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Abstract— One essential capability of service robots lies in
the identification and localization of objects in the vicinity of
the robot. The extreme computational demands of this high-
dimensional state estimation problem require approximations
of the joint posterior even for small numbers of objects. A
common approach to solve this problem is to marginalize the
joint state space and to consider object-related state spaces
which are estimated individually under the assumption of
statistical independence. In practice, however, this independence
assumption is often violated, especially when the objects are
located close to each other, which leads to a reduced accuracy
of this approximation, compared to the full joint estimation.
To address this problem, we propose the new method denoted
as Rule Set Joint State Update (RSJSU), which features a
better approximation of the joint posterior in the presence
of dependencies, and thus leads to better estimation results.
We present experimental results in which we simultaneously
estimate all six degrees of freedom of multiple objects.

I. INTRODUCTION

State estimation in high dimensional domains is challeng-

ing due to the exponential growth of the state space and

the non-tractable requirements for computational time and

memory. In some cases such as multiple target tracking or

multiple object localization, the full state is composed of sev-

eral sub-states and the joint state is often represented by a set

of individual states [1][2]. Under the assumption of statistical

independence between all entities, this is equivalent to the

full state estimation. In reality, however, total independence

between the entities is almost never given.

In this paper we consider the question of how to benefit

from statistical dependencies between objects in localization.

Utilizing such dependencies can significantly enhance the

accuracy of the state estimation process. A typical example

is given by methods which exploit knowledge about position

and height of a table in the scene to reduce the problem of

object localization by three dimensions for objects situated

on the table [3][4][5]. Whereas such heuristic approaches are

quite effective, they are unable to exploit similar dependen-

cies in more complex scenarios, for example when one object

is not placed upright on the table. The goal of this paper is to

propose a new, more general method which is able to increase

the approximation quality in the presence of dependencies.

Our method, denoted as Rule Set Joint State Update (RSJSU)

considers physical laws that cause the dependencies in the
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Fig. 1. Everyday-life scene for a mobile service robot. Lower left
image: object localization result for that scene. Lower right image pair:
Corresponding posterior of the five framed objects before (upper figure) and
after the application of the RSJSU (lower figure). In this scenario, RSJSU
significantly improves the estimation of the objects’ vertical position.

object states. It is not restricted with respect to object shapes

or poses and hence can be applied in more general and real-

life scenarios. The paper is organized as follows: In Section II

we motivate our method by discussing the problem domain

using an intuitive example. Then we describe our approach

in detail in Section III. An implementation of a multi-object

localization system and its extension with the new method

is presented in Section IV. Finally, we present experimental

results in Section V and discuss related work.

II. MOTIVATING EXAMPLE

In this section we motivate our work using a simplified

example scenario. We use this example to discuss the ap-

proximation errors that occur in the presence of dependencies

when independent state spaces are considered in contrast to

a full joint state space.

The scenario is discrete and one-dimensional: Two blocks

are placed onto a larger one (Fig. 2). For both, there is a

sensor that measures their position. This scenario features

dependencies since due to the hull of the two bricks it is

not possible to place both on the same spot. Their size

in combination with the physical laws enforce a minimum
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Fig. 2. Scenario with toy bricks’ states xblue = 9 and xred = 14.

distance of 4 between the centers of the two bricks. Knowing

this “rule”, it is a priori known which constellations of brick

poses are impossible (Fig. 3(a)). However, if both poses

are considered independently, this information is lost by

marginalization.

(a) (b)

Fig. 3. Prior of the joint state of both toy bricks (a). The gray area marks
the states that are impossible due to the shape of the two bricks. The state
which is depicted in Fig. 2 (xJ = {9, 14}) is colored. The measurement
model p(zblue|x) and p(zred|x) for this state is depicted in (b).

Let us assume that the sensors have a zero mean Gaussian

measurement model with different variances (Fig. 3(b)). The

posterior can be determined using a Bayes filter update which

recursively integrates measurements starting with the prior.

(a) (b) (c)

Fig. 4. Full joint posterior (gray area = impossible states) (a), marginals
of the joint posterior (b), and independently estimated posteriors (c).

Figure 4 shows, that the results of the joint state Bayes

filter and the independent Bayes filter are different for the

situation depicted in Fig. 2. The posterior for the red brick

is more peaked if we jointly estimate the states compared to

the situation in which we estimate them independently.

Comparison of Joint and Independent Posteriors: To

quantify the approximation quality of the independent es-

timation we carried out a simulated experiment in the toy

block scenario. For every possible combination of block

poses we simulated 250 test runs, each consisting of three

measurement update steps. We then measured the KL-

divergence between the two posteriors.

As Figure 5 shows, the approximation is very accurate for

regions in the joint state where the blocks are far away from

each other. However, when the two objects are placed closely

the approximation error grows considerably. The goal of this

work is to develop a method which is able to enhance the

approximation quality in such areas.

Fig. 5. Mean KL-divergence (250 simulation runs per possible true
joint state) between joint state and independent state estimation for all
combinations of brick-states. The gray area corresponds to the states that
are impossible due to collisions.

III. RULE SET JOINT STATE UPDATE

In this section we introduce our new method of “Rule Set

Joint State Update” (RSJSU), which increases the approxi-

mation quality of independent multi-object state estimation.

A. Independence Assumption in Multi-Object State Estima-

tion

Let us suppose that there are n objects and that the full

state x, which consists of n sub-states x = (x1, x2, . . . , xn)
is estimated using a recursive Bayes filter according to (1).

Bel(xt) = ηp(zt|xt)

∫

p(xt|ut, xt−1)Bel(xt−1)dxt−1 (1)

Let us furthermore assume that the prior Bel(x0), the

measurement and the prediction models for the individual

objects can be specified under the assumption that they

are independent of the other objects. Then we obtain the

following equations:

Bel(xi
t) =

ηi p(zi
t|xi

t)

∫

p(xi
t|ui

t, x
i
t−1)Bel(xi

t−1)dxi
t−1 (2)

and

Bel(xt) =

n
∏

i=1

Bel(xi
t). (3)

In many real life situations the assumption of full indepen-

dence is not justified. However in such a case the independent

estimation can be seen as approximation of the true full state

estimation process.

Dependencies in real life scenarios occur when objects

are close together or stacked. These dependencies originate

from the laws of physics which forbid intersection of rigid

objects and require balance of power. We define a rule set r

to consist of physical laws and 3D models. In the motivating

example given above, the rule set r would comprise both

bricks’ models and the law that they cannot intersect.

B. Modeling the Rule Set

Statistical dependencies between sub-states have to be

represented in the full joint state prior. Formally this is
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represented in (7) by p(x | r) as prior which is conditioned

on the rule set r. The factors α, α′ and α′′ act as normalizers.

p(x | z0...t, r) = α · p(z0...t, r | x)p(x) (4)
cond.ind.

= α · p(r | x)p(z0...t | x)p(x) (5)

= α · p(z0...t | x)p(x | r)p(r) (6)
cond.ind.

= α′ ·
∏

p(zi | x)p(x | r) (7)

This prior can be imagined as mostly equally distributed

with certain areas containing zeros. These areas correspond

to the physically impossible states. As the pre-calculation

of this joint prior for the full joint state in continuous high

dimensional domains seems to be intractable, the solution

lies in (8) according to which the rules in the p(r | x) can

be applied after the incorporation of measurements.

p(x | z0...t, r) = α′′ · p(r | x)p(x | z0...t) (8)

Hence, p(r | x) must only be evaluated for state regions,

that bear probability mass after the incorporation of mea-

surements. Comparable to the measurement model, p(r | x)
evaluates how a given state complies to a given rule set. In

the case of the physical rule, which enforces that objects

cannot intersect, the term would be zero for all x that

describe a colliding object constellation.

C. Rule Set Joint State Update

The input parameters of the RSJSU are a set of indepen-

dently estimated probability distributions p(xi | z0...t) over

k sub-states that are suspected to be dependent regarding r.

The first step is to construct the conditional joint posterior

under the assumption of independence (9). The constellation

of sub-states does not change during RSJSU, so x1...k is

abbreviated to x[J].

p(x[J] | z0...t)

= p(x1 | z0...t)p(x2 | z0...t) . . . p(xk | z0...t) (9)

To obtain p(x[J] | z0...t, r), p(x[J] | z0...t) must be updated

with p(r | x[J]) according to (8).

Given this we can continue the recursive Bayesian estima-

tion in the joint state. In the case that the application needs

an estimate of the sub-state, the joint probability distribution

has to be marginalized:

p(xi | z, r) =

∫

m 6=i

p(x[J] | z, r)dxm. (10)

D. Invocation of the RSJSU during Runtime

The gain of the RSJSU depends on when it is applied in

an application scenario. Hence, the decision when to apply

it is based on a trade-off between the expected gain and the

costs.

The expected computational costs for the RSJSU depend

on the number of sub-states that are considered and on the

granularity of the corresponding models. These factors are

known at runtime, but the expected gain is unknown and must

be estimated. Since the gain grows with growing dependency,

an estimation for the dependency could be used as estimation

for the gain.

E. RSJSU Applied to the Motivating Example

In section II we compared independent estimation and

full joint state estimation using the KL-divergence (Fig. 5).

To evaluate the approximation quality of the RSJSU we

performed the same evaluation. In particular, we took the

results of an independent estimation after the incorporation

of three measurement steps, updated it using RSJSU and

compared it to the full state estimation using the KL-

divergence (Fig. 6). In this scenario where the true joint prior

Fig. 6. Mean KL-divergence (250 simulation runs) between joint state and
RSJSU state estimation for all possible brick-states. The scale is the same
as in Fig. 5.

is known and used in the RSJSU, the approximation quality

is substantially higher. The maximum mean KL-divergence

between RSJSU and JE is about 10−16 compared to 0.89 for

the independent estimation. However, in reality the true prior

will never be known exactly. Hence, in a real world example

this extreme precision will not be reached.

IV. IMPLEMENTATION

Our real-world application for the use of RSJSU is the DE-

SIRE mobile service robot (Fig. 1) which features the ability

to manipulate every-day objects in a household scenario.

First we will describe the robot’s current multiple-classes-

multiple-instances object localization system. After that we

will explain the implementation of RSJSU and the way it is

applied within the current system.

A. Multiple-Classes-Multiple-Instances Object Localization

The role of the object localization is to detect and to

localize objects of different classes in 6D. The objects may

appear in arbitrary numbers and positions and the “scenes”

are assumed to be static. In this context, a class is defined as

all object-instances that “look exactly the same”. Thus, two

cans of Campbell’s Tomato Soup 10 oz. are of the same class,

whereas another tomato soup does not belong to that class.

All classes which shall be manipulated are initially known

to the system in terms of a model, although the number

of instances of one class that can appear in the scenes is

unknown.

As the total number of objects is unknown, the dimension

of the overall state which is to be estimated is also unknown.

However, as the dimension depends linearly on the number

of objects, it is large in realistic scenarios.
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To fulfill the requirements while still being tractable, we

decided to estimate the states of single objects separately,

assuming full mutual probabilistic independence between all

objects.

Since this approach requires data association, we first

describe the method of data association, which assigns the

measurements to the separate targets.

After that we describe the state, measurement model,

motion model and the Bayes filter itself which estimates the

state of those targets.

B. Data Association

We use a maximum likelihood approach with a built-in

threshold, which means that a new measurement is either

assigned to the object that accounts for the maximum like-

lihood p(z | x) to have originated this measurement, or a

newly created object, when all existing objects’ measurement

likelihoods fall below the threshold.

Since the localization system that we are using is quite ac-

curate in relation to the average size of the objects, false data

associations do not occur in our experiments. Nevertheless in

a different scenario this data association approach could be

replaced by a more complex approach like the Monte Carlo

Joint Probabilistic Data Association Filter [6].

C. Particle Filter for Recursive State Estimation

For the individual object state estimation we use a recur-

sive Bayes filter, to incorporate all measurements that were

assigned by the data association over time. This Bayes filter

is implemented using the bootstrap particle filter [7] from

the Orocos project [8]. As sensor for the object recognition

we use a pair of calibrated high resolution (1388 x 1038)

Firewire cameras mounted on a pan-tilt unit.

1) The State: The state of a single object consists of a

class c and a pose ω with reference to the world frame. This

seven-dimensional state is called hypothesis h consisting of

one discrete and six continuous dimensions: h = (c, ω). For

the pose we use a Rodriguez representation, which means

that the first three entries of the pose vector describe its

translational part and the last three entries are formed out

of the unity rotation axis (e1, e2, e3) and the factor β that

determines the rotation angle (11).

ω = (x1, x2, x3, βe1, βe2, βe3) (11)

2) The Prior: The prior p(x0) in our system is assumed

to be equally distributed over classes and poses.

3) The System Model p(xt | xt−1): As we consider only

stationary objects in our scenario, the system model consists

of a static state transition.

4) The Measurement Model p(z | x): Our localization

method is based on the sift feature [9]. To retrieve classi-

fication and full 6D localization, we use a combination of

stereo vision and 3D sift models which are constructed using

the Interactive Modeling Center of the Karlsruhe Institute of

Technology [10]. Our approach has no restrictions regarding

the object shape and is described in [11].

Fig. 7. Translational errors (cm) of the localization method, compared to
ground truth; depicted in camera coordinate system with fitted covariance
ellipsoid (70%) for xc,yc and zc(vertical axis).

Probabilistically we describe our localization method with

the conditional probability p(z | xc), xc being a seven

dimensional object hypothesis expressed in the camera coor-

dinate system and z being the measured hypothesis which is

delivered by the underlying object localization system. The

evaluation of the measurement model p(z | xc) for specified

z and xc first detects whether the object would be visible in

the camera and not too far away. If both conditions are met,

the measurement observation likelihood is evaluated using

the probability distribution shown in Fig. 7. The necessary

normalization is automatically done by the particle filter.

D. Rule Set Joint State Update for Monte-Carlo-Represented

Multi-Object Scenarios

In our implementation, we restricted the joint state to

consist of two objects’ states. However it can be extended

to a multi object implementation. The physical fact that

scenes have to be free of forces to be stationary, formed the

rule in our rule set r (comp. (13)). This means that neither

intersecting nor flying object are allowed.

The implementation of the RSJSU (Fig. 8) follows the

method description in section III. First, the joint state is

constructed by combining two samples from each of the

originating two probability distributions into a joint sample.

This step is repeated until the desired number of joint

particles is reached.

Next, all joint particles are weighted with p(r | x
[n]
12 )

according to (8) on page 3.

When the joint state representation is no longer required,

the joint distribution is marginalized back. Using a Monte

Carlo representation, this can be done by ”cutting” the joint

particles. The resulting sample sets form the distributions of

the sub-states.

E. Evaluating p(r | x
[n]
12 ) Using the Bullet Physics Engine

We use the Bullet Physics Engine to find the maximum

penetration depth dc in a scene x
[n]
12 . In the case of hovering

objects that do not collide we use the simulation to find

a valid constellation and determine the distance df to the

original object’s pose. Both values approximate how far a

valid constellation is. Since our sample-based representation

is only an approximation when using a limited number of

particles, we need to soften the hard freedom of forces con-

straint. Otherwise no valid constellation would ever appear.
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Rule set joint state update

χ̄12 = χ12 = ∅
for n = 1 to N do

sample x
[n]
1 ∼ bel(x1)

sample x
[n]
2 ∼ bel(x2)

x
[n]
12 =

{

x
[n]
1 , x

[n]
2

}

w
[n]
12 = p(r | x

[n]
12 )

χ̄12 = χ̄12 +
〈

x
[n]
12 , w

[n]
12

〉

end for

for n = 1 to N do

draw i with probability ∝ w
[i]
12

χ12 =
{

χ12, x
[i]
12

}

end for

–Joint state established–

marginalizeχ12 into χ1 and χ2

Fig. 8. The rule set joint state update algorithms for Monte Carlo
represented probability distributions.

To account for these approximation errors we use a zero

mean Gaussian on the maximum of these two distances and

determined the standard deviation σ experimentally.

d = max(df (x
[n]
12 ), dc(x

[n]
12 )) (12)

p(r | x
[n]
12 ) =

1

σ
√

2π
e−

1

2
( d

σ
)2 (13)

The particle representation accomplishes the necessary nor-

malization.

V. EXPERIMENTAL RESULTS

The goal of the new method is to selectively increase the

accuracy during independent multi object state estimation in

the presence of dependencies between objects.

We tested the method in real-life scenes (Fig. 1), where

numerous objects were placed on a table. The gain seemed

to be significant by visual inspection, however through the

absence of ground truth information for such complex scenes

we were not able to quantify the benefit.

Therefore we evaluated the gain of RSJSU by comparison

to the classical independent method in a test set that contains

403 different scenes of a different kind.

We designed the test scenes such, that we are able to

determine the ground truth poses of the objects as basis

for the comparison and strong dependencies between the

objects constitute the application of RSJSU. The scenes

consist of two objects (Fig. 9), one of them being a table

with a calibration pattern which can be localized precisely

and the other one being one out of seven different grocery

items which can be recognized with the object localization

method sketched in section IV. These grocery items feature

a calibration sheet on the bottom, to allow for accurate

placement onto the calibration pattern, so ground truth poses

in relation to the calibration pattern could be recorded.

Only one measurement was executed and incorporated

according to the Gaussian measurement model in Section IV-

C.4. After that, the mean value of the resulting pose estimate

Fig. 9. One test image (out of 403) with a grocery item and a calibration
pattern. The ground truth projected onto the object in the right image.

is compared to ground truth. Accordingly, the mean value of

the pose estimate after the application of the RSJSU is also

compared to ground truth. It has to be noticed, that in the

case of the RSJSU this only makes sense when the updated

pose estimate is approximately Gaussian again. This is not

generally the case, however in our test scenarios it is. All

scenarios were chosen to lie within the approximate working

range of our mobile service robot covering different absolute

distances from the sensor (0.5m-1.2m) and variable object

and camera positions.

A. The Test Results

(a) (b) (c)

Fig. 10. Three test situations (depicted in world frame): Particle set
(translational part only) from original measurement model: red circles with
red covariance ellipsoid at 75 percentile; particle set after RSJSU: blue
crosses with blue covariance ellipsoid accordingly.

Fig. 10 shows three exemplary intermediate results from

the tests. Due to the directed nature of both of the mea-

surement models and the physical rules, the gain depends

on how those directions correlate. In Fig. 10(b) which was

taken from a downlooking view point the gain is higher due

to the steep view point.

To quantify the advantage of our method, the distribution

of the Euclidean error of the translational part compared to

ground truth is shown in Fig. 11. The histograms show, that

the error of the pose estimation has lowered. With respect to

the expected values of both distributions our method yields

an improvement of about 15%.

As expected from the physical properties of the table, the

highest improvement is achieved in the vertical direction (see

Fig. 11 c/d).

VI. RELATED WORK

Dependencies between objects in the state have been used

to reduce the state dimension of some of the involved objects
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(a) IE (b) RSJSU

(c) IE (d) RSJSU

Fig. 11. Upper figures: Histogram of the Eucledian translation error
(worldframe) compared to ground truth (cm) (a): mean value 3.43cm

(b): mean value 2.82cm. Lower figures: Histogram of the z-axis error
(worldframe) compared to ground truth (cm).

in [3], [4] and [5]. The drawback of this approach compared

to ours lies in its low generality.

In [12], a map-based motion model p(xt | ut, xt−1, m) is

presented which is conditioned on the map m to account

for violations of (7). That way, the transformation of a

particle into a pose that collides with the occupancy map

is suppressed. With our approach, exactly this could be done

using a joint state motion model. However, as the map-based

motion model approach does not explicitly model the path,

the same result could be reached with our state dependency

approach which would delete the impossible states after the

state transition.

Bohlmann [13] presented an outdoor 2.5D localization

method which is based on GPS data and enhanced by

cadastral data. The sampled posterior is constantly filtered

with cadastral data of buildings to delete impossible robot

poses. However they assume this data to be exactly known

and correct.

Regarding dependencies between objects in the measure-

ment model, Rasmussen and Hager have proposed the Joint

Likelihood Filter [2] that explicitly handles occlusion. Since

their system estimates a 2D position the depth information

of the targets is not included in the state, so it is estimated

separately. In the joint state that we propose, the possible

occlusion does not have to be sampled since it can be derived

directly from the joint state. Kreucher [14] estimates the full

joint multi target probability density using a particle filter,

and models occlusion directly. Their approach is also based

on the insight, that these dependencies occur locally, however

they only model dependencies in the measurement model and

ignore dependencies in the state which our approach models.

Teather [15] examines the use of physics engines for user

interfaces for content creation in virtual reality. They restrict

the object motion from 6DOF to physically possible changes,

which f.i. enforces a table to stand on the ground. The aspect

of interest here for our paper is that it follows the same basic

idea: The physical laws can be used to correct scenes when

noisy or lossy input leads to unlikely scenarios.

VII. CONCLUSIONS

In this paper, we proposed the Rule Set Joint State

Update as new method to increase the estimation accuracy of

independent sub-state estimation in the presence of depen-

dencies in the prior. Compared to the majority of previous

methods, our approach features a more general concept to

utilize dependencies between objects on the occurrence. Our

algorithm has been implemented for a sample-based multi-

object localization system. It uses a physics engine to model

the physical relations in the prior which cause the statistical

dependencies.

Experiments carried out on real data demonstrate the

applicability in complex service robotic scenarios. Extensive

test performed on a large dataset revealed a substantial gain

of precision in the pose estimate obtained with our algorithm

in comparison to a standard independent sub-state estimation

approach.
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