
  

  

Abstract—This paper presents an upper body tracking 
algorithm with a single monocular camera. In order to be 
suitable for human robot interaction, the designed method 
should be free to work on the moving camera platform and also 
can achieve real-time performance. The dimension of human 
posture model is extremely high, and we hereby focus on the 
visual extraction of head and arms. A hierarchical structure 
model is proposed to solve the tracking problem by particle 
filter with partitioned sampling in the order of head, upper arm 
and the forearm. The hand position, straight edge of arm and 
temporal information are combined by the multiple importance 
sampling particle filter to efficiently estimate the irregular 
gesture of arms on image frames. The visual clues of the motion, 
appearance and shape to human face and arms are to verify the 
various hypotheses from the multiple importance sampling 
schemes. To validate the effectiveness of the proposed tracking 
approach, extensive experiments have been performed, of which 
the results appear to be quite promising. 

I. INTRODUCTION 
CCORDING to the image captured by camera, there are 
many different kinds of information which can be 

derived in computer vision and robotics fields, such as those 
about the environment, contents, instructions, etc. For 
example, to improve the interactive function for human-robot 
interaction in a scenario with home service robot, trying to 
understand the meaning of human behavior is a more 
effective way to let the robot be socialized. Because the 
camera mounted on a robot, which focuses on the upper body 
of the human for interaction, has limited field of view, this 
research work restricts the task to tracking of the face and 
upper limbs only. 

In general, there are two kinds of popular approaches 
which are used for human tracking, namely, background 
subtraction [1] and depth-based segmentation [2]. The 
background subtraction is a problem which has attracted 
extensive interests in the field of computer vision. However, a 
powerful background subtraction method with background 
initialization, updating, and classification usually suffers 
from heavy computation cost when operating on a moving 
camera platform. Thus, it is unlikely to achieve real time 
tracking based on this kind of approach with possibly mobile 
camera platform. On the other hand, the dense disparity map, 
which is acquired from the stereo camera platform or 
auxiliary sensors such as multiple cameras, sonar, and laser, 
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etc., is a critical basis for achieving depth-based segmentation. 
The particular requirement of auxiliary sensor setup and the 
excessive computational cost of depth data observation also 
cause serious concerns. 

So far, there have been many researches proposed for 
human or posture detection in the literature. The traditional 
works estimate the human by marking the human body parts 
[3] or by asking the human to wear some special clothes [4]. 
However, this is inconvenient and can only be used in special 
situations with complete setup of equipments. To improve 
these methods, many researches provide alternative 
approaches without relying on markers worn or attached onto 
the human body. Among them, the learning-based method [5] 
is applied to detect the human’s position. The work in [6] 
gave an overview on human tracking via tracking of some 
body parts, such as face, hands, fingers, etc. Using 
background subtraction or foreground segmentation 
techniques, the silhouette-based methods [7] can be utilized 
to detect humans with a static camera. The dense disparity 
map is constructed for estimating human posture by using the 
3D information from a multi-camera system [2]. In order to 
integrate the posture detection algorithm with the 
human-robot interface, the tracking system apparently can 
not assume that the environment is with static camera and 
simple background since both the human and the camera 
mounted on the robot may move while both are interacting. 

This work presents a monocular vision-based tracking 
algorithm that aims to fast and accurately track the upper 
body posture of a human. Concerning the processing time, 
applying some detection technique in each frame during the 
course of tracking a human generally, however, will surely be 
shown inefficient. Combining some appropriate tracking 
algorithms can actually reduce the solution complexity. The 
particle filter, which is a popular tracking algorithm, can 
successfully solve the non-Gaussian state estimation 
problems in nonlinear systems. The particle filter is 
cooperated with the partitioned sampling scheme [10] to 
alleviate the intense need for a large number of particles in the 
case with estimation in high dimensional state space. Besides, 
tracking human beings is recognized to be one of the most 
difficult tasks, simply because human’s motions are fast, 
nonlinear, unpredictable, and there are so many kinds of 
possible human posture. The multiple importance sampling 
(MIS) [11] is employed here to fuse all of the clues, such as 
the hand, obvious line of arm and temporal association, that 
we can obtained for dealing with the human’s upper body 
tracking problem. Parallel to that, we also adopt the 
appearance color and shape edge information of the head and 

Visual Tracking of Human Head and Arms with a Single Camera 
Yi-Ru Chen, Cheng-Ming Huang, and Li-Chen Fu, Fellow, IEEE 

A 

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3416



  

arms to design the evaluation of likelihood function for 
verifying the tracked parts of human’s upper body. 

The rest of this paper is organized as follows. In section 2, 
we first introduce the human upper body model. And then in 
section 3, the tracking algorithm is described. The particle 
filters with partitioned sampling method and multiple 
importance sampling algorithm are presented to efficiently 
track the posture of head and arms. The design of likelihood 
functions utilizing the visual cues is explained in section 4. In 
section 5, we demonstrate several experimental results to 
validate the effectiveness of the proposed tracking approach. 
Finally, we conclude this paper in section 6. 

II. HUMAN UPPER BODY MODEL 

A. Definition 
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Fig. 1.  The 3D human model and its projection on the 2D image plane. 
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Fig. 2.  Definition of joint angles for the left shoulder with limited range. 
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6Lγ π< < Fig. 3.  Definition of  the joint angle for the left

elbow with limited range. The stick between 5p

and 7p  lies on the plane decided by the angle Lρ .
 

As discussed in the previous work [6], there are several 
kinds of human model which can be categorized into 2D 
models and 3D models. Although we focus on the 2D 
tracking in the image plane in this paper, the 3D stick model 
[6] is still applied here to avoid the unfeasible joint positions 
simply generalized from 2D model and be able to estimate the 
3D posture further [6]. As shown in Fig. 1, 0p  is set as the 
origin of the coordinate system. In general, the scale of every 
body part is proportional to the face size. We model the face 
as an ellipse whose ratio between the length of the minor axis 
to that of the major axis is 1:1.2. Also, we approximate the 
scale between the width of the face and the torso as 1:2. The 
length of the upper arm and the forearm is about 1.5 times of 
the width of the face, and the length of the upper arm is as 
same as that of the forearm. Using these general assumptions 
of upper body proportions, a stick model as Fig. 1 can be 
constructed after the states of the arm angles are determined. 

The joint positions, such as positions of the elbows 4p  and 

5p , and positions of the wrists 6p  and 7p , can be 
determined by the transformation matrices with the states of 
both arms. The definitions and limitations of the involved 

angles are mentioned as Fig. 2 and Fig. 3. The state can be 
separated into three parts. The first part describes the state of 
face Px , including the center of face position ( , )u v , and the 
face scale r. The second and third parts describe the posture 
of the right arm [ ], , ,R R R R Rθ φ ρ γ=Θ and the left 
arm [ ], , ,L L L L Lθ φ ρ γ=Θ , respectively. The full state X  can 
be defined as 

[ ], ,P R L=X x Θ Θ . (1) 
The hypothesis predicted from the 3D human model is then 
projected on the xy plane. In order to obtain the observations 
of human model from image, the face is modeled by an ellipse, 
and the arms are modeled by four rectangles, in which two 
rectangles for the upper arms and two rectangles for the 
forearms. Here, we assume that the human’s head and back 
should not be bended purposely during the human-robot 
interaction, and each body part will not be fully occluded. In 
addition, the person who would like to do the interaction 
should face to the camera, and the body orientation is 
assumed to be a noise during the tracking process. 

B. Initialization 
In general, the size of every part is proportional to the face 

size, like the Virtruvian Man created by Leonardo da Vinci. 
But the accurate shoulder width shoulderw , neck length neckl ,  
upper arm width upperarmw , forearm width forearmw , and arm 

length arml  are variable from one person to another. An 
initial posture should be picked to provide the angle and 
length information of the parameters and initial states. The 
initial posture should also be easy and general, so that the 
system does not easily mislead the posture. We define that the 
user putting hands on the waist as the initial posture like Fig. 
1. When the user doing this initial posture, it forms an 
obvious included angle between the upper arm and forearm 
and shows the explicit size of each upper body part. 

Then, the line detector [8] which finds lines in edge image 
by using Hough transform below the detected face can be 
applied to find the straight edges of the torso and arms as 
illustrated in Fig. 6 (a). These detected lines will be 
categorized by different angle and position to decide what 
body part they belong to. Some lines with the disturbance 
originated from the background or clothes will be filtered out 
by taking the symmetry of human body parts and averaging 
the group of lines belonging to the same part. The shoulder 
width shoulderw  is decided by the distance between the 
vertical lines on the sides of the torso, and the width of the 
upper arm upperarmw  and forearm forearmw  can be evaluated 

by the non-vertical lines belonging to the sides of each arm. 
The joint position of shoulder, elbow and wrist can also be 
determined at the ends of the non-vertical lines. Hence, the 
arm length arml  and neck length neckl  of one specified user 
are obtained now. Except improving the accuracy of the 
human model, the user can present the intention of the 
human-robot interaction through doing this initial posture to 
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start the intelligent system. 

III. TRACKING METHODOLOGY 
As mentioned in Section 2, the dimension of the human 

model described in (1) is very high. If the particle filter 
estimates the state X  at one time instant t, denoted as tX , 
then the system must generate many particles to cover the 
whole high dimensional state space. The large number of 
particles will cost a lot of computational time. Furthermore, 
many particles will generate with negligible weight will cause 
the system ineffective. Given the image observation tz  
obtained from one monocular camera, the tracking problem 
can be formulated as the following probabilistic form: 

( ) ( ), , ,, ,t t P t R t L t tp p=X z x Θ Θ z , (2) 

where , , ,,  ,  P t R t L tx Θ Θ  are the states of face, right arm and 

left arm, at time instant t, respectively. Since the head and 
arms are fixed on the torso, the state arms can be estimated 
easier once the location of head has been obtained. Moreover, 
assume that the left arm and right arm will not occlude each 
other during this human-machine interaction, and states of 
them are independent. The posterior distribution in (2) can 
then be decomposed and reduced as 

( ) ( ) ( ), , , , , , ,, , , ,P t R t L t t R t L t P t t P t tp p p=x Θ Θ z Θ Θ x z x z , (3) 

( ) ( ) ( ), , , , ,, ,R t P t t L t P t t P t tp p p= Θ x z Θ x z x z . 

From the derivative of (3), a hierarchical algorithm is 
developed by the particle filter with partitioned sampling 
concept [10]. First, we focus on the face tracking ,( )P t tp x z  
by the sampling importance resampling (SIR) particle filter 
[9]. Second, based on the face tracking result and the human 
model, the location of shoulder can be estimated. The 
distribution , ,( , )R t P t tp Θ x z  and , ,( , )L t P t tp Θ x z  of arms are 

tracked by the multiple importance sampling (MIS) particle 
filter [11]. The flow chart of the overall system is summarized 
as Fig. 4. 

 
Fig. 4. The system flow char. 

In order to avoid the impoverishment phenomenon of high 
dimensional arm tracking, the number of particles and the 
prediction variance should be increased to raise the diversity. 
However, this process would cause the heavy computational 
complexity and some particles with negligible weight. The 
MIS particle filter [11] uses several proposal functions to 
generate particles from current 2D image observation and 
latest states. The multiple importance sampling scheme is 

applied here to minimize the estimation variance due to the 
fusion of various proposal functions. The estimations of right 
arm and left arm are independent, and the algorithm applied 
for each of them is the same. We redefine the states of one 
arm at time instant t as tΘ , i.e., tΘ represents for ,R tΘ or ,L tΘ . 

   
(a)  resampling;           (b) inverse kinematic;           (c) line detector; 

Fig. 5.  The particles generated from multiple proposal functions. 
 

  
(a)  putting hands on the waist;          (b) stretching out the full arm; 

Fig. 6. Detected lines (bold and white) of human posture on the edge image. 
 

Three kinds of proposal functions for covering the 
unpredictable movement of arm are applied on previous 
states and current 2D image observations as illustrated in Fig. 
5. The first proposal function 1, ( )t tq Θ  uses the estimates of 

the latest posterior, the second proposal function 2, ( )t tq Θ  
uses the inverse kinematics from hand position, and the third 
proposal function 3, ( )t tq Θ  uses the line detector for the 
obvious edge of arm as shown in Fig. 6. The number of 
particles ,i tm  is based on the fullness of arm information 

provided by the proposal function , ( )i t tq Θ  and denoted as 
1, 2, 3,

2, 3,

3,

( ),

( ) 2,

3, if there is an obvious line detected
,

0, otherwise

t s t t

t h s t

s
t

m N m m

m P N m

N
m

= − +

= −

⎧
= ⎨
⎩

 (4) 

where sN  is the total number of particles, and hP  is the 
probability of the hand appeared. The particle number ,i tm  of 
each proposal function is dynamically decided by the 2D 
image information at time instant t. When one proposal 
function , ( )i t tq Θ  has better observation, the particle number 

sampled from that proposal function , ( )i t tq Θ  will increase 

more quantity. Collect all the samples ( )
, ,~ ( )j

i t i t tqΘ Θ , 

,1, , i tj m= … , 1,2,3i = , the posterior of each arm in (3) can 
then be yielded by the following Monte Carlo approximation 
with a set of weighted samples ( ) ( )

, ,{ ,  }j j
i t i tωΘ : 

( ) ( )
,3

( ) ( )
, , ,

1 1
,

i tm
j j

t P t t i t t i t
i j

p α ω δ
= =

≈ −∑∑Θ x z Θ Θ , (5) 

where α  is a normalization constant, ( )δ ⋅  is the Dirac delta 
function, and ( ) ( ) ( ) ( ) ( )

, , 1 , , , 1 ,( | ) ( | , )j j j j j
i t i t t i t i t i t P tp pω ω − −= z Θ Θ Θ x  
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( )
, ,/ ( )j

i t i tq Θ  is the corresponding weight of each particle. 

IV. LIKELIHOOD EVALUATION 
By projecting the human model onto the image plane, we 

can get the image observation for each hypothesis state X  
and evaluate the weight of each particle. The weight of each 
particle is measured by the evaluation of likelihood function. 
For operating on a single monocular camera with real-time 
performance, the designed likelihood function is simply 
evaluated by image information through the computation of 
color and edge contour with the geometry constraints. 

A. Color Histogram 
The color likelihood [13] uses the Bhattacharyya distance 

to evaluate the similarity between the reference color 
histogram defined in the initialization process and the color 
histogram corresponding to each particle. The histogram of 
inner part in each particle should be similar to the reference 
color, however, the histogram of outer part around each 
particle should be dissimilar to the reference one. Note that, 
when the arm closes to the torso, the color of each part may be 
the same due to the clothes. Under this situation, the joint 
likelihood [15] will be considered to deal with the 
overlapping region of different body parts. 

B. Edge Contour 
We classify the scenario types into tracking with static 

camera and with motion camera, which can be determined by 
the encoder of the camera motion platform. With the static 
camera, two consecutive images are compared to find the 
different part. In order to distinguish the human body and 
environment, the motion detection is used to enhance the 
edge around the human who is interacting with the robot by 
moving arms. Attaching the edge of this different part to 
current edge image, we can obtain the motion enhanced edge 
image as Fig. 7(a). When considering the motion camera, the 
edge contour is equivalent to operate on the common edge 
image and the optical flow detailed in the next subsection will 
assist the tracking of each body part. 
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(a) motion enhanced edge;            (b) head;          (c) upper arm/forearm; 
Fig. 7. The motion enhanced edge and the shape of contour template. The red 

line segments indicate the matching direction of each control points. 

The contour of face is modeled by an ellipse template as 
Fig. 7(b), and the contour of arms is modeled by the rectangle 
template as Fig. 7(c). The continuous contour with is 
represented with cN  discrete control points in . Here, we 
employ the following four likelihood functions to evaluate 
the visual cue of edge contour at these control points: contour 
matching likelihood, contour intensity likelihood, contour 
length likelihood, and contour symmetry likelihood. The 

contour matching likelihood [14] computes the similarity 
between the reference shape model with state variable and its 
neighborhood edge image. Since the enhanced edge image 
emphasizes the edge in the motion area, i.e., the edge points 
in motion area with higher intensity indicates that this point is 
belonging to the motion area which originates from the 
interacting human body when the camera platform is static. 
The contour length likelihood encourages the hypothesis with 
longer rectangle for reducing the case as shown in Fig. 8(a) 
and penalizes the segment of rectangle without edge evidence 
like illustrated as Fig. 8(b). Moreover, the other significant 
characteristic of human body part is symmetry. The contour 
symmetry likelihood accumulates the difference of matching 
distance in each control point pair as Fig. 8(c), lets the 
candidate fit with more appropriate position. 

 

× ×

× ×
 

× ×

×
 

 (a) shorter length;          (b) longer length;          (c) unsymmetrical; 
Fig.8. Several false hypotheses on contour likelihood of upper arm. The cross 

marks denote the invalid matching of control point pairs. 

C. Optical Flow 

 
Frame t -1                                               Frame t 

Fig. 9. The displacement of feature points in image sequence. The blue dots 
denote the feature points, and the red arrows denote the optical flows. 

From an image sequence which is captured from a moving 
camera to the static scene, we can see that there is a 
displacement for the same scene in the image space at 
different time instant. This displacement is also called the 
optical flow. We employ the Kanade-Lucas-Tomasi (KLT) 
feature tracker [12] to obtain the optical flow in an image 
sequence. On the other hand, the moving object may result in 
the displacement whose magnitude and orientation are 
different from that of the static scene. Fig. 9 presents the 
optical flows originate from the motion of forearm. Although 
KLT algorithm can track feature points, it can not identify 
which feature point is belonging to which body part or the 
background. Hence, the geometry of feature points belonging 
to a tracked body part should be invariant between two 
consecutive image frames. 

V. EXPERIMENTAL RESULTS 
The video sequence is processed by a PC with Intel Core2 

2GHz processor and 1GB RAM, and images are captured by 
a Logitech webcam. The image resolution is 320×240 pixels. 
The particle number of each partition as mentioned in Section 
3.A is 30 particles. In the results, the green and yellow 
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rectangles stand for the right upper arm and forearm, 
respectively, whereas blue and orange rectangles stand for the 
left upper arm and forearm, respectively. 

Fig. 10 shows the snapshots in the complex environment 
with a static camera. The background has many confusing 
edge noises as shown in the edge image, so the estimated arm 
width may be disturbed by the noise. Even though the 
rectangle is thinner than the real arm, the results are still good 
by using the color feature. We manually label the upper body 
parts on the 2D image as the ground truth. The error of each 
2D joint position between the estimation and ground truth is 
computed from 1p  to 7p , and the error of each arm angle is 
computed from the estimated rectangles of upper arm and 
forearm. The root-mean-square (RMS) error and standard 
deviation (STD) of the errors in joint position and arm angle 
are listed in Table. 1 and Table. 2, respectively. 

Fig. 11 shows the snapshots of 3D motion, which means 
that the moving direction of the target would be parallel to the 
optical axis of the camera, produced by the person wearing 
the T-shirt and captured on a static camera. Without the depth 
information from 2D image, the estimation of 3D motion is 
rather difficult. The MIS particle filter of arm tracker 
mentioned in Section 3.C uses multiple visual clues as the 
importance functions to generate the particles. From frame 
#370 to #380, the estimations of the left forearm and elbow 
are unfortunately mislead by the particles from the proposal 
function with the inverse kinematics of hand, however, this 

mistake is fixed by the proposal function with the obvious 
edge of arm when the left arm is captured more clearly. On 
the other hand, the estimate of the left arm is extended over 
the real one at frame #390, but the particles drawn from the 
inverse kinematics with the hand position correct the results 
after several frames. We can see that the mechanism of 
multiple importance sampling produces the particles which 
have the diversity of states and are complementary to each 
other. Table. 3 and 4 list the corresponding RMS and STD 
errors in joint position and arm angle of Fig. 11. Although the 
result of Fig. 11 indicates larger estimate error then that of Fig. 
16, it still presents the acceptable performance that can be 
utilized for human-robot interaction. 

The video sequence shown in Fig. 12 presents the system 
ability to deal with the scenario on a motion camera and under 
the disturbances of another person. The system detects two 
human faces in the beginning, however, only the person 
acting the initial posture as Fig. 1 will be recognized as the 
person who has intentions to do the interaction. The 
non-tracked person moves on the back of the tracked person 
and waves his hands to disturb the arm tracking during frame 
#20 to #160. From frame #200 to #280, the non-tracked even 
waves his hands in the front of the left arm of the tracked 
person. The proposed tracking algorithm can successfully 
overcome the temporal occlusion and filter out the false 
hypotheses originated from the hand of non-tracked person. 
As shown in the rest frames of Fig. 12, this result also implies 

        

Edge image                    Frame #40                      Frame #120                      Frame #160                      Frame #200                      Frame #240 
Fig. 10.  Snapshots of tracking under complex environment with a static camera. 

shoulder elbow wrist upper arm forearm position 
(pixel) 

face 
right left right left right left 

angle 
(degree) right left right left 

RMS 0.57 0.70 3.49 2.50 3.94 5.77 4.71 RMS 4.41 4.12 1.82 2.51 
STD 0.42 0.55 2.62 2.89 3.24 4.54 3.56 

 

STD 3.82 3.07 1.53 1.87 
Table. 1.  The RMS error and standard deviation of the error in 2D joint position.        Table. 2. The RMS error and standard deviation of the error in arm angle.

 

      
Frame #280                    Frame #310                      Frame #340                      Frame #370                      Frame #375                      Frame #380 

       
Frame #390                    Frame #400                    Frame #430                      Frame #460                      Frame #490                      Frame #520 

Fig. 11.  Snapshots of 3D motion of human arms with a static camera. 
shoulder elbow wrist upper arm forearm position 

(pixel) 
face 

right left right left right left 
angle 

(degree) right left right left 
RMS 0.60 0.61 2.91 2.28 5.41 3.93 6.07 RMS 3.82 4.15 2.09 5.35 
STD 0.46 0.47 2.61 1.70 4.47 2.87 4.63 

 

STD 3.18 3.47 1.71 4.31 
Table. 3.  The RMS error and standard deviation of the error in 2D joint position.        Table. 4. The RMS error and standard deviation of the error in arm angle.
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that the proposed algorithm is not constrained to operate on a 
static camera. Moreover, if the tracking system is conscious 
that the estimated posture is ambiguous due to the 3D motion, 
it can automatically control the motion of camera platform to 
clarify the human intention.  

At last, we test the real-time efficiency of the human-robot 
interaction as shown in Fig. 13. The robot tries to repeat the 
same posture as human arms. The human posture obtained by 
the tracking system then acts as the instruction of the 
human-robot interaction. In the future, the different views of 
human during camera moving could also be used to control 
the camera motion and correct the human posture. 

VI. CONCLUSION 
This paper presents a particle filter methodology for 

tracking the face and arms of the human upper body on a 
monocular camera. Although we focus on the 2D tracking 
performance in the image plane now, the 3D stick model is 
still applied here to avoid the unreasonable human postures 
simply from a 2D model and be able to estimate the 3D 
posture further. By the partitioned sampling method, we 
identify the upper body parts in the order of human face, right 
arm and left arm, so that the tracker can reduce the dimension 
of estimated states. The MIS particle filter of arm tracker 
combines the hand position, straight edge of arm and 
temporal information to efficiently generate the particles with 
various characteristic. The likelihood model, which takes the 
visual clues of the motion, appearance and shape to human 
face and arms to verify the various hypotheses from the 
multiple importance sampling schemes, is designed by just 
using color and edge observed on 2D image plane. In order to 
easily apply the algorithm to human-robot interaction, our 
approach can handle the situation with a single moving 
camera platform.  

Now, the computational time for the overall system is 
about 10-15 fps, which achieves near real-time performance. 
For the future work, we will examine and analysis the system 

in more complicated scenarios and aim to reduce the overall 
computational time. The 3D posture of human body will be 
further estimated by a monocular camera. 
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Fig. 12.  Snapshots of tracking with a motion camera and under disturbances. 
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Fig. 13.  Snapshots of human robot interaction. 
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