x~b + y~c} · (~c − ~a) = 0
. (6)

~d is finally given by

~d = (1 − 1

3
− 1

3
)~a +

1

3
~b +

1

3
~c =

1

3
(~a +~b + ~c), (7)

which shows that D is the centroid of △ABC. It is also

easily seen that ~g is given by

~g =
3

4
{1

3
(~a +~b + ~c)} =

1

4
(~a +~b + ~c)(= −−→pipct). (8)

Consequently,
−−→
GD is perpendicular to △ABC.

Next, Fig. 2-(c) illustrates the circumscribed sphere of a

regular tetrahedron OABC whose circumcenter is P and

radius is dr in length. Denoting the vector from O to P by

~p, we reexpress dr by

dr = |~p|2 = |~a − ~p|2 = |~b − ~p|2 = |~c − ~p|2. (9)

Here |~a−~p|2 is given by 〈~a−~p,~a−~p〉 = |~a|2−2〈~a, ~p〉+ |~p|2.

From the above relation, 〈~a, ~p〉 is equal to
|~a|2
2

. Similarly,

〈~b, ~p〉 and 〈~c, ~p〉 are equal to
|~b|2
2

and
|~c|2
2

, respectively. These

relations can be represented in matrix form:

MT ~p =
1

2





|~a|2
|~b|2
|~c|2



 , (10)

where M is given by [~a ~b ~c]. Eq. (10) can be rewritten as

~p =
1

2
(MT )−1





|~a|2
|~b|2
|~c|2



=
1

2
M(MT M)−1





|~a|2
|~b|2
|~c|2



 . (11)

As illustrated in Fig. 2-(d), H is the orthocenter of

OABC. Here we denote the vector from O to H by ~h.

Based on the orthocenter property, the following relations

hold: ~a · (~h−~b) = ~b · (~h−~c) = ~c · (~h−~a) = 0, yielding the

following relations:

~a · ~h = ~b · ~h = ~c · ~h = k, (12)

where k is a nonzero constant. These relations can be

represented in matrix form:

MT~h =





k

k

k



 . (13)

(13) can be rewritten as:

~h = MG−1





k

k

k



 , (14)

where G is MT M (see (11)) given by

G =





|~a|2 k k

k |~b|2 k

k k |~c|2



 . (15)

Using (15), [k k k]T in (14) can be given by




k

k

k



=
1

2



G





1
1
1



−





|~a|2
|~b|2
|~c|2







 . (16)

Substituting (16) into (14) gives the following equation.

~h =
1

2
MG−1



G





1
1
1



−





|~a|2
|~b|2
|~c|2







 . (17)

Using (11), (17) is reduced to the form given by

~h =
1

2
(~a +~b + ~c) − ~p. (18)

From (18), the relation between ~p and ~h is obtained as

follows:
~h + ~p =

1

2
(~a +~b + ~c). (19)

Since ~p is identical to ~h in OABC, (19) is rewritten as

~h = ~p =
1

4
(~a +~b + ~c) = ~g. (20)

Based on the facts given above, the following properties

are understood. First, pct(t) can be regarded as H(t + 1).

Secondly,
−−→
OH (~g in (8)) in Fig. 2-(a) can be used to describe

the position vector of ri. Moreover, using (8) and (9), −−→ptipi

in Fig. 2-(a) is written as

−−→ptipi =
−−→
OH −−−−→ptipct = ~g − ~p. (21)
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As ~p in (20) overlaps with ~g, ri eventually converges into

one vertex of E
3
i . Thirdly,

√

α2
i + β2

i + γ2
i in (3) is |~ni| with

respect to △pn1pn2pn3. Since |~ni| is given by |−−−−→pn1pn2 ×
−−−−→pn1pn3| in △pn1pn2pn3, µi can be represented as

µi =

√
6

4
du

|−−−−→pn1pn2||−−−−→pn1pn3| sin(∠pn2pn1pn3)
. (22)

When ri converges into one vertex of E
3
i with du, µi

converges to 1√
2du

, where △pn1pn2pn3 in E
3
i becomes an

equilateral triangle.

C. Motion Control

ctp

ip

1np

3np

iθ

iφ

id

2np

Fig. 3. Motion control rules for individual robots

As shown in Fig. 3, let us consider the circumscribed

sphere of a regular tetrahedron pipn1pn2pn3 whose center

is pct and radius is dr. From the geometric properties given

above, we control the distance di from pi to pct and the

two internal angles θi and φi between −−−→pn1pi and −−−→pn2pi,

and between −−→pipct and −−−→pn3pct, respectively, to generate the

motion of ri.

First, di is controlled by the following equation:

ḋi(t) = −a(di(t) − dr), (23)

where a is a positive constant. The solution to (23) is given

by di(t) = |di(0)|e−at + dr, which converges exponentially

to dr as t approaches infinity. Secondly, θi is represented by

θi = cos−1 〈−−−→pn1pi,
−−−→pn2pi〉

|−−−→pn1pi||−−−→pn2pi| ,

where θi equals π
3

in a regular tetrahedron. To create the

desired angle θr, the following equation is used.

θ̇i(t) = b(θr − θi(t)), (24)

where b is a positive constant. The solution to (24) is given

by θi(t) = |θi(0)|e−bt + θr, which converges exponentially

to θr as t approaches infinity. Thirdly, φi is represented by

φi = cos−1 〈−−−→pipct, −−−−→pn3pct〉
|−−−→pipct||−−−−→pn3pct| ,

where cosφi equals − 1
3

in a regular tetrahedron. To create

the desired angle φr satisfying φi = cos−1(− 1
3
), the follow-

ing equation is used.

φ̇i(t) = c(φr − φi(t)), (25)

where c is a positive constant. The solution to (25) is given by

φi(t) = |φi(0)|e−ct + φr, which converges exponentially to

φr as t approaches infinity. Note that (23), (24), and (25) im-

ply that the trajectory of ri converges to an equilibrium state

xe = [dr θr φr]
T . We use Lyapunov theorem [15] to show the

convergence of motion to the state x = [di(t) θi(t) φi(t)]
T .

Let us consider the following scalar function:

fi(di, θi, φi) =
1

2
(di − dr)

2 +
1

2
(θr − θi)

2 +
1

2
(φr − φi)

2.

(26)

This scalar function is always positive definite except when

di 6= dr, θi 6= θr, and φi 6= φr . The derivative of the above

scalar function is given by

ḟi = −a(di − da)2 − b(θr − θi)
2 − c(φr − φi)

2,

which is negative definite. The scalar function is radially

unbounded, since it tends to infinity as |x| → ∞. Therefore,

xe is asymptotically stable, implying that ri reaches a vertex

of the desired regular tetrahedron. Now we show the con-

vergence of the algorithm for n robots. The 4-order scalar

function F4 is defined:

F4 =
4

∑

i=1

fi(di, θi, φi). (27)

It is straightforward to verify that F4 is positive definite and

Ḟ4 is negative definite. F4 is radially unbounded, since it

tends to infinity as t approaches infinity. Consequently, 4
robots move toward xe.

IV. NEIGHBOR SELECTION ALGORITHM

ALGORITHM-2 NEIGHBOR SELECTION (code executed by ri)

Function ϕconfiguration(Oi, pi)
1 pn1 := min

p∈Oi−{pi}
[dist(pi, p)]

2 pn2 := min
p∈Oi−{pi,pn1}

[dist(pn1, p) + dist(p, pi)]

3 pcs := centroid of △pipn1pn2

4 pn3 := min
p∈Oi−{pi,pn1,pn2}

[dist(pcs, p)]

(a) selection of rn1 and rn2 (b) selection of rn3

Fig. 4. Illustration of ALGORITHM-2

In order to form T
3
i , ri needs to select and interact with

three neighbors rn1, rn2, and rn3 from Oi. The first neighbor

rn1, whose position is denoted by pn1, is selected as the one

located the shortest distance away from ri. Next, as shown

in Fig. 4-(a), the second neighbor rn2, whose position is

pn2, is determined such that the length of the perimeter of

△pipn1pn2 is minimized. Here, we denote the centroid of

△pipn1pn2 by pcs. Then, as illustrated in Fig. 4-(b), the
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third neighbor rn3, whose position is pn3, is chosen such

that the distance between pcs and pn3 is minimized. The set

of neighbor positions Ni is the input to ALGORITHM-1.

V. CONVERGENCE BY THE SELF-CONFIGURATION

The self-configuration process is achieved using

ALGORITHM-1 and ALGORITHM-2, yielding a multitude of

regular tetrahedrons, denoted by
∑n

i=1 E
3
i . Specifically, ri

determines and changes its neighbors at each time, whereby

it continues to configure itself to be converging toward

the equilibrium state xe = [dr θr φr]
T . Without loss of

generality, the convergence to E
3
i can be analyzed based on

the concept of the minimal energy level. We use Lyapunov’s

theory with the scalar function given by

fsc,i =
∑

T
3

i

(dk − du)2 + fi, (28)

where fi is given in (26) and
∑

T
3

i
(dk − du)2 is defined as

the constant value associated with T
3
i at each time (see (1)).

A symmetric D3
i is said to be positive definite, if xT D3

i x > 0
for every nonzero x = [di(t) θi(t) φi(t)]

T [16]. Thus, from

(26), (28) is always positive definite except when di 6= dr,

θi 6= θr, and φi 6= φr. (If T
3
i is equal to E

3
i , it is easily

seen that
∑

T
3

i
(dk − du)2 reaches 0.) The derivative of (28)

is given by

ḟsc,i = ḟi = −a(di−da)
2−b(θr−θi)

2−c(φr−φi)
2. (29)

Eq. (29) is negative definite. Finally, the scalar function fs,i

is radially unbounded since it tends to infinity as |x| →
∞. Therefore, xe is asymptotically stable, implying that ri

reaches a vertex of E
3
i from an arbitrary T

3
i by (28) without

overlapping each other.

Next, the collective scalar function Fsc of a swarm of

robots is a nonzero function with the property that any

solution to the set of motion equations is closely related to a

set of equilibria for {ri|1 ≤ i ≤ n} and vice versa. Without

loss of generality, Fsc is a diminishing energy function. Now

we prove the convergence of the algorithm for a swarm of

n robots. The n-order scalar function Fsc is defined as

Fsc =

n
∑

i=1

fsc,i =

n
∑

i=1

∑

T
3

i

(dk − du)2 +

n
∑

i=1

fi. (30)

From (28), it is straightforward to verify that Fsc is pos-

itive definite and Ḟsc is negative definite. Fsc is radially

unbounded since it tends to infinity as t approaches infinity.

Consequently, a swarm of n robots converges into
∑n

i=1 E
3
i .

VI. SIMULATION RESULTS

To validate the effectiveness and scalability of the self-

configuration scheme, we performed extensive simulations.

We assumed that the radius of ri’s SB is 1.25 times du.

The self-configuration process terminates when the distances

between neighbors converge to du within a tolerance of 1%,

denoted by d1%.

Fig. 5 shows the process of how the four robots initially

randomly positioned converge into E
3
i over time, where

the individual positions and trajectories are plotted. Fig. 6

shows the inter-robot distance and angle variations among

neighbors according to the activation steps. Here, the distance

asymptotically converged to du that was set to 10 (unit) in

length, and the internal angles of three triangular faces that

meet at each vertex converged to 60 degrees. Fig. 7 shows

how µ changes according to du that was set to 10 and 14.14

(unit), respectively. µ converged to the desired values given

by (3) and (22).

Figs. 8, 9 and 10 respectively show that 10, 25, and 50

robots self-configure themselves into a network of regular

tetrahedrons. Through these simulations, it could be verified

that our proposed algorithms converge within a finite time,

and are scalable due to its distributed nature. Individual local

geometries interact with each other to reach a global equilib-

rium state in an autonomous manner. Fig. 11 shows distance

variations between ri and Ni during the self-configuration

process in Fig. 8. Regardless of changing their neighbors, a

swarm of robots could converge to the desired E
3
i . From a

practical point of view, individual robots interact with only

three neighbors, which ensures that their motion is minimally

affected by each other. To the best of our knowledge,

ours is the first solution to the 3 dimensional swarm self-

configuration problem. Other possible 3 dimensional self-

configuration approaches could employ a larger number of

neighbors. Accordingly, the computational load increases.

(a) (b)

(c) (d)

(e)

Fig. 5. Simulation result of local interactions among 4 robots ((a) initial
distribution, (b) 1 (sec.), (c) 4 (sec.), (d) d1%: 8 (sec.), (e) trajectories)

VII. CONCLUSIONS

In this paper, we addressed the 3 dimensional self-

configuration problem for a swarm of autonomous mobile

robots. We proposed a fully distributed geometric approach

whereby individual robots could be configured into a network
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Fig. 6. Distance/angle variations among neighbors during local interactions
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(a) µ with du = 10
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(b) µ with du = 14.14

Fig. 7. µ variation according to du during local interactions

(a) initial distribution (b) d1%: 31 (sec.)

Fig. 8. Simulation result of self-configuration for 10 robots

(a) initial distribution (b) d1%: 83 (sec.)

Fig. 9. Simulation result of self-configuration for 25 robots

(a) initial distribution (b) d1%: 155 (sec.)

Fig. 10. Simulation result of self-configuration for 50 robots

of regular tetrahedrons through local interactions. Specifi-

cally, robots were allowed to dynamically select and interact

only with three neighbors. It is believed to be a cost-effective

solution from a computational point of view. Collecting this

local behavior, the swarm as a whole could be deployed in

a 3 dimensional space. The convergence of the algorithm

was proved theoretically and verified through extensive sim-

step

di
st
an

ce

Fig. 11. Distance variations among neighbors during self-configuration in
Fig. 8

ulations. Our analysis and simulation results indicated that

the proposed self-configuration method can be applied to

the formation control of autonomous mobile robots in a

distributed and scalable way.
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