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Abstract— This paper proposes passivity-based controllers
for periodic motions of multi-joint robots with impact phe-
nomena. Even the robot motions with impact phenomena have
complex dynamics, we try to analyze stability of the controlled
systems by adopting some assumptions and using Lyapunov-
like functions. At first, we present a passivity-based feedback
controller. Secondly, we present a repetitive controller based
on passivity-based iterative learning control. These controllers
generate desired periodic motions, which are specified by users
of the controllers. Advantages of the proposed controllers are
to works well without using exact parameter values of the
controlled systems nor huge numerical calculations.

Index Terms— Impact Phenomenon, Collision, Multi-Joint
Robot, Passivity-based Control, Stability Analysis, Lyapunov
Function

I. INTRODUCTION

Robots are expected to perform various tasks depending
on demands of their users. Then, various kinds of motions
are required to perform such tasks. Periodic motions with
impact phenomena are typical motions for the tasks, such
as walking and hammering. However, to construct effective
control methods is not easy, because of not only nonlin-
earity of robot dynamics but also discrete dynamics of the
impact phenomena. This kind of controlled system are called
”hybrid systems”, and stability analyses become much more
difficult than linear systems without impact phenomena.

To overcome this difficulty, researchers have tried to
propose controllers and to analyze stability [1], [2], [3].
Y. Shoji et al. proposed a feedback controller for robotic
manipulators, which collide with walls [1]. Stability of the
controlled systems is proved mathematically. In this case, the
proposed controller aims at set point control. J. W. Grizzle et
al. proposed an controller for underactuated walking robots
[2]. The proposed controller guarantees asymptotic stability,
and requires parameter values of the robots and numerical
calculations of dynamics of the robots.

On the other hand, passivity-based control has been es-
tablished so as to control robotic systems [4]. Even the
robotic systems have nonlinear dynamics, passivity-based
controllers achieve control objectives, because these con-
trollers effectively utilize characteristics of energy of the
robotic systems. The effective utilization brings about some
advantages of the passivity-based controllers. The advantages
are to guarantee stability of the controlled systems and
to work well without using exact parameter values of the
controlled systems nor huge numerical calculations. We also
have proposed resonance-based control for robotic systems
[5], [6], [7], [8], [9]. The resonance-based controllers realize

not only trajectory tracking of periodic motions but also
minimization of actuator torque by adjusting stiffness of me-
chanical elastic elements installed in each joint of the robots.
Control strategies of the resonance-based controllers are
similar to the passivity-based controllers, and the resonance-
based controllers have the same advantages as the passivity-
based controllers. However, as far as the authors know, there
are no existing controllers, which guarantee stability and does
not require precise information of the robotic systems, in the
case of periodic motions with impact phenomena. Therefore,
to extend passivity-based control to periodic motions with
impact phenomena can contribute control theories of robotic
systems.

M. W. Spong et al. proposed a passivity-based controller
for bipedal robots [3]. The proposed controller effectively
utilizes the characteristics of energy of the bipedal robots.
However, in this case, the proposed controller requires pa-
rameter values of the robots and some online numerical
calculations of kinetic and potential energy of the robots,

Therefore, this paper tries to extend passivity-based con-
trol to the robot motions with impact phenomena, and we
design controllers that work without using exact parameter
values nor huge numerical calculations. At first, we design a
passivity-based feedback controller. This controller is com-
posed of feedback input of an error between a desired motion
and an actual motion. Secondly, we design a repetitive
controller using the framework of passivity-based iterative
learning control. This controller is composed of the error
feedback input and a feedfoward input of iterative learning
control. These controllers aim at generating desired motions
specified by users of the controllers. This paper analyzes
stability of the controlled systems. For this purpose, we
design the desired motions and adopt some assumptions.
Numerical simulations demonstrate the effectiveness of the
proposed controllers.

II. PROBLEM FORMULATION

This section formulates a problem of periodic motions of
multi-joint robots with impact phenomena as shown in Fig.1.

A. Kinematics

Kinematic relationship between a tip position of the multi-
joint robots in the Cartesian coordinate x(t) ∈ ℜn and joint
anlge q(t) = (q1 · · · qn)T ∈ ℜn is described by a nonlinear
function f(q) ∈ ℜn.

x = f(q) (1)
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Fig. 1. Robot Motion with Impact Phenomenon

where n ∈ N is the number of the robot joints. By
differentiating the both side of the equation (1), we obtain

ẋ = J(q)q̇ (2)

where J(q) ∈ ℜn×n is a Jacobian matrix between the two
coordinate systems x, q.

B. Dynamics

Dynamics of the multi-joint robots without considering
impact phenomena is given by

R(q)q̈ +
{

1
2
Ṙ(q) + S(q, q̇) + D

}
q̇ + g(q) = τ , (3)

where R(q) ∈ ℜn×n is a positive definite inertia matrix,
S(q, q̇) ∈ ℜn×n is a skew symmetric matrix, D =
diag(d1 · · · dn) ∈ ℜn×n is a viscosity matrix, g(q) ∈ ℜn

is a vector of gravitational torque, and τ = (τ1 · · · τn)T is a
vector of actuator torque.

C. Impact Phenomena

When a tip of the robot collides with a wall, impact phe-
nomenon will occur. As a first step to establish the passivity-
based control theory considering the impact phenomena, this
paper adopts a simple model of the impact phenomena, and
we assume that impact phenomena occur instantly. At the
instant, the tip of the robot is on the surface of the wall, and
the tip position x satisfies

fwall(x(tsi)) = 0, (4)

where fwall ∈ ℜ describes the surface of the wall, and tsi

is the time of i ∈ N th impact.
Since the impact phenomena are assumed to occur in-

stantly, the joint angle q does not change at the impact
phenomena.

q(t+si) = q(t−si) = q(tsi) (5)

where t+si ∈ ℜ is the time just after the impact, and t−si ∈ ℜ
is the time just before the impact.

To the contrary, the joint velocity q̇ changes at the impact.

q̇(t+si) = Φ(q(t−si))q̇(t−si) (6)

where Φ ∈ ℜn×n is a matrix that represents the velocity
change at the impact instants [2].

Since the wall is passive, the wall does not supply energy
to the robot. Therefore, kinetic energy of the robots will be

reduced or conserved at the impact.

1
2
q̇(t+si)

T Rq̇(t+si) =
1
2
q̇(t−si)

T ΦT RΦq̇(t−si)

≤ 1
2
q̇(t−si)

T R(q)q̇(t−si) (7)

D. Control Objective

A control objective of passivity-based controllers in this
study is to generate desired periodic motion q → qd ∈ ℜn.
The periodic motion includes a impact phenomenon in a
cycle.

E. Design of Desired Motion

Here, we design the desired motion qd. As stated in the
control objective, the actual motion q is controlled to be
periodic with a desired cycle time Td ∈ ℜ. However, actual
cycle time Ti = tsi − ts(i−1) ∈ ℜ of the ith cycle can be
different from the desired one Ti ̸= Td due to tracking errors.
Therefore, the desired motion qd(t) of ith cycle is designed
by using a reference motion qr ∈ ℜn

qd(t) = qr(t − ts(i−1)). (8)

The reference motion qr represents a cycle of the desired
motion. The reference motion qr is designed in the certain
period qr(t) (0 ≤ t ≤ Td +Ts) so that the actual cycle time
Ti will converge to the desired one Td if the actual motion
converge to the desired one q → qd, where Ts ∈ ℜ is a
positive constant. The reference motion qr ∈ ℜn should be
continuous

|qr| ≤ cbp, |q̇r| ≤ cbs, |q̈r| ≤ cba, (9)

where cbp, cbs, cba ∈ ℜ are positive constants. Since the tip
of the robot is on the surface of the wall at the instants of
the impact phenomena, qr(0) and qr(Td) are designed to
satisfy

qr(0) = qr(Td) (10)
fwall(f(qr(0))) = fwall(f(qr(Td))) = 0 (11)

In other periods (0 < t < Td, Td < t ≤ Td + Ts), qr(t)
is not always on the surface of the wall fwall(qr(t)) ̸= 0.
The initial velocity qr(0) is designed with considering the
impact phenomena of the equation (6),

q̇r(0) = Φ̂q̇r(Td) (12)

where Φ̂ ∈ ℜn×n is an estimated matrix of Φ(qr(Td)).
To guarantee stability of the controlled system, we in-

troduce some conditions for the desired motion. The first
condition relates to a distance between the reference motion
qr and the wall. This condition is defined so that the
largest value of cw = ||qr(Td)−qf ||

||qr(t)−qf ||
in the certain period

Td − Ts < t < Td + Ts is smaller than a certain positive
constant cw ≤ cwmax as shown in Fig.2 for all qf , where
qf ∈ ℜn is a vector that satisfies fwall(f(qf )) = 0. This
kind of vector norm ||qr(t) − qf || is defined as ||qr(t) −
qf || = (qr(t)−qf )T (qr(t)−qf ). Therefore, we obtain the
following inequality for all qf .
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Fig. 2. Distance between Reference Motion and Wall

||qr(Td) − qf || ≤ cwmax||qr(t) − qf || (13)

The second condition relates to a velocity profile. This
condition is defined in the certain period Td − Ts < t <
Td + Ts as

||q̇r(t) − q̇r(Td)|| ≤ cv||qr(t) − qr(Td)|| (14)

Therefore, the reference motion is designed so as not to have
large velocity change around the time Td. For example, if the
reference motion is a constant acceleration motion qri(t) =
cat2 +cst+cp (i = 1, 2, 3 · · · ), we can set the coefficient cv

of the equation (14) to cv = 2ca

cs
, where ca, cs, cp ∈ ℜ are

positive constants.
The above design of the desired motion requires some

information of the wall surfaces. The equation (11) requires
information of a position of the surface at a point. To
guarantee small cwmax require rough information of shape
of the surface in some region.

However, to obtain the above information seems not so
difficult, because the impact position qr(0), qr(Td) can be
obtained by some trial movements of the robots or some
sensors, such as laser rangefinders. In addition, the rough
information of the wall shape for the first condition can be
also obtained by some laser rangefinders or cameras.

F. Assumption

In order to discuss stability, we introduce some assump-
tions of the kinematics and the dynamics. The first assump-
tion is that the kinematics of the robots f(q) satisfies the
following Lipschitz condition for all q1, q2 ∈ ℜn.

||f(q1) − f(q2)|| ≤ L1||q1 − q2||, (15)

where L1 ∈ ℜ is a positive constant. Kinematics of usual
robots satisfies this assumption.

The second assumption is that the robot does not move
around neighborhood of singular positions. Then, the Ja-
cobian matrix becomes always full-rank, and the following
Lipschitz condition is satisfied for all q1, q2

||q1 − q2|| ≤ L2||f(q1) − f(q2)|| (16)

where L2 ∈ ℜ is a positive constant. Moreover, we assume
that impact dynamics also satisfies the following Lipschitz
condition for all q1, q2.

||Φ(q1) − Φ(q2)|| ≤ L3||q1 − q2||, (17)

where L3 ∈ ℜ is a positive constant. If the impact phe-
nomenon is an elastic collision and the equation (16) is
satisfied, this assumption seems reasonable.

Next, we assume that initial tracking errors q(0) −
qd(0), q̇(0) − q̇d(0) are finite.

||q(0) − qd(0)|| + ||q̇(0) − q̇d(0)|| < ce (18)

where ce ∈ ℜ is a positive constant. Namely, the stability
that we analyze in this paper is in the sense of not global
but local.

The last assumption is that the impact phenomena always
occur in a certain period, and the actual cycle time Ti satisfies

Td − Ts < Ti < Td + Ts. (19)

When the motion is controlled precisely by feedback con-
trollers to some extent, the assumption of the equation (19)
seems not so unreasonable.

III. PASSIVITY-BASED FEEDBACK CONTROL

A. Controller Design

To generate the desired motion q → qd, we propose the
following passivity-based feedback controller.

τ = −Kv∆q̇ − Kp∆q (20)

where Kv,Kp ∈ ℜn×n are feedback gain matrices, and
∆q = q − qd.

This controller does not require exact parameter values of
the robots nor huge numerical calculations.

B. Stability Analysis

We introduce the following Lyapunov-like function to
prove stability of the controlled systems.

V (t) =
1
2
∆q̇T R(q)∆q̇ +

1
2
∆qT (Kp + αKv)∆q

+α∆q̇T R(q)∆q (21)

where α ∈ ℜ is a positive constant. The function V
becomes positive definite by selecting enough small α,
because there are finite positive constants cdq, cq that satisfy
∆q̇T R(q)∆q ≤ cdq||∆q̇|| + cq||∆q||. Note that α can be
larger with increase of the feedback gain Kv [4].

When the robot does not collide with the wall and the
conditions of the equations (9), (18) are satisfied, it is proved
[12] that time derivative of V is bounded by

V̇ (t) ≤ −∆q̇T (Kv − c1)∆q̇ − α∆qT (Kp − c2)∆q

+c3 (22)

where c1, c2, c3 ∈ ℜ are positive constants that are indepen-
dent of feedback gains Kv, Kp.

Therefore, if we set enough large feedback gains Kv, Kp,
V (t) exponentially converges to a certain region V (t) ≤
c4 excepting the instants of the impact phenomena. Then,
V (t−si) is bounded by

V (t−si) ≤ V (t+s(i−1)) + c4

−(1 − e−c5Ti)
{
||∆q̇(t+s(i−1))|| 12 R(q)

+||∆q(t+s(i−1))|| 12 (Kp+αKv)

}
. (23)

where c5 ∈ ℜ is a positive constant. This kind of vec-
tor norm with the suffix ||∆q̇(t+s(i−1))|| 12 R(q) is defined
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as ||∆q̇(t+s(i−1))|| 12 R(q) = 1
2∆q̇(t+s(i−1))

T R(q)∆q̇(t+s(i−1)).
The value of c5 can be increased by setting larger feedback
gains Kv, Kp.

Next, we consider the function V at the impact. Since the
equation (13) is satisfied for all qf , the norm of the position
error just after the impact ||∆q(t+si)|| can be bounded by the
norm just before the impact cwmax||∆q(t−si)||.

||∆q(t+si)|| = ||qr(0) − q(t+si)|| = ||qr(Td) − qf ||
≤ cwmax||qr(Ti) − q(t−si)|| = cwmax||∆q(t−si)|| (24)

The norm of the velocity error just after the impact
∆q̇(t+si) also can be bounded as follows. At first, we rewrite
∆q̇(t+si) as

∆q̇(t+si) = Φ∆q̇(t−si) + Φ
{
q̇d(t−si) − q̇r(Td)

}
+

{
Φ − Φ̂

}
q̇r(Td) (25)

If the impact dynamics is known and we can set Φ̂ to
Φ(qr(Td)), the third term of right-hand side of the equation
(25) is bounded by using the equation (13) and (17) as

||
{
Φ(q(tsi)) − Φ̂

}
q̇r(Td)|| ≤ L3cwmax||∆q(t−si)||, (26)

If the impact dynamics is unknown Φ̂ ̸= Φ(qr(Td)), the
term

{
Φ̂ − Φ(q(tsi)

}
q̇r(Td) is bounded as

||
{
Φ̂ − Φ(q(tsi))

}
q̇r(Td)||

= ||
{
Φ(qr(Td)) − Φ(q(tsi)) + Φ̂ − Φ(qr(Td))

}
q̇r(Td)||

≤ 2L3cwmax||∆q(t−si)|| + c6, (27)

where c6 ∈ ℜ is a positive constant. The value of c6 increases
if the difference between Φ̂ and Φ(qr(Td)) is larger.

From the desired motion conditions (13), (14), the second
term of the right-hand side of the equation (25) can be
rewritten as

||q̇d(t−si) − q̇r(Td)|| = ||q̇r(t−si − ts(i−1)) − q̇r(Td)||
≤ cv||qr(t−si − ts(i−1)) − qr(Td)||
= cv||∆q(t−si) + q(t−si) − qr(Td)||
≤ 2cv||∆q(t−si)|| + 2cwmax||qf − qr(Td)||
≤ 2cv(1 + cwmax)||∆q(t−si)||. (28)

Then, by considering the equation (7), the norm of the
velocity error ||∆q̇(t+si)|| is bounded by

||∆q̇(t+si)|| ≤ c7||∆q̇(t−si)|| + c8||∆q(t−si)|| + c9 (29)

where c7, c8, c9 ∈ ℜ are positive constants. In the case of
Φ̂ = Φ(qr(Td)), c9 becomes 0. Therefore, by using the
equation (21), (24), (29), the function V after the impact
phenomena is bounded by

V (t+si) ≤ V (t−si) + c10

{
||∆q̇(t−si)|| 12 R(q)

+||∆q̇(t−si)|| 12 (Kp+αKv)

}
+ c11 (30)

where c10, c11 ∈ ℜ is a positive constant. The value of c10

is independent of the feedback gains Kv, Kp, because the
equations from (24) to (29) are independent of the feedback

gains. The value of c11 also becomes 0, in the case of Φ̂ =
Φ(qr(Td)).

From the equation (23), (30), we obtain

V (t+si) ≤ c12V (t+s(i−1)) + c13 (31)

where c12, c13 ∈ ℜ are positive constants. The constant c12

decrease if we select large feedback gains Kv, Kp, because
c5 will increase by setting larger feedback gains. Therefore,
if we set enough large feedback gains Kv, Kp, c12 can be
less than 1.

The equation (31) with 0 < c12 < 1 means that the
controlled system is stable, even if the controlled system has
the nonlinear dynamics and includes the impact phenomena.

IV. REPETITIVE CONTROL

The proposed feedback controller in the section III is
composed of only the error feedback terms. Therefore, the
tracking errors ∆q, ∆q̇ do not converge to 0. This section
proposes a repetitive controller using a feedfoward term
based on iterative learning control to realize convergence of
the tracking errors to 0.

A. Controller

We use a feedfoward input ui(t) ∈ ℜn of the ith cycle
based on iterative learning control for the design of the
actuator torque τ (t).

τ (t) = −Kv∆q̇ − Kp∆q + ui(t − ts(i−1)). (32)

In the cases of usual iterative learning control, a feedfoward
input of a cycle is updated by using signals of its previous
cycle. However, in this study, the every cycle time Ti can be
different from each other, and there can be no corresponding
signals of its previous cycle. Therefore, the feedfoward input
ui of the ith cycle (i ≥ 2) is updated by using signals of the
m(t) ∈ N th cycles.

ui(t − ts(i−1)) = um(t − ts(i−1))
−β {∆q̇(t − tpre(t)) + α∆q(t − tpre(t))} , (33)

where β ∈ ℜ is a learning gain, and tpre(t) =
∑i−1

j=m(t) Tj .
We adopt the latest cycles (m(t) < i) that are longer than the
current time from the previous (i−1th) impact t− ts(i−1) ≤
Tm as the m(t)th cycles. If there are no latest cycles, ui(t−
ts(i−1)) is set to ui(t − ts(i−1)) = u0(t − ts(i−1)) = 0. For
example, as shown in Fig.3, when actual cycle times before
a 4th cycle are T1 = 0.8, T2 = 1.1, T3 = 0.9, we set m(t)
of the 4th cycle to m(t) = 3 (ts3 < t ≤ ts3 + T3), m(t) =
2 (ts3 + T3 < t ≤ ts3 + T2), u4(t− ts3) = 0 (ts3 + T2 < t).

The proposed controller in this section also does not
require exact parameter values of the robots nor huge nu-
merical calculations.

B. Stability Analysis

S. Nakada et al. introduced a kind of Lyapunov function
that includes an integral term of an error of a feedfoward
input [11]. We utilize this technique and define the following
Lyapunov-like function V2(t) of ith cycles (ts(i−1) < t <
tsi) using the function V (t) of the equation (21).
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i

t - ts(i-1)

1

Td

Td+TsTd -Ts

2

3

4

t

m(t)=3
(tpre(t) = T3)

m(t)=2
(tpre(t) = T3+T2) u4(t-ts3)=0

T1 

Fig. 3. Definition of mth Cycle

V2(t) = V (t) +
1
2β

∫ t+Ti

t

||∆up(t − ts(p−1))||dt

+
1
2β

∫ ts(i−1)+Td+Ts

tsi

||∆up(t − ts(p−1))||dt, (34)

where ∆up(t) ∈ ℜn is an error of the feedfoward input
∆up(t) = up(t) − ud(t), ud(t) ∈ ℜn is a necessary
torque to generate the desired motion ud = R(qd)q̈d +{

1
2Ṙ(qd) + S(qd, q̇d) + D

}
q̇d + g(qd), and p(t) ∈ N

is a positive integer. We adopt the earliest cycles that are
longer than the time t from the previous (i − 1th) impact
t − ts(i−1) ≤ Tp as the p(t)th cycles. If there is no earliest
cycles, p(t) is set to 0. For the example of the section IV-A,
therefore, p(t) of the 1st cycle is p(t) = 1 (0 < t < T1),
p(t) = 2 (T1 < t < T2), p(t) = 0 (T2 < t). Then, the sum
of the integral terms of the equation (34) is continuous with
respect to t.

Time derivative of V2(t) becomes

V̇2(t) ≤ −∆q̇T (Kv − c13 − β)∆q̇

−∆qT
(
αKp − c14 − βα2

)
∆q (35)

where c13, c14 ∈ ℜ are positive constants, which are inde-
pendent of the feedback gains Kv, Kp. Therefore, by setting
enough large feedback gains Kv, Kp and enough small
values of α, β, the function V2(t) monotonically decreases
except the instants of the impact phenomena.

Since the integral terms of V2(t) does not change at the
impact phenomena, the same discussion as the equations
from (24) to (30) can be applied to V2. Therefore, in the
case of Φ̂ = Φ(qr(Td)), we obtain

V2(t+si) ≤ V2(t−si) + c10

{
||∆q̇(t−si)|| 12 R(q)

+||∆q̇(t−si)|| 12 (Kp+αKv)

}
(36)

Then, by integrating the equation (35) by t with considering
the equation (36), we obtain

V2(t) − V2(0)

≤ −
∫ t

0

{
||∆q̇(t)||Kv−c13 + ||∆q(t)||αKp−c14

}
dt

+
i−1∑
j=1

c10

{
||∆q̇(t−sj)|| 12 R(q) + ||∆q(t−sj)|| 12 (Kp+αKv)

}
. (37)

If we set large feedback gains Kv, Kp, we can expect that
the following inequality is satisfied in the enery ith cycle,
because increase ratio of left-hand side of the equation (38)

q1

q2

τ1

τ2

(x, y)

wall

Fig. 4. Simulation Model

with respect to the feedback gains is higher than the right-
hand side.∫ t−si

t+
s(i−1)

{
||∆q̇(t)||Kv−c13 + ||∆q(t)||αKp−c14

}
dt

> c10

{
||∆q̇(t−si)|| 12 R(q) + ||∆q(t−si)|| 12 (Kp+αKv)

}
(38)

Then, V2(t) decreases at the every cycle, will converge to
a constant, and the tracking errors ||∆q̇(t)||, ||∆q(t)|| will
converge to zero.

Therefore, the proposed repetitive controller in this section
can realize trajectory tracking. However, the discussed stabil-
ity is not mathematically rigorous, because we introduced the
assumption of the equation (38). Even to assume the equation
(38) is reasonable in the case of large feedback gains, to
prove more rigorous stability is our important future work.

V. SIMULATION

We conducted a numerical simulation to verify the effec-
tiveness of the proposed controller.

A. Condition

We used a two joint robot arm model as shown in Fig.4
for the simulation. Physical parameters of the robot were
set as follows. Mass of the first link was m1 = 3.0[kg],
and mass of the second link was m2 = 2.0[kg]. Length
of the each link was l1 = 0.3[m], l2 = 0.25[m]. Length
from the each joint to the each mass center of the link was
lg1 = 0.13[m], lg2 = 0.1[m]. Inertia moment of the each
link was I1 = 0.01[Nms2/rad], I2 = 0.005[Nms2/rad].

The tip position of the robot was described by x =(
x
y

)
=

(
l1 cos q1 + l2 cos(q1 + q2)
l1 sin q1 + l2 sin(q1 + q2)

)
[m]. The surface

of the wall was described by fwall(x) = x + 0.2 = 0[m].
The impact phenomena were assumed to be elastic collisions
with a reflection coefficient 0.5.

The repetitive controller of the equations (32), (33) was
adopted as the controller. In the stability analysis of the
section IV, we need many conditions to guarantee the
stability, because the stability analysis becomes conservative
due to handling the nonlinearity of the dynamics and the
discrete dynamics of the impact phenomena. However, these
conditions may not be so severe actually. Therefore, in this
simulation, we selected some conditions that may threaten
the stability conditions. Namely, the feedback gains Kv, Kp

were set to small values kv1 = 5.0, kv2 = 2.0[Nms/rad],
kp1 = 25.0, kp2 = 4.0[Nm/rad], the initial tracking errors
were set to large ∆q1 = ∆q2 = 0.2π[rad], ∆q̇1 = π, ∆q̇2 =
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2.0π[rad/s]. Other gains were selected as β = 1.0, α = 5.0.
The reference motion was designed using cubic functions of
t so that some conditions of the desired motion was satisfied
fwall(f(qr(0))) = fwall(f(qr(T ))) = 0, q̇r(0) = Φ̂q̇r(T ).
The tip trajectory of the reference motion xd = f(qr) and
the wall is shown in Fig.6. The desired motion may be like
a hammering motion. The estimated matrix Φ̂ was set to the
actual one Φ(qr(Td)).

B. Result

Simulation results are shown in Fig.5, Fig.6, and an
accompanying video. Since we selected large initial tracking
errors ∆q(0), ∆q̇(0) and small feedback gains, tracking
errors were large during the first 5 seconds as shown in
Fig.5(a), (b). However, even the feedback gains were small,
the motion converged to the desired one q → qd after 8
second very well. The tip position also converged to the
desired one as shown in Fig.6.

Above results showed the effectiveness of the proposed
controller.

VI. CONCLUSION

This paper has proposed passivity-based controllers for
periodic motions of multi-joint robots with impact phenom-
ena. The proposed controllers can generate desired motions,
which are specified by users of the controllers. To guarantee
stability of the controlled systems, we adopted some assump-
tions of kinematics and dynamics of the robots and designed
the desired motions with some conditions. Even the robot
has nonlinear dynamics and discrete dynamics of impact
phenomena, we could analyze stability using Lyapunov-like
functions owing to these assumptions and conditions.

On the other hand, there seems to remain some important
future works. Firstly, to apply the proposed framework
to resonance-based control method is our important future
work, because resonance-based controllers can reduce actu-
ator torque while generating periodic motions. To adaptively
estimate the matrix Φ is also important. To achieve this
adaptation seems to be not so difficult, because we can easily
obtain the signals of q̇(t+si) and q̇(t−si) online. To prove
more rigorous stability for the repetitive controller and to
extend the proposed controller for walking robots are also
our important future works.
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