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Abstract— Most people believe SLAM is a complex nonlin-
ear estimation/optimization problem. However, recent research
shows that some simple iterative methods based on linearization
can sometimes provide surprisingly good solutions to SLAM
without being trapped into a local minimum. This demonstrates
that hidden structure exists in the SLAM problem that is yet to
be understood. In this paper, we first analyze how far SLAM
is from a convex optimization problem. Then we show that
by properly choosing the state vector, SLAM problem can be
formulated as a nonlinear least squares problem with many
quadratic terms in the objective function, thus it is clearer how
far SLAM is from a linear least squares problem. Furthermore,
we explain that how the map joining approaches reduce the
nonlinearity/nonconvexity of the SLAM problem.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been

investigated by robotic researchers for more than 10 years

[1]. Although many SLAM algorithms have been developed,

most of them treated SLAM as a high dimensional nonlin-

ear estimation/optimization problem. The sparseness of the

information matrix in different SLAM formulations is now

well understood and exploited thoroughly (e.g. [2][3][4]), but

the underlying structure of nonlinearity has not been fully

understood yet.

For point feature based SLAM problem, our initial in-

vestigation has shown some interesting phenomenon when

a simple Gauss-Newton algorithm is applied to solve the

SLAM as an optimization problem. For both the Victoria

Park data set [5] and the DLR-Spatial-Cognition data set

[6], the algorithm can converge with very poor initial val-

ues1. However, these “magic” convergence happen when

the covariances of observations and odometries are set to

be identity matrices but not for the original covariance

matrices. See Table I for details. Of course, the solution of

using identity covariance matrix and that using the original

covariance are (slightly) different, as shown in Figure 1.

It is well known that a high dimensional nonlinear op-

timization problem can have a lot of local minima and a

good initial value is critical for an optimization algorithm to
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TABLE I

CONVERGENCE OF GAUSS-NEWTON ALGORITHM FOR SLAM WITH

DIFFERENT INITIAL STATES

data set covariance odometry zero random

DLR changed to identity matrix Yes Yes No

DLR original Yes No No

VicPark changed to identity matrix Yes Yes Yes

VicPark original No No No

odometry: initial states from odometry/first observations
zero: initial states are all zeros
random: initial states are randomly given
For Victoria Park data set, the state contains 6898 poses and 299 features
For DLR data set, the state contains 3297 poses and 539 features
‘Yes’ means the algorithm converges to the correct solution
‘No’ means the algorithm does not converge to the correct solution

converge to the correct solution. On the other hand, linear

least squares problems have quadratic objective functions and

can be solved in one step without the need of a good initial

value. Thus, the above phenomenon shows that SLAM is a

very special nonlinear optimization problem that is close to

a linear least squares problem in some way.

This paper tries to explain how far SLAM is from a linear

least squares problem. We first perform some analysis on the

convexity of SLAM problem. Then we show that by using

the relative information as state vector, the quadratic part and

non-quadratic part are clearly distinguished in the objective

function. Moreover, using map joining, the quadratic part is

more significant as compared with the non-quadratic part.

The paper is organized as follows. Section II provides

some notations used in this paper and states the feature

based full SLAM problem. Section III explains the details of

the traditional least squares SLAM formulation. In Section

IV, the convexity of the traditional least squares SLAM is

analyzed. Section V proposes the new least squares SLAM

formulation using relative state vector. In Section VI, the

advantages of using map joining strategy is explained. Sec-

tion VII discusses the related work. Finally, Section VIII

concludes the paper.

II. PRELIMINARIES

In this paper, different coordinate frames need to be clearly

distinguished. So some special notations are used.

A. Notations

Suppose there is a sequence of 2D robot poses

r0, r1, r2, · · · and a number of 2D point features f1, f2, · · ·
in the environments. Normally the first robot pose (pose r0)

is chosen as the origin of the global coordinate frame.
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(a) The Victoria Park data set: 6898 vehicle poses and 299
feature positions. Circle – feature estimate using identity co-
variance, dot – feature estimate using original covariance
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(b) The DLR data set: 3297 robot poses and 539 feature
positions. Circle – feature estimate using identity covariance,
dot – feature estimate using original covariance

Fig. 1. The least squares SLAM results with original and identity
covariance matrix

The following notations are used in this paper to make

clear what coordinate frames are used.

Xri

fj
= (xri

fj
, yri

fj
)T – the x, y position of feature fj in the

(coordinate) frame defined by pose ri.

Xri
rj

= (xri
rj

, yri
rj

)T – the x, y position of robot pose rj in

the (coordinate) frame defined by pose ri.

φri
rj

– the orientation of pose rj in the (coordinate) frame

defined by pose ri.

Rri
rj

– the rotation matrix of the pose rj in the (coordinate)

frame defined by pose ri.

Note that Xri

fj
and Xri

rj
are both two dimensional vectors.

φri
rj

is a scalar and Rri
rj

is a two by two orthogonal matrix.

Some basic equations describing the relationship among

the above variables are given below.

For any i, j, k,

Xri

fk
= Xri

rj
+ Rri

rj
X

rj

fk
. (1)

Xri
rk

= Xri
rj

+ Rri
rj

Xrj
rk

. (2)

Rri
rk

= Rri
rj

Rrj
rk

. (3)

φri
rk

= φri
rj

+ φrj
rk

. (4)

Rri
rj

= R(φri
rj

) =

[

cos φri
rj

− sin φri
rj

sinφri
rj

cos φri
rj

]

. (5)

B. Point feature based SLAM problem

Suppose there are N point features f1, · · · , fN that are

observed from a sequence of p+1 robot poses r0, r1, · · · , rp

with the total number of observations m. Figure 2 shows an

example of this scenario with N = 3, p = 4, and m = 5.

In SLAM, there are two kinds of information. Odometry

information is the relative pose between two consecutive

poses. Observation information is the relative position of

the observed feature with respect to the pose where the

observation is made.

In this paper, we use Zi
j to denote the observation made

from pose ri to feature fj . We use O
j−1
j (1 ≤ j ≤ p) to

denote the odometry information between pose rj−1 and

pose rj , PZi
j

and POj are the corresponding covariance

matrices of the observation and odometry noises. Here the

noises are assumed to be zero-mean Gaussian.

In Figure 2, there are 4 odometries and 5 observations.

Using the notations in Section II-A, odometries are the

measurements of

(xr0
r1

, yr0
r1

, φr0
r1

), (xr1
r2

, yr1
r2

, φr1
r2

), (xr2
r3

, yr2
r3

, φr2
r3

), (xr3
r4

, yr3
r4

, φr3
r4

)
(6)

Observations are the measurements of:

(xr0

f1
, yr0

f1
), (xr1

f2
, yr1

f2
), (xr2

f2
, yr2

f2
), (xr3

f3
, yr3

f3
), (xr4

f1
, yr4

f1
) (7)

r0

r3

f2

r4

f1

r1

x

y

f3

r2

Fig. 2. The SLAM problem with 5 poses, 3 features and 5 observations

The full least squares SLAM formulation [3] is to use

the odomety and observation information to estimate all the

robot poses and all the feature positions.

III. TRADITIONAL LEAST SQUARES SLAM

A. State vector

Traditional least squares SLAM uses the robot poses and

the feature positions with respect to robot pose r0 as the state

3012
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(a) The absolute state vector used in traditional least squares
SLAM

r0

r4 r3

r1

f1 f2

x

y

f3

r2

(b) The relative state vector proposed in this paper

Fig. 3. Different state vectors can be used in SLAM

vector. Using the notations in Section II-A, the state vector

is 2

X = (Xr0
r1

, φr0
r1

, · · · ,Xr0
rp

, φr0
rp

,Xr0

f1
, · · · ,Xr0

fN
). (8)

An example of the state vector is illustrated in Figure 3(a).

B. Least squares formulation

The full SLAM formulation is to minimize [3]

F (X) =

p
∑

j=1

(Oj−1
j − HOj(X))T P−1

Oj (Oj−1
j − HOj(X))

+
∑

i,j

(Zi
j − HZi

j (X))T P−1
Zi

j

(Zi
j − HZi

j (X))

(9)

where the state variable X is given in (8), O
j−1
j (1 ≤ j ≤ p)

are odometries, Zi
j are observations, and POj and PZi

j
are

the corresponding covariance matrices.

In the above least squares SLAM formulation, HZi
j (X)

and HOj(X) are the corresponding functions relating Zi
j and

O
j−1
j to the state X , most of them are nonlinear functions.

2To simplify the notation, sometimes the transpose is omitted.

C. Odometry information function HOj(X)

From the basic equations (2), (4), and (5), the odometry in-

formation function is a function of two poses (Xr0
rj−1

, φr0
rj−1

)
and (Xr0

rj
, φr0

rj
) and is given by

HOj(X) =

[

X
rj−1
rj

φ
rj−1
rj

]

=

[

(R(φr0
rj−1

))T (Xr0
rj

− Xr0
rj−1

)

φr0
rj

− φr0
rj−1

]

.

(10)

D. Observation information function HZi
j (X)

The observation is a function of one pose (Xr0
ri

, φr0
ri

) and

one feature position Xr0

fj
and is given by

HZi
j (X) = Xri

fj
= (R(φr0

ri
))T (Xr0

fj
− Xr0

ri
). (11)

IV. HOW FAR IS SLAM FROM BEING CONVEX?

A. Definition of convex function

A function f : R
n → R is convex, if for any x, y ∈ R

n,

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y), ∀λ ∈ (0, 1). (12)

It is important that a convex function cannot have local

minima, since otherwise the connection between two of them

would be even smaller by (12).

The surprising convergence result in Table I motivates us

to investigate the convexity of the SLAM problem. Figure

4 illustrates the function F (λX + (1 − λ)Y ) in (9) for five

random pairs of states X,Y with λ ranging from 0 to 1. The

figures indicate that the function F (X) in (9) is not far from

being convex for both the Victoria Park data set and DLR

data set.

B. Convexity analysis of a single feature observation

We consider a single feature observation Z
j
i and the

corresponding term in (9). We assume PZi
j

= I and define

δ = Xr0

fj
− Xr0

ri
(13)

and omit the indices for brevity. From (11), one term of the

objective function related to observation Z is

f(φ, δ) = [Z − R(φ)T δ]T [Z − R(φ)T δ] (14)

= |Z − R(φ)T δ|2 (15)

= |R(φ)Z − δ|2 (16)

This form is remarkable, because unlike the original form

it contains no product of state variables and the only non-

linearity comes from the sines and cosines in R(φ). This

simplification works only for spherical covariance, which

explains, why these apparently help convergence in Table

I and TORO [7].

Now we denote

φ = φ0 + φ̃ (17)

where φ0 is the estimated value of φ (e.g. obtained from

odometry) and φ̃ is the error on the estimation. Then we

have

f(φ̃, δ) = |R(φ̃)R(φ0)Z − δ|2 = |R(φ̃)Ẑ − δ|2 (18)

3013
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(a) The Victoria Park data with
identity covariance matrix (state di-
mension 21292)
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(b) The Victoria Park data with
original covariance matrix (state di-
mension 21292)
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(c) The DLR data with identity
covariance matrix (state dimension
10969
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(d) The DLR data with original
covariance matrix (state dimension
10969)

Fig. 4. Near convexity of the SLAM problem: F (λX +(1−λ)Y ) in (9)
for five random pairs of states X, Y with λ ranging from 0 to 1.

with Ẑ = R(φ0)Z. Note here that Ẑ is the relative posi-

tion (approximately) transferred into the coordinate system

defined by r0.

Further denote Ẑ = [zx, zy]T , δ = [δx, δy]T , then we get

a function of three variables

f(φ̃, δx, δy) = |R(φ̃)Ẑ − δ|2 (19)

= (zx cos φ̃ − zy sin φ̃ − δx)2 (20)

+(zx sin φ̃ + zy cos φ̃ − δy)2 (21)

It is easy to prove that the function f(φ̃, δx, δy) is not

convex. But it can be seen clearly that when φ̃ (the error of

robot orientation) is close to zero, the function is close to a

quadratic thus convex function.

Moreover, when considering the sum of the terms, the

non-convexity of the feature observations can probably be

compensated by convexity in other terms of (9) in particular

in the linear orientation part of odometry (10). More work

is necessary to further investigate the near-convexity of the

objective function (9).

V. A NEW STATE VECTOR FOR LEAST SQUARES SLAM

In this paper, we propose to use a state vector as “relative”

as possible in SLAM. The new state vector is given by

Xrel = (Xr0
r1

, φr0
r1

,Xr1
r2

, φr1
r2

, · · · ,X
rp−1
rp , φ

rp−1
rp ,

X
rm1

f1
, · · · ,X

rmN

fN
).

(22)

Here rmj
(1 ≤ j ≤ p) is the robot pose when the feature fj

is first observed. Note here that it is possible that rmi
= rmj

for some i 6= j. An example of the state vector is illustrated

in Figure 3(b).

A. Least squares formulation

Using the new state vector, the least squares problem

becomes to minimize

p
∑

j=1

(Oj−1
j − H

Oj
rel(Xrel))

T P−1
Oj (Oj−1

j − H
Oj
rel(Xrel))

+
∑

i,j

(Zi
j − H

Zi
j

rel(Xrel))
T P−1

Zi
j

(Zi
j − H

Zi
j

rel(Xrel))

(23)

where Xrel is defined in (22). For this formulation, all the

functions H
Oj
rel(Xrel) and part of the functions H

Zi
j

rel(Xrel)
are simple linear functions. Using this new formulation,

the quadratic part and non-quadratic part of the objective

function are clearly distinguished.

B. Odometry information function H
Oj
rel(Xrel)

Since relative pose (X
rj−1
rj , φ

rj−1
rj ) is part of the state

vector, the odometry function is a very simple linear function

H
Oj
rel(Xrel) = (Xrj−1

rj
, φrj−1

rj
). (24)

C. Observation function H
Zi

j

rel(Xrel) for first observations

When the feature is observed first time, the observation

function is also a very simple linear function. In fact, for

observation made from rmj
to fj , the observation function

is

H
Z

mj

j

rel (Xrel) = X
rmj

fj
. (25)

D. Observation function H
Zi

j

rel(Xrel) for subsequent obser-

vations

When the feature is observed second (or more) time, the

observation function depends on when the same feature was

observed first time. It is a function of a number of odometry

and its first observation given by

H
Zi

j

rel(Xrel) = Xri

fj
= (R(φ

rmj
ri ))T (X

rmj

fj
− X

rmj
ri ) (26)

where

φ
rmj
rmj+2 = φ

rmj
rmj+1 + φ

rmj+1

rmj+2

...

φ
rmj
ri = φ

rmj
rmj+1 + φ

rmj+1

rmj+2 + · · · + φ
ri−2
ri−1 + φ

ri−1
ri

(27)

and

X
rmj
ri = X

rmj
rmj+1 + R(φ

rmj
rmj+1)X

rmj+1

rmj+2

+R(φ
rmj
rmj+2)X

rmj+2

rmj+3

+ · · ·

+R(φ
rmj
ri−1)X

ri−1
ri .

(28)

Using the fact that R(θ1 + θ2) = R(θ1)R(θ2), we have

X
rmj
ri

= X
rmj
rmj+1 + R(φ

rmj
rmj+1)[X

rmj+1

rmj+2 + R(φ
rmj+1

rmj+2)

·(X
rmj+2

rmj+3 + · · · + R(φ
ri−2
ri−1)X

ri−1
ri )].

(29)
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E. Pros and cons of the new state vector

The only nonlinear part of the objective function in (23)

is the subsequent observations to features as shown in (26).

The two major advantages by using relative state vector

as comparing to using absolute state vector are: (i) the

odometry information function is completely linear; (ii) the

nonlinearity of the observation function now depends on the

accumulated robot orientation error from the robot pose when

the feature is first observed to the current pose, instead of

the accumulated robot orientation error form the first pose to

the current pose. So the accumulated error and the potential

nonlinearity/nonconvexity is reduced.

The side effect of this new state vector is that the in-

formation matrix is not as sparse as that of the original

formulation, especially when there are a lot of loop closure

in the robot trajectory. This may increase the computational

cost of solving the least squares problem (23).

VI. WHAT IS THE ADVANTAGE OF USING MAP JOINING?

Recently we have shown in [11] that map joining problem

can be formulated as an optimization problem where each

local map is regarded as an integrated observation. We will

show that by doing so, the nonlinearity involved is reduced

significantly.

A. Reduced nonlinearity in local map building

When small local maps are built by least squares approach,

the nonlinearity involved is less than that of building a large

map. This is due to the smaller accumulated error of the

robot poses as shown φr0
ri

in (11) and φ
rmj
ri in (26).

B. Map joining using absolute state vector

Suppose there are k local maps. The state vector of Iter-

ative Sparse Local Submap Joining (I-SLSJF) [11] contains

all the feature positions and robot end poses of each local

map:

Xjoin = (Xr0
r1e

, φr0
r1e

, · · · ,Xr0
rke

, φr0
rke

,Xr0

f1
, · · · ,Xr0

fN
) (30)

where rje is the robot end pose of local map j (1 ≤ j ≤ k).

Suppose local map j is given by (X̂L
j , PL

j ) as in a

traditional EKF SLAM. Also suppose the features involved

in local map j are fj1, · · · , fjn, then the local map state

estimate X̂L
j can be regarded as an observation of the true

relative positions from the robot start pose Xr0
r(j−1)e

, φr0
r(j−1)e

to the features Xr0

fj1
, · · · ,Xr0

fjn
and the robot end pose

Xr0
rje

, φr0
rje

. That is,

X̂L
j = Hj(Xjoin) + wj (31)

where

Hj(Xjoin) =

















R(φr0
r(j−1)e

)(Xr0
rje

− Xr0
r(j−1)e

)

φr0
rje

− φr0
r(j−1)e

R(φr0
r(j−1)e

)(Xr0

fj1
− Xr0

r(j−1)e
)

...

R(φr0
r(j−1)e

)(Xr0

fjn
− Xr0

r(j−1)e
)

















and wj is the zero-mean Gaussian “observation noise”

whose covariance matrix is PL
j (when j = 1, Xr0

r(j−1)e
=

[0, 0]T , φr0
r(j−1)e

= 0).

So the problem of fusing local maps 1 to k is to estimate

the global state Xjoin using all the local map information

(31) for j = 1, · · · , k. This problem can be formulated as a

least squares problem. That is, finding Xjoin to minimize

k
∑

j=1

(X̂L
j − Hj(Xjoin))T (PL

j )−1(X̂L
j − Hj(Xjoin)). (32)

C. Map joining using relative state vector

Relative state vector can also be used in the map joining

step. The state vector is given by

Xjoin,rel = (Xr0
r1e

, φr0
r1e

,Xr1e
r2e

, φr1e
r2e

, · · · ,X
r(k−1)e

rke ,

φ
r(k−1)e

rke ,X
rm1e

f1
, · · · ,X

rmN e

fN
)

(33)

where rmje is the robot end pose of local map mj if fj is

first observed in local map mj + 1.

Suppose fj1, · · · , fjl are first observed in some previous

local maps while fj(l+1), · · · , fjn are first observed in local

map j, then the local map information can be expressed as

X̂L
j = Hj,rel(Xjoin,rel) + wj (34)

where

Hj,rel(Xjoin,rel) =

































X
r(j−1)e

rje

φ
r(j−1)e

rje

R(φ
rmj1

e

r(j−1)e
)(X

rmj1
e

fj1
− X

rmj1
e

r(j−1)e
)

...

R(φ
rmjl

e

r(j−1)e
)(X

rmjl
e

fjl
− X

rmjl
e

r(j−1)e
)

X
r(j−1)e

fj(l+1)

...

X
r(j−1)e

fjn

































(35)

and wj is the zero-mean Gaussian “observation noise” whose

covariance matrix is PL
j .

So the problem of fusing local maps 1 to k is to find the

state Xjoin,rel to minimize

k
∑

j=1

(X̂L
j −Hj,rel(Xjoin,rel))

T (PL
j )−1(X̂L

j −Hj(Xjoin,rel)).

(36)

D. Advantages of map joining

Using map joining, not only the number of poses but

also the degree of nonlinearity are significantly reduced.

Especially when the relative state vector is used, it can be

seen from (35) that the non-quadratic part is very small (only

for fj1 to fjl
). This significantly reduce the nonconvexity of

the problem. Moreover, the density of non-zero elements in

the information matrix is small as compared with that of a

single map SLAM using relative state vector, because the

loop closing only take place at the local map level.
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VII. RELATED WORK AND DISCUSSIONS

A few years back, the work by Olson et. al [8] surprised

many SLAM researchers including us. How come stochastic

gradient approach works so well for SLAM? The Tree-based

network optimizer (TORO) algorithm by Grisetti et. al [7]

further demonstrated very promising results where very large

scale problems can be solved very efficiently without the

need of good initial values. Especially when the covariance

matrix of the relative pose is close to spherical [9]. This made

us more curious about the special underlining structure of

SLAM. SLAM must be a very special optimization problem!

Rizzini is probably another researcher who has noticed this

fact and investigated into it [12]. In his work, he focused on

the trajectory based SLAM and aimed at finding closed-form

solutions of stationary points (local minima). In our work,

we are trying to prove the near convexity of feature based

SLAM problem, which we believe to be more general than

the trajectory based SLAM problem.

The initial analysis on the convexity in this paper confirms

that the accumulated orientation error is a key factor that

governing the nonlinearity and nonconvexity of the SLAM

problem. This is coincide with some recent research [13][14]

where robot orientation error is shown to be the main cause

of SLAM inconsistency. The benefit of having spherical

covariances is due to the cancellation of highly nonlinear

terms introduced by R(φ) as shown in (16). This explains

why TORO can only performs well and why both the

Victoria Park data and the DLR data set have the “magic”

convergence property, all with spherical covariances.

The use of relative state vector in SLAM is not new.

For example, it is shown in [9] that using a relative state

vector makes the proposed constraint network optimization

algorithm perform extremely well. Relative state vector has

also been used in D-SLAM [16]. In [17], relative robot pose

estimate is proposed to be used as a performance metric

to compare different trajectory based SLAM algorithm. So

why not directly using relative poses as state vector in the

estimation/optimization?

In [10], SLAM was described as “Certainty of relations

despite uncertainty in positions”. If relative state vector

(relation) is used, then the SLAM problem becomes more

“certain”. After a good and consistent estimate of the “rela-

tions” is obtained, to compute the “positions” is trivial.

Map joining has already been demonstrated to be an effi-

cient strategy for large-scale SLAM [4]. It is also commented

that map joining can reduce linearization error [15]. This

paper further confirms this by showing how the nonlinearity

and nonconvexity is reduced by using map joining.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper provides some evidence of the underlining spe-

cial structure of feature based SLAM problems. Some initial

analysis on the convexity of SLAM problem is performed.

The non-quadratic terms of SLAM optimization problem is

further clearly distinguished by using a relative state vector.

Moreover, how map joining can reduce the nonconvexity and

nonlinearity is clearly explained.

The results in this paper clearly show that SLAM is a

special optimization problem. The analysis of the convexity

and nonlinearity helps to explain some unbelievable results

in SLAM. Further more rigorous investigation of the un-

derlining special structure in SLAM is necessary and will

benefit SLAM community significantly. For example, more

efficient and reliable SLAM algorithms could be developed

by using the special structure of the problem. The work in

these directions is underway.
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