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Abstract— Central pattern generator (CPG) is used to control
the locomotion of vertebrate and invertebrate animals, such as
walking, running or swimming. It consists of biological neural
networks that can produce coordinated rhythmic signals by
using simple input signals. In this paper, a full-body joint
trajectory generator is proposed for stable bipedal walking
by using an evolutionary optimized CPG. Sensory feedback
pathways are proposed in the CPG structure, which uses
force sensing resistor (FSR) signals. In order to optimize the
parameters of CPG, quantum-inspired evolutionary algorithm
is employed. Then, controller is developed to control the position
of both ankles and pelvis and the pitching angles of shoulders.
The proposed trajectory generator controls the position of the
center of pelvis along lateral direction, and the pitching angle
of both shoulders in addition to the position of both ankles
for stable biped locomotion. The stability of biped locomotion
along lateral direction is improved by controlling the position
of the center of pelvis along lateral direction. To reduce yawing
momentum, the pitching angle of both shoulders are controlled.
The effectiveness is demonstrated by simulations with the
Webot model of a small-sized humanoid robot, HSR-IX and
real experiments with HSR-IX.

I. INTRODUCTION

In spite of the complexity of high dimensional systems,
many humanoid robots have been developed in these days
and their performance has been very much improved [1]-[4].
Despite the improvement in hardware of humanoid robots,
their control algorithms still need to be improved further
to perform a practical task. In this regard, research on
developing robust walking patterns of humanoid robots plays
one of important roles in this field.

There are two typical approaches to generate robust walk-
ing patterns of humanoid robots: dynamic model based
approach and biologically inspired approach. The former
derives the equations of motion, which are utilized from
mathematical model of robot, in the same way of con-
ventional manipulator control [5], [6]. In the latter, one of
popular schemes is to use central pattern generator (CPG).
CPG consists of biological neural networks, which can
endogenously produce multidimensional rhythmic signals.
CPG is found both in vertebrate and invertebrate animals
for the control of locomotion such as walking, running or
swimming [7]-[9].

8-link simulated planar biped model based on the CPG
was developed to generate each joint torque of humanoid
robot’s lower body [10], [11]. However, the walking pattern
algorithm based on the CPG has two major problems. Firstly,
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it requires much effort to generate appropriate oscillation
signals for bipedal locomotion. To overcome this difficulty,
the scheme which controls tip positions of legs in the
Cartesian coordinate system, instead of trajectories of each
joint, was presented [12]. Also, coupled adaptive oscillators,
which can learn arbitrary periodic signals in a supervised
learning framework, were suggested [13]. The first method
is not sufficient to satisfy stable bipedal locomotion in 3D
space, where the second method requires long time to learn
involved parameters. The second major problem is that the
walking pattern algorithm based on CPG is difficult to assign
appropriate parameters for feedback pathways in neural
oscillators. Thus, genetic algorithm or reinforcement learning
were employed to optimize the involved parameters in neural
oscillators [14], [15]. However, these methods require a great
number of iterations to optimize parameters.

This paper proposes a full-body joint trajectory generation
for stable bipedal locomotion based on evolutionary CPG.
Neural oscillators for the CPG are developed to generate
rhythmic signals. A controller is developed to control the
position of both ankles and pelvis and the pitching angles of
shoulders in Cartesian coordinate system using the CPG. It
is easy to set up the involved parameters of the CPG for gen-
eration of appropriate output signals for bipedal locomotion.
The proposed scheme controls the center position of pelvis
along the lateral direction and the pitching angle of shoulders
in addition to the position of ankles along the sagittal and
vertical directions for stable bipedal locomotion in 3D space.
Controlling the center position of pelvis along the lateral
direction improves lateral stability, whereas controlling the
pitching angle of shoulders reduces yawing momentum. The
body posture for sensory feedback is obtained by using the
signals of force sensing resistor (FSR) sensors attached to
the sole of foot. In order to optimize the parameters of CPG,
quantum-inspired evolutionary algorithm (QEA) is employed
[16]. Effectiveness of the proposed scheme is demonstrated
by computer simulations with the Webot model of a small-
sized humanoid robot, HSR-IX and by real experiments with
HSR-IX developed in the RIT Lab., KAIST.

This paper is organized as follows: In Section II, the neural
oscillator is introduced to generate rhythmic signals and the
evolutionary CPG is proposed. In Section III, simulation
and experiment results are presented and finally concluding
remarks follow in Section IV.

II. CPG-BASED CONTROL SCHEME

This section presents the proposed CPG-based control
scheme, which consists of neural oscillators, for bipedal
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locomotion. Then, the controller is developed to generate
position trajectories of both ankles and the center of pelvis,
and swinging trajectories of arms using the CPG. The body
posture for sensory feedback is obtained using signals of
FSR sensors attached to the sole of foot. The CPG has open
parameters and they are optimized by the quantum-inspired
evolutionary algorithm.

A. Neural Oscillator

The neural oscillator is biologically inspired to generate a
rhythmic signal, which is defined as follows [17], [18]:

τ u̇i = −ui −
N∑
j=1

wijoj − βvi + u0 + Feedi (1)

τ ′v̇i = −vi + oi (2)
oi = max(0, ui) (3)

where ui is the inner state of ith neuron, vi is the self-
inhibition state of ith neuron, u0 is the input signal, oi is
the output signal, wij is the connecting weight between ith
and jth neurons, τ and τ ′ are time constants, β is the weight
of self-inhibition, and Feedi is the sensory feedback signal
which is necessary for stable bipedal locomotion. Note that
u0, τ , τ ′ and wij are constant parameters. τ and τ ′ have
influence on the shape and frequency of output signal, u0

affects the output amplitude and wij determine the phase
difference between ith and jth neurons.

B. Application to Bipedal Locomotion of CPG

In the previous researches on CPG-based bipedal loco-
motion control, the controller generates each joint’s torque
or trajectory [10], [11], [13]. However, it is difficult to set
the parameters of neural oscillators and the initial states that
generate appropriate shape and frequency of output signal
for bipedal locomotion. It is also difficult to design feedback
pathways in the CPG. To solve these problems, in this paper,
a controller is designed to generate the position trajectories
of ankles and the center of pelvis in the Cartesian coordinate
system, and swing trajectories of arms. The proposed method
is simple to set up connecting weights in neural oscillators
and the initial states of neurons, and to modify the step length
or height. The controller is provided to control the positions
of ankles and the center of pelvis and the pitching angle of
shoulders.

The controller is provided to control the positions of left
and right ankles along the sagittal direction as follows:

PLX
= −AX(o1 − o2) (4)

PRX
= AX(o1 − o2) (5)

where PLX
and PRX

are the distance from the center of
pelvis to left and right ankles, respectively, along the sagittal
direction (Fig. 1(a)). AX is the amplitude scaling factor.
By the above equations, the step length of humanoid robot
becomes AX .
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Fig. 1. The position of both ankles. (a) Along the sagittal direction. (b)
Along the vertical direction.

The controller is provided to control the positions of left
and right ankles along the vertical direction as follows:

PLZ = Zc −AZ(o3 − o4) (6)
PRZ

= Zc +AZ(o3 − o4) (7)

where PLZ and PRZ are the distance from the center of
pelvis to left and right ankles, respectively, along the vertical
direction (Fig. 1(b)). Similarly, AZ is the amplitude scaling
factor. Note that the step height is determined as AZ . Zc is
the offset factor, which is equivalent to the height of pelvis
when the humanoid robot is in double support phase.

The projected ankle trajectories on X-Z plane can be
approximated as semi-ellipsoid. Thus, the desired phase dif-
ference between ankle’s vertical and horizontal oscillations
should be π/2 [12]. If bipedal locomotion is only simulated
in 2D space, it is sufficient to consider positions along
the sagittal and the vertical directions for stable bipedal
locomotion. In 3D space, however, positions along the lateral
direction in addition to sagittal and vertical directions have
to be considered for stable bipedal locomotion. Therefore,
position control of the center of pelvis along the lateral
direction should be added to the controller. The following
controller is provided to control the center position of pelvis
along the lateral direction:

PCOPY = AY (o5 − o6) (8)

where PCOPY
is the distance between the center of pelvis

and the center position of both ankles along the lateral
direction (Fig. 2). In order to make a humanoid robot stable
along the lateral direction, the lateral position of the center
of pelvis should be always maintained to be the position
of supporting leg. However, this condition is practically
impossible because supporting leg changes periodically. To
solve this problem, the distance between the supporting
leg and the center of pelvis along the lateral direction is
controlled using a neural oscillator.

When humanoid robot is double support, the center posi-
tion of pelvis is given as the center position of both ankles
along the lateral direction. When PZ increases, the distance
between the center of pelvis and the supporting leg decreases
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Fig. 2. The position of the center of pelvis along the lateral direction.
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Fig. 3. The pitching angle of both shoulders.

such that PCOPY
increases. When PZ is maximum, the

distance between the center of pelvis and the supporting leg
becomes minimum, which makes PCOPY

maximum as well.
On the other hand, when PZ decreases, the distance between
the center of pelvis and the supporting leg increases such
that PCOPY

decreases. Consequently, the phase difference
between PZ and PCOPY

becomes zero.
When walking speed increases, humanoid robot may slip

due to yawing moment. To compensate for the yawing
moment, arm swinging motion should be provided. The
following controller is to control the pitching angles of left
and right shoulders:

θL = Aθ(o7 − o8) (9)
θR = −Aθ(o7 − o8) (10)

where θL and θR are the pitching angle of left and right
shoulders, respectively (Fig. 3). The resulting yawing mo-
ment can be approximated as follows:

|T | = |mLDLẍL + JP θ̈P +mPDP ẍP

+mADA1ẍA1 −mADA2ẍA2| (11)

where mL, mP and mA are the mass of each leg, body
and each arm, respectively, ẍL, ẍP , ẍA1 and ẍA2 are the
acceleration of swing leg, body, and each arm, respectively,
along sagittal direction, θ̈P is the yawing angle acceleration
of body and DL, DP , DA1 and DA2 are the distance of
swing leg, body, and each arm, respectively, and supporting
leg along lateral direction (Fig. 4). |xL| and |xp| are defined
as |2AX(o1 − o2)| and |AX(o1 − o2)|, respectively. Then,
ẍP = 0.5ẍL, and ẍA2 = −ẍA1, as θL = −θR. Accordingly,
the yawing moment can be approximated as

|T | = |ẍL(mLDL + 0.5mPDP ) + JP θ̈P

+mAẍA1(DA1 +DA2)|. (12)
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Fig. 4. The yawing moment.
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Fig. 5. The neural oscillator.

Note that when ẍL increases, ẍA1 decreases and also when
ẍL decreases, ẍA1 increases. Thus, as the phase difference
of ẍA1 and ẍA1 is π, the phase difference of Px and θArm

becomes π.
Neural oscillators are designed for stable bipedal locomo-

tion as shown in Fig. 5 and the connecting weights are set to
satisfy the phase difference conditions derived in this section
as shown in Table. I.

C. Sensory Feedback Design

Sensory feedback pathways are designed to maintain hu-
manoid robot’s balance and to prevent it from falling down
to the ground. To maintain the balance, information related
to humanoid robot’s body posture is needed such that four
FSR sensors are attached to the sole of each foot. The
body posture along the vertical direction is obtained using
the difference between left foot’s vertical reaction force,
FL, and right foot’s vertical reaction force, FR. The body
posture along the sagittal direction can be obtained using
FLf

−FLb
and FRf

−FRb
, where FLf

, FRf
, FLb

and FRb
are

left and right foot’s front and back vertical reaction forces,
respectively. The body posture along the lateral direction is
obtained using FLl

− FLr and FRl
− FRr , where FLl

, FRl
,

FLr
and FRr

are left and right foot’s left and right vertical
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TABLE I
CONNECTING WEIGHTS

w1,2 1.5 w2,1 1.5 w3,4 1.5 w4,3 1.5
w5,6 1.5 w6,5 1.5 w7,8 1.5 w8,7 1.5
w1,4 0.5 w4,1 0.5 w2,3 0.5 w3,2 0.5
w5,8 0.5 w8,5 0.5 w6,7 0.5 w7,6 0.5
w1,6 0.5 w5,1 0.5 w5,2 0.5 w2,6 0.5
w3,7 0.5 w8,3 0.5 w8,4 0.5 w4,7 0.5

reaction force, respectively.
The sensory feedback pathways are defined as follows:

Feed1 = k1((FLf
− FLb

)− (FRf
− FRb

)) (13)
Feed2 = −Feed1 (14)
Feed3 = k2(FL − FR)

+k3((FLl
− FLr ) + (FRl

− FRr )) (15)
Feed4 = −Feed3 (16)
Feed5 = k4(FL − FR)

+k5((FLl
− FLr ) + (FRl

− FRr )) (17)
Feed6 = −Feed5. (18)

Since Feed1 and Feed2 modulate the position of both ankles
and body along the sagittal direction, (FLf

−FLb
) and (FRf

−
FRb

), which are related to the body posture along the sagittal
direction, are considered in (13) and (14), . Feed3 and Feed4
modulate the position of both ankles and body along the
vertical direction, so (FL−FR), which is related to the body
posture along the vertical direction, are considered in (15)
and (16). Feed5 and Feed6 modulate the position of the
center of pelvis along the lateral direction, so (FLl

− FLr )
and (FRl

−FRr ), which are related to the body posture along
the lateral direction, are considered in (17) and (18). Also
(o3−o4) and (o5−o6) are in phase, so (Feed3−Feed4) and
(Feed5 − Feed6) are satisfied in phase. Therefore, (FLl

−
FLr ) and (FRl

− FRr ) should be considered in calculating
Feed3 and Feed4. Similarly, also (FL−FR) should be also
considered in calculating Feed5 and Feed6.

D. Evolutionary Optimization for CPG algorithm

The proposed CPG controller has 11 parameters which
consist of amplitude and feedback scaling factors and time
constants. In this paper, these parameters are optimized by
quantum-inspired evolutionary algorithm (QEA) [16]. QEA
can explore the search space with a smaller number of
individuals and exploit the search space for a global solution
within a short span of time. QEA is based on the concept
and principles of quantum computing, such as the quantum
bit and the superposition of states.

The key objectives in optimizing the parameters are to
make the humanoid robot approach the goal as quickly as
possible and to maintain its balance as stable as possible.
Considering these objectives, the objective function is de-
fined as follows:
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Fig. 6. Humanoid robot. (a) HSR-IX. (b) Configuration.

f =
kxT1

d|t=T1

+ ky

T1∑
T=0

|Perr[T ]|

+kθ

T1∑
T=0

|θerr[T ]|+BP (19)

where T1/d|t=T1 is the inverse proportion to velocity of
bipedal locomotion for T1,

∑T1

T=0 |Perr[T ]| is the sum
of position error along the lateral direction for T1, and∑T1

T=0 |θerr[T ]| is the sum of angle error along the yawing
direction for T1. kx, ky and kθ are constants. The first term
corresponds to the objective function for fast bipedal locomo-
tion. The second term corresponds to the objective function
for decreasing position error along the lateral direction. The
third corresponds to the objective function for decreasing
pelvis angle error along the yawing direction. The last is
the penalty which is to be given if humanoid robot loses its
balance and collapses, where BP is assigned a priori as a
constant value.

III. SIMULATIONS AND EXPERIMENT

The effectiveness of the proposed algorithm was demon-
strated by computer simulations with the Webot model of a
small sized humanoid robot, HSR-IX and by real experiment
with HSR-IX (Fig. 6(a)) [4]. HSR-IX is the latest one of
HSR-series. HSR is a small-sized humanoid robot that has
been continuously undergoing redesign and development in
RIT Lab, KAIST since 2,000. Its height and weight are
52.8cm and 5.5kg, respectively. It has 26 DOFs that consists
of 14 RC servo motors in the upper body and 12 DC
motors with harmonic drive for reduction gears in the lower
body (Fig. 6(b)). In each simulation, if humanoid robot
walks n steps without falling down to the ground in bipedal
locomotion and n is lower than 15, the total number of steps
is n, else the total number of steps is 15. τ/τ ′ = 0.105/0.132
and τ = 0.105Aτ were used. The parameters in the CPG
were optimized by QEA.

A. Simulation Results Including Position Control along the
Lateral Direction

The controller is provided to control the position of the
center of pelvis along the lateral direction for increasing
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Fig. 7. Simulation results including position control along the lateral
position. (a) The total number of steps. (b) The position error along the
lateral direction.

stability along the lateral direction. Fig. 7 shows a compari-
son result between controlling the position of left and right
ankles, respectively, along the sagittal and vertical directions
(AY = 0) and controlling the position of the center of
pelvis along the lateral direction (AY = 3) in addition to
the position of left and right ankles, respectively, along the
sagittal and vertical directions (Videos 1 and 2). AX = 2.0,
Aτ = 1.5 and AZ = 1.2 were used. In the former case, i.e.
when Ay = 0, the position of the center of pelvis along the
lateral direction was constant such that there is no lateral
motion for balancing to be stable. In the latter case with
AY = 3, the total number of steps increased and the position
error along the lateral direction defined in (19) decreased.
This result illustrates that it improves stability of bipedal
locomotion if the controller controls the position of the center
of pelvis along the lateral direction in addition to the position
of ankles along the sagittal and vertical directions.

B. Simulation Results Including Sensory Feedback Pathways

The sensory feedback pathways in the CPG maintain
humanoid robot’s balance and prevent it from falling down
to the ground. In this paper, the sensory feedback pathways
were designed by FSR signals. Fig. 8 shows the effect of
including sensory feedback pathways. AX = 3.0, Aτ = 1.5
and AZ = 1.2 were used (Videos 3 and 4). The parameters
in sensory feedback pathways were evolutionary optimized
by QEA. In this simulation, humanoid robot’s walking speed
was faster than that in Section.III-A, such that it was hard
to maintain balance without sensory feedback pathways.
Controlling the position with sensory feedback pathways, the
total number of steps increased and the position error along
the lateral direction decreased. This result illustrates that
sensory feedback based on FSR sensor maintains humanoid
robot’s balance and prevents it from falling down to the
ground.

C. Simulation Results of Evolutionary Optimization

The proposed algorithm has 11 parameters. These param-
eters were evolutionary optimized by QEA. In Fig. 9, the
velocity, the position error along the lateral direction and
angle error along the yawing direction are plotted, when kx

StepN

20

StepN

10

15

5

0
Y
A = 3

Y
A =

0
With

Feedback

(a)

cm

0.25

0.3

0.15

0.2

0.05

0.1

0
Y
A = 3

Y
A =

0
With

Feedback

(b)

Fig. 8. Simulation results including sensory feedback pathways. (a) The
total number of steps. (b) The position error along the lateral direction.
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Fig. 9. Simulation results of evolutionary optimization. A is with kx =
500, ky = kθ = 100 and B is with kx = 500, ky = kθ = 200. (a) The
velocity. (b) The position error along the lateral direction. (c) The angle
error along the yawing direction.

was fixed as 500 and ky and kθ , 100 and 200 (Videos 5
and 6). When ky and kθ increased, the walking velocity was
slower, but the position error along the lateral direction and
the angle error along the yawing direction decreased. This
result illustrates that when ky and kθ decrease, optimization
of the parameters make the humanoid robot walk faster,
whereas when ky and kθ increase the optimization of the
parameters make the bipedal locomotion more stable.

D. Simulation Results Including Swing Motion of Arms

The proposed controller controls the pitching angle of
left and right shoulders, respectively, to compensate for
the yawing moment. In Fig. 10, the yawing moments are
plotted, when amplitude scaling factor of the pitching angle
of shoulders, Aθ, was changed (Videos 7 and 8). As shown in
Fig. 10, the yawing moment decreased, when Aθ increased.
When Aθ = 1.0, the yawing moment decreased by 8.8
percent over Aθ = 0.0. This result illustrates that the
yawing moment can be decreased by swinging along pitching
direction.

E. Experiment Result

Experiment was carried out with the actual humanoid
robot, HSR-IX. τ/τ ′ = 0.105/0.132, τ = 0.105Aτ , Aτ = 4,
Ax = 2.0, Ay = 3.0 and Az = 0.5 were used. For stable
bipedal locomotion in real experiment, the parameters, k1 ∼
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Fig. 11. Experiment result with evolutionary optimized CPG.

k5, in sensory feedback pathways of the CPG, were evolu-
tionary optimized using the computer simulation of HSR-IX
model by Webot. Then these parameters were slightly tuned
for proper walking by trial and error in real experiment.
As shown in Fig. 11, the humanoid robot achieved stable
walking (Video 9).

IV. CONCLUSION

This paper proposed the full-body joint trajectory gen-
eration for stable biped locomotion based on evolutionary
CPG. The neural oscillators in the CPG were developed to
generate rhythmic signals. The proposed controller controlled
the position of left and right ankles along both sagittal
and vertical directions. In addition, it controlled the center
position of pelvis along lateral direction and the pitching
angles of both left and right shoulders. Also, the proposed
controller generated the ankle trajectories along both sagit-
tal and vertical directions using the CPG for stable biped
locomotion in 3D space. The sensory feedback pathways
in the CPG were designed by using FSR signals. The
parameters in the CPG were optimized by using quantum-
inspired evolutionary algorithm (QEA) for stable and fast
biped locomotion. In order to demonstrate the performance

of the proposed scheme, computer simulations were carried
out with the Webot model of the small sized humanoid robot,
HSR-IX and real experiment was carried out with HSR-IX
developed at the RIT Lab., KAIST.
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