
Incorporating Human Haptic Interaction Models

into Teleoperation Systems

Daniela Feth, Angelika Peer, and Martin Buss

Abstract— A classification of model-mediated teleoperation
systems according to the model type and its application is
introduced. While models of the human operator estimating
position trajectories have been already applied in teleoperation,
in the present paper, we propose the incorporation of force-
based human haptic interaction models. This new approach
allows to transfer the strength of advanced model-mediated tele-
operation, i.e. increased stability and fidelity, to scenarios where
forces applied to the remote environment are of importance. As
an application example we present a tele-rehabilitation scenario
which was implemented on a 1 DoF teleoperation system.
Position and force fusion algorithms integrating human haptic
interaction models are defined for time delay and packet loss
compensation. The results demonstrate clearly the benefit of
incorporating force-based human haptic interaction models into
teleoperation systems.

I. INTRODUCTION

In a teleoperation system a human operator interacts with

a remote environment via a technical system consisting of

a human-system interface, a communication channel and a

robot, the so-called teleoperator. Teleoperation systems allow

a human operator to be present in otherwise inaccessible

environments, like e.g. space or disaster areas. Furthermore,

experts can act in remote locations without the necessity of

traveling. A specialist for a certain surgical intervention is,

for example, enabled to operate in a remote hospital or a

therapist can coach her/his rehabilitation patients in their

home environment. This allows a reduction of travel time

and costs.

In order to increase task performance, stability and usabil-

ity of the system, advanced teleoperation systems integrate

knowledge about the environment, the human operator or the

task in the system. A good overview of such EOT-adapted

controllers is given in [1]. We consider model-mediated

teleoperation, a special case of EOT-adapted controllers,

and classify it according to the type of model applied and

its usage. Either a model of the remote environment is

rendered on master side (Fig. 1) or a model of the human

operator is rendered on slave side (Fig. 2). Further, either

model parameters are estimated, exchanged, and master/slave

control is based completely on the estimated model (Fig. 1a

and Fig. 2a), or measurement data is fused with model data

(Fig. 1b and Fig. 2b). By estimating and exchanging model

parameters, the communication channel is by-passed and the

bandwidth of the overall system is increased. The signal
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Fig. 1. Model-mediated teleoperation with model of remote environment
used for a) model estimation and b) signal fusion
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Fig. 2. Model-mediated teleoperation with model of human operator used
for a) model estimation and b) signal fusion

fusion is introduced to achieve an increased signal quality

by compensating time delays and packet loss or to provide

user-adapted assistance by defining shared-control strategies.

A combination of these four types of control architectures is

possible, e.g. a model of the remote environment and of the

human operator is rendered, or the parameters of the model

used in signal fusion are estimated and updated on-line.

In this paper we propose the integration of force-based

haptic interaction models into a teleoperation system to allow

for increased stability, usability and task performance. To

demonstrate the validity of our approach, a 1 DoF tele-

rehabilitation system is realized that compensates variable

time delays and packet loss by using a model replicating

human haptic interaction behavior.

II. RELATED WORK

In the introduction we identified different classes of

model-mediated teleoperation architectures. To embed our

present work in this classification and into the state of the

art, in the following, we discuss recent literature related to
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the four types of model-mediated teleoperation. Furthermore,

because we aim for the integration of force-based human

models in teleoperation systems, we also present a short

overview on existing studies and models on human haptic

interaction behavior.

A. Model-mediated teleoperation

The state of the art on the four types of model-mediated

teleoperation is presented according to the order of the

diagrams in Fig. 1 and Fig. 2.

Model of remote environment on master side:

Model estimation: In [2], [3], [4], [5] knowledge about

the remote environment is integrated into the teleoperation

system. The remote environment is rendered as a virtual

environment on master side. A model of the remote

environment is estimated on slave side and, then, the

estimated model parameters and not the sensor signals

(forces/motion) are sent to the master side to update the

model (Fig. 1a). Hence, the communication channel is

by-passed and the bandwidth of the system is increased.

Undelayed haptic interaction takes place on master side.

However, the signals that are sent to the remote environment

are still delayed, which results in a delayed task execution.

Signal fusion: In [4] a model of the remote environment

is used (Fig. 1b) to compensate time delay by model-based

prediction. Therefore, model and measurement data are fused

on master side. The authors of [6], [7] aim at compensating

packet loss which is characteristic to internet-based data

transmission by estimating lost data.

Model of human operator on slave side:

Model estimation: Currently no approaches are known

from literature that send parameters of a human behavior

model to the slave side (Fig. 2a). If operator models are

estimated, their output is fused with measurement data as

presented in the next paragraph. In general, we distinguish

two ways of exchanging estimated parameters of operator

models in a teleoperation systems: Either the slave acts

according to a model which parameters are adapted on-line

to a particular situation/task, or the model of the human

operator is estimated beforehand. Then, the slave performs

specific (sub-)tasks in complete autonomy, which means a

skill transfer took place.

Signal fusion: Measurement signals and model output of

the human operator are fused in [5], [8], [9] (Fig. 2b).

In [5] the model parameters are estimated on master side

and sent to the slave side to introduce a shared-control

strategy that assists the operator in task execution. The

position trajectory generated by the human motion model

is based on the widely-known minimum-jerk criterion [10]

which applies for free-space point-to-point movements. The

same minimum-jerk approach was applied by [8], [9] to

predict human motion in order to compensate time delays

and achieve a non-delayed task execution. Again, only

free-space motions are possible. One difference to [5] is,

that signal fusion is not conducted on slave but on master

side, because the time delay is assumed to be known. As

only free-space motions are considered, no information

about the remote environment is required for prediction.

In summary, it can be stated that up to now operator

models which have been integrated in teleoperation systems

consider characteristics of human free-space motion [8], [5],

[9], but not of haptic interaction behavior. However, we

consider the integration of a force-based model of haptic

interaction behavior essential, if there is physical contact with

another human in the remote environment. In particular, this

is crucial in tasks with a close physical coupling like tele-

rehabilitation [11]. The success of the patient’s rehabilitation

process depends largely on the mutual haptic adaptation of

therapist and patient.

B. Human haptic interaction models

In order to realize model-mediated teleoperation by inte-

grating models of the human operator, a careful definition

of appropriate human haptic interaction behavior models

is important. Their definition is challenging, because they

generally depend on the task, the interaction partner’s as

well as one’s own, individual characteristics and abilities.

Existing haptic interaction models are mostly task-specific

and/or consider different roles of the interaction partners.

Haptic interaction tasks are generally divided into tasks with

direct and indirect physical contact of the interaction part-

ners. Haptic interaction models with direct physical contact

are relevant e.g. for guidance like in handshaking [12] or

dancing [13]. Tasks with indirect haptic interaction refer

primarily to joint manipulation tasks, e.g. rotating [14] or

carrying [15] objects.

In [14] the roles of accelerator and decelarator were iden-

tified for an object moving task and respective characteristic

force profiles were presented. In [16] it was experimen-

tally shown that dominance is distributed unequally between

two human partners in a haptic collaboration task. Finally,

[12] distinguishes between active and passive partners in a

human-robot handshaking scenario.

The only known application of a model of human haptic

interaction behavior in teleoperation is [17]. They apply a

feedback model to represent human behavior in simulation

to increase the accuracy of the results. However, this

approach was not verified within a real experimental setup.

III. METHOD

A. Scenario

We chose a 1 DoF tele-rehabilitation scenario similar to

the one proposed by [11] as an exemplary task to demonstrate

the effectiveness of integrating force-based haptic interaction

models in a teleoperation system. The success of rehabil-

itation is highly dependent on the guidance provided by

the therapist, and, hence, the mutual adaptation of therapist

and patient. This restricts the broad introduction of fully
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Fig. 3. Control architecture of tele-rehabilitation system

autonomous rehabilitation devices. Human performed reha-

bilitation allows this close interaction and adaptation to the

patient’s individual needs, while tele-rehabiliation allows the

therapist to instruct the patients in their home environment

such that travel time and costs can be decreased.

In tele-rehabilitation therapist and patient communicate

and interact via the internet which exhibits packet loss and

time-variant time delay. To compensate these disturbances

and enable stable and transparent teleoperation, we fuse the

measurement data with predicted data obtained by haptic

interaction models of therapist and patient on the respective

other side. The structure of the resulting overall control

system is depicted in Fig. 3. We selected a classic force-

position architecture, where forces are sent from master to

slave and positions from slave to master [18]. As local con-

trollers a PD-position control on master side and a position-

based admittance control on slave side are realized. A non-

ideal communication channel introducing a time-variant, but

bounded time delay and packet loss is considered. Force data

is sent to the remote environment and fused on slave side

with predicted data provided by a force-based human haptic

interaction model of the therapist. A model of the remote

‘environment’, i.e. the patient, is required on master side to

compensate time delay and packet loss of the position data

received from the slave side. Hence, a force fusion on slave

side and a position fusion on master side based on Kalman

filters is implemented.

Because of the close haptic interaction between therapist

and patient, we prefer model-mediated teleoperation over

passivity-based approaches which are commonly applied in

situations where time delay and packet loss are present.

Passivity-based approaches change the system dynamics in

order to guarantee stability. This results in a reduced fidelity

[19].

B. Signal fusion with modified Kalman filter

The general Kalman filter is based on a linear, time-

discrete process model (here the model is time-invariant):

xi+1 = Axi + Bui + wi

yi = Cxi + vi

(1)

where xi is the state vector at time step i, A, B and C

are the system matrices, wi is the process noise and vi is

the observation noise. Process as well as observation noise

are assumed to be drawn from a Gaussian distribution with

covariances Qi and Ri. Qi and Ri describe the reliability

of process model and measurement data, respectively. Their

exact values are often unknown and can be used as tuning

parameters. The applied Kalman filter equations are:

prediction: x⋆
i+1 = Ax̂i + Bui

P⋆
i+1 = AP̂iA

T + Qi

(2)

update: x̂i+1 =x⋆
i+1 + Ki+1(yi+1 − Cx⋆

i+1)

P̂i+1 = (I + Ki+1C)P⋆(k + 1)

Ki+1 =P⋆
i+1C

T (CP⋆
i+1C

T + Ri+1)
−1

(3)

where I is the identity matrix, Pi is the error covariance

matrix, Ki is the Kalman filter gain, x⋆ denotes predicted

values, and x̂ updated values, see [20].

In order to compensate time-variant time delays and packet

loss, we realize a modified version of this classic Kalman

filter based on [21]: We assume that measurement data

arrives with a time-variant time delay, with an upper bound

of Tmax and is time-stamped such that the exact capture

time is known. These measured data points yi are stored

chronologically in a vector for the last time window Tmax

together with the estimated values of x̂i and the covariance

matrices P̂i.

If at time k a new measurement data of time j+p (until then

yj was the most recent measurement point, j < k, p > 0,

j + p ≤ k) arrives, the following procedure is applied: The

state of the system x⋆
j+p and the covariance matrix P⋆

j+p is

predicted starting from x̂j , P̂j based on (2). Then, the new

measurement data is integrated by using update equations (3)

and obtaining x̂j+p and P̂j+p. Finally, x⋆
k is determined by

applying the prediction again.

If, however, an older measurement data j−p arrives, we use

this additional information and virtually jump back to the

estimated state of the system at time step j − p and update

it. Afterwards, the prediction/update equations are evaluated

from j−p to k integrating every data point that was measured

inbetween.

C. Haptic model of therapist and force fusion

For force fusion a haptic interaction model of the ther-

apist is integrated into a Kalman filter as introduced in

the preceding paragraph. The following task-specific haptic

interaction model is used to describe the behavior of the

therapist: The therapist guides the patient along the desired

motion trajectory xref by controlling the error between the

desired trajectory and the current position of the patient, see

Fig. 4. The desired motion trajectory xref describes a certain

rehabilitation task. The feedback control law is based on the

crossover model which was originally introduced by [22].
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Fig. 4. Human haptic interaction model in a pursuit tracking task

It describes the behavior of a human operator in a pursuit

tracking task, if a mass is moved along a desired reference

trajectory,

Gt(s) =
Fmodel(s)

E(s)
=

e−τhs

(1 + Tps)
︸ ︷︷ ︸

perception-action loop

[K(1 + Tzs)] (4)

where τh is the time-delay caused by the human perception-

action loop and Tp is the lag due to the limited bandwidth

of the human motor system. K and Tz are the parameters

of the actual human control action (for more details please

refer to the original work).

For the present system we assume that the task trajectory

is known and the behavioural parameters are estimated

beforehand and kept constant during task execution. Of

course, different tasks, reference trajectories and models of

the therapist’s haptic interaction behavior or force profiles

can be stored on slave side, to generalize our approach.

In such a case, an intention recognition module would be

required to decide on the currently active task/model.

For application in the Kalman filter the time-continuous

transfer function Gt(s) is transformed into a time-discrete

state-space representation like (1), by a zero-order hold

discretization with sampling time T :

fh,i+1 =

[

(1 −
T

Tp

)

]

fh,i +

[
KT

Tp

KTzT

Tp

] [
ei

ėi

]

yi = [1]fh,i

(5)

Therein, the time delay τh is neglected, because the therapist

does not have to react to a certain change in the trajectory

but is practiced in its execution and, hence, can plan her/his

actions in advance.

D. Haptic model of patient and position fusion

For the position fusion on master side, we assume that the

patient shows passive behavior and behaves like a mass only

Gp =
Fs(s)

Xp(s)
=

1

ms2
(6)

where m is the mass of the patient’s arm. Hence, we assume

that the patient does not apply forces actively to perform

the rehabilitation task, but relies purely on the guidance of

the therapist. Again, the model is transformed into a time-

discrete state-space model according to (1)
[

xp,i+1

ẋp,i+1

]

=

[
1 T
0 1

] [
xp,i

ẋp,i

]

+

[
0

T/m

]

fs,i (7)

which is implemented in a Kalman filter following the same

procedure as presented before.
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Fig. 5. Experimental setup: The therapist receives visual feedback about
the patient’s position (red ball) and the task’s reference trajectory (white
line). The patient is haptically guided only and receives no visual feedback.

IV. EXPERIMENT

A. Task & Experimental setup

The experimental setup consists of two 1 DoF linear haptic

devices each equipped with force sensors (burster tension-

pressure load cell 8524-E) and linear actuators (Thrusttube).

One is serving as haptic human-system interface (master)

and the other as teleoperator (slave). The master as well

as the slave device is equipped with a hand knob. The

therapist is connected to the master and the patient to the

slave as shown in Fig. 5. The control of the linear haptic

devices is implemented in Matlab/Simulink and executed

on the Linux Real Time Application Interface RTAI with

a sampling time of T = 1 ms. The time-variant time delay

of the communication channel is simulated and drawn from

a Gaussian distribution with mean T d = 100 ms and a

standard deviation of σTd = 5 ms. Further, a packet loss

of 10% is simulated. If a packet is lost, the last received

data is hold.

We chose an oscillating motion in x-direction as an exem-

plary task, because rehabilitation tasks are typically smooth,

cyclic motions with no abrupt changes. On master side, this

oscillating trajectory and the current position of the patient

are visualized. The desired motion trajectory is displayed as

a white line which is scrolling down a screen in negative

z-direction with a constant velocity of 7 mm/s. The output

of the position fusion module (in the ideal case this equals

the patient’s position) is displayed as a red ball in a simple

virtual environment which is implemented in C++, see Fig. 5.

The patient is only haptically guided by the therapist and

receives no visual feedback. In this experiment instructed

subjects instead of real patients took part.

In [15] we identified the mean parameters of the human

haptic interaction model (4) in a 1 DoF pursuit tracking

task, where a mass of m = 10 kg was to be moved:

K = 18.88, Tz = 4.75, and Tp = 0.12. The mass of

m = ma + mc = 10 kg is made up by the mass of the

patient’s forearm and hand (ma = 2 kg) and the mass

of the virtual admittance of the position-based admittance

control (mc = 8 kg). This model is integrated in the force

fusion Kalman filter. We further assume an upper bound

for the time delay of Tmax = 500 ms. The covariance

matrices of the force and position fusion Kalman filters are

4260



0 5 10 15 20
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time/s

x
/m

 

 

x
s

x
m

x
ref

(a) Position tracking

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

time/s

f/
N

 

 

f
m

f
s,d

(b) Force tracking

Fig. 6. Prediction and tracking capabilities of the fusion algorithms, based
on Kalman filters. In the experiment, the therapist guides the patient along
a reference task trajectory. To adapt the task execution to the patient’s
needs, the motion trajectory can be altered from the reference trajectory
(exemplarily at t ≈ 14 s). xs: slave position, xm: master position (b= output
of position fusion), xref : task trajectory, fm: force applied by therapist,
fs,d: force generated by slave (b= output of force fusion)

determined heuristically to Qi = 10e15 and Ri = 0.1, and

Qi =

[
10 0
0 10

]

and Ri = 0.1, respectively.

B. Results & Discussion

Fig. 6 shows the tracking and prediction capabilities of

the force and position fusion algorithms, based on Kalman

filters. In the presented scenario, the therapist would not

be able to compensate the instabilites caused by the time-

variant time delay (Gaussian distribution T d = 100 ms,

σTd = 5 ms) and packet loss of 10% without the model-

based prediction algorithms. Hence, our results demonstrate

the improved stability of the controlled teleoperation system

due to the integration of haptic interaction models.

In order to achieve a high accordance between the motion

of the therapist and the patient, the objective of the position

fusion algorithm (generating the desired master position

xm,d) is to track the slave position, and not the reference

trajectory. As shown in Fig. 6(a), where the therapist guides

the patient along the task trajectory, the position tracking

is very good. The force fusion algorithm tracks the forces

applied by the therapist, see Fig. 6(b). Due to the good

position and force tracking, a high fidelity is achieved, and

the interactiveness of the rehabilitation process is maintained

in our experiment. These results demonstrate clearly the

effectiveness of introducing force-based haptic interaction

models in teleoperation systems.

Since we fuse human model and measurement data, the

therapist can easily leave the reference trajectory by applying

the respective forces as displayed in Fig. 6 at t ≈ 14 s.

Hence, the motion trajectory can be modified, and task

execution can be adapted to the patient’s needs. The position

tracking is still very accurate. However, there are deviations

between the force applied on master side and the force

generated by the slave. This is explained by differences be-

tween the therapist’s real behavior and the haptic interaction

behavior modeled in the Kalman filter.

The human haptic interaction models of the therapist and

the patient are basic and we tested them only in pursuit

tracking tasks. Like in all model-mediated approaches, the

system performance depends highly on how well the models

describe the real behavior. One of the limitations of the

applied operator model is that we assume that the therapist

applies forces to track the reference trajectory. Hence, if

she/he intends to leave the reference trajectoy, this causes

an error between model and real behavior and the tracking

performance of the Kalman filter realized for force fusion

is decreased, see Fig. 6(b) at t ≈ 14 s. Another limitation

is that we assume that the patient is strictly passive and

behaves like a mass only. In the experiment, we instructed

the patient to behave passively. But, in real rehabilitation,

patients commonly show the whole range of behavior, from

fully passive to completely active depending on their level

of rehabilitation.

V. CONCLUSION & FUTURE WORK

In the present paper we introduced a classification of

model-mediated teleoperation according to the type (environ-

ment or human operator) and the usage of the model (model

estimation or signal fusion). Unlike the state of the art, where

free-space models of the human operator providing position

trajectories were applied for model-mediated teleoperation,

we suggest the usage of force-based human haptic interaction

models. This new approach allows to transfer the strength

of advanced model-mediated teleoperation, i.e. increased

stability and fidelity, to scenarios where the forces applied

on the remote environment are of importance. This is e.g. the

case if excessive forces need to be avoided or if two human

operators interact haptically via a teleoperation system.

In the presented experiment, we applied modified Kalman

filters in a 1 DoF tele-rehabilitation scenario to fuse mea-

surement data with the output of human haptic interaction

models to compensate time delay and packet loss introduced

by the communication channel. Results show a good position

and force tracking of master and slave device. Hence, the

stability and fidelity of the system is increased by applying
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model-based fusion and prediction, and the interactiveness

of the rehabilitation process can be maintained. These results

demonstrate clearly the effectiveness of incorporating force-

based human haptic interaction models into teleoperation

systems.

For a more profound evaluation, a control-theoretic anal-

ysis with respect to stability and transparency has to be

conducted. In particular, a comparison with passivity-based

control approaches is required to obtain quantitative results

and allow more detailed conclusions about the benefits of

integrating force-based haptic interaction models in teleop-

eration systems to compensate time delay and packet loss.

One approach to further improve and generalize our results

is to progress from constant to user-adapted model param-

eters which are estimated on-line. Additionally, the perfor-

mance of the tele-rehabilitation system can be improved by

learning modifications of the tasks. The introduction of more

advanced models describing the behavior of an individual

within a haptically interacting dyad and intention recognition

allows application of our approach to e.g. active patients

and other scenarios like joint object manipulation tasks. As

the definition and identification of human haptic interaction

models is currently in the focus of research [14], [12], [13],

we expect appropriate models to be established in the near

future.
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