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Abstract— This paper presents a distributed control architec-
ture to perform part recognition and closed-loop control of a
distributed manipulation device. This architecture is based on
decentralized cells able to communicate with their four neigh-
bors thanks to peer-to-peer links. Various original algorithms
are proposed to reconstruct, recognize and convey the object
levitating on a new contactless distributed manipulation device.
Experimental results show that each algorithm does a good job
for itself and that all the algorithms together succeed in sorting
and conveying the objects to their final destination. In the
future, this architecture may be used to control MEMS-arrayed
manipulation surfaces in order to develop Smart Surfaces, for
conveying, fine positioning and sorting of very small parts for
micro-systems assembly lines.

I. INTRODUCTION

Distributed manipulation has drawn attention in several
recent studies, particularly in the micro scale area with
Micro-Electro-Mechanical Systems (MEMS) actuator arrays.
In robotics, we use the term of “distributed manipulation”
for devices which can induce motion on objects through the
application of force at many points at the same time. This
approach offers new possibilities with many advantages in
macro as well as in micro scale: many small inexpensive
mechanisms can move large heavy objects (with regard to
their scale) and can handle several objects at the same time.
The manipulation device is also flexible and scalable by
adding/suppressing elements. Moreover it is highly robust
to failures due to redundancy of mechanisms.

Distributed manipulation has been a very active topic
since the 1990’s. These pioneer researches have developed
different types of distributed manipulators, based on servoed
roller wheels [1], cilia actuators [2], [3], [4], [5], [6], suction
nozzles with air-hockey tables [7], [8], [9] and directed air-
jets [10], [11], [12]. All these works require a centralized
control and therefore are not scalable.

Some of these preliminary studies use sensorless ma-
nipulation schemes based on Goldberg’s algorithm [13]
for parallel jaw grippers. The jaw grippers are obtained
with actuator arrays by creating opposite field forces which
then can orient and move the parts. Böhringer et al. [14]
have proposed a programmable vector field method based
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Fig. 1. The Smart Surface concept.

on Goldberg’s algorithm. This sensorless scheme is well-
adapted for contact manipulation arrays but has shown some
limitations when applied to contactless manipulators [15].
For instance, the absence of closed-loop control has led to
undamped oscillations and unwanted behaviors.

Current researches aim to include sensors and to add
intelligence to distributed manipulators, work which has
never been done. The long-term objective is to design and
develop fully integrated distributed MEMS devices that it
is called Smart Surface, for conveying, fine positioning and
sorting of very small parts. For instance the goal could be
to sort rectangular and circular parts, by sending rectangles
to north border of the surface, and circles to the south
one. Before being conveyed to the right position, the parts
should be first recognized. Fully integrated means that the
control and the part recognition must be embedded and
decentralized.

In this paper, we propose a distributed control architecture
able to perform part recognition and closed-loop control
of distributed manipulation devices (see Figure 1). This
architecture is composed of decentralized cells. Each cell is
linked to a local sensor and to an actuator. A communication
network allows each cell to exchange messages with its
direct neighbors. Using the adjacent network, the cells work
autonomously and in a distributed manner by exchanging
their local information of the part. The main contributions
of this paper lie in the following facts:
• A new distributed control architecture for smart surfaces

using peer-to-peer communication is introduced;
• Distributed algorithms to reconstruct, differentiate and
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move the parts are proposed;
• The distributed control architecture is validated on a

new contactless distributed manipulation device.

II. SMART SURFACE OVERVIEW

A. The Smart Surface Concept

As referred previously, Smart Surfaces have to take into
account functions such as recognition, conveyance and posi-
tioning of an object. The implementation of these functions
must also meet the requirement of scalability, modularity and
robustness of distributed manipulation systems. Moreover,
since the objects are small compared to sensors and can
be rotated, classical recognition methods such as neural
networks are not appropriate.

Following Chapuis [16], we consider that the global sys-
tem can be composed by a large number of cells, each cell
being able:
• to sense locally the state of the object (for example the

presence/absence of the object);
• to act locally on the object;
• to decide its action by itself.
To achieve complex tasks as shape recognition or com-

plex manipulations, local sensing is not sufficient. So, we
propose to implement a communication network in order to
reconstruct higher-level observations of the system.

Figure 1 illustrates the Smart Surface concept. Each cell
receives measures from its sensor, acts on the object by its
actuator and is able to communicate with its four neighbors.
A programmable processing unit is able to perform recogni-
tion tasks and calculation of local control laws.

Due to scalability, robustness to failures and even sim-
plicity, we have conceived the communication network as a
peer-to-peer network. The network consists of links between
each two direct neighbors (4-connectivity). The communica-
tion must be faster than the sampling period. On the other
hand all the measures must be done at the same time t at
each sampling period Te.

B. The Distributed Control Architecture

Figure 2 details the distributed control architecture. The
state bi(k) of the sensors is received by part-reconstruction
modules. These blocks communicate with their neighbors in
order to reconstruct the image of the object. Then, the diffe-
rentiation functions use the reconstructed image to recognize
the shape of the object and to give the proper information
s(k) to the controller blocks. Then, the motion controllers
independently allocate a state ui(k) to each actuator i so as
to generate a specific motion of the object. The functions of
reconstruction, differentiation and control are implemented
following a fully distributed scheme.

III. PART RECONSTRUCTION AND DIFFERENTIATION

The part recognition is done inside the “Part reconstruction
and differentiation” block, in two stages (see figure 2):

1) The offline stage is executed before using the Smart
Surface and can be done on a computer with a camera
taking images of the models. A model is the shape

Fig. 2. The distributed control architecture.

of one of the objects, i.e. micro-parts, which can be
placed on the smart surface. It allows to construct a
database in which each model is characterized by a
set of criteria values, such as surface and perimeter, as
defined in [17].

2) The online stage allows to differentiate an object pla-
ced on the Smart Surface. Differentiation is performed
after extraction of the binary representation of the
object. It aims to find out the model which corresponds
to the object which is on the Smart Surface.

A. Offline stage

This stage allows to associate to each model of the Smart
Surface a set of criteria values. It consists of five phases,
depicted in Figure 3:

1) all rotations of 1◦ are generated, MRoti, from the
image of the model Mi, given as input, with respect
to the centre of the image, and all translations of
width(MRot)/10 pixels are generated from the image
MRoti;

2) a grid corresponding to the positions of the sensors
(middle point of the cell) is drawn on the images;

3) the images are discretized in a matrix by affecting 1
if the sensor is covered by the object and 0 otherwise
(in order to have negligible errors for the rotation, the
resolution of the image should be much greater than
the resolution of the surface);

4) matrices corresponding to the initial matrix without
the rows and columns that contain only zeros are
generated; these matrices will be called masks in the
following, and only unique masks will be taken into
account;

5) the values of each criterion are calculated for all masks
of the model.
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Fig. 3. Description of the process executed in the offline phase.

The following algorithm details these 5 phases, with Mi

being the models of the Smart Surface, Im the image of
the model, ImRot and ImTrans the rotated image and the
translated image respectively, d the rotation step and x, y the
translation steps:

1: for size of sensors grid (15, 15) do
2: for each Mi ⊂M1, M2, M3, ..., Mnbr−models do
3: Acquire the image Im of the model on the surface
4: for d = 1◦ to 360◦ do
5: Generate ImRot by rotating the image Im by d

degrees
6: for each y ⊂ 0, 10, 20, 30, ..., Size(ImRot) do
7: for each x ⊂ 0, 10, 20, 30, ..., Size(ImRot) do
8: Generate ImTrans by translating the image

ImRot by x steps on Ox and y steps on Oy
9: Discretize the image ImTrans

10: Generate the mask
11: Calculate and save the value for each criterion
12: end for
13: end for
14: end for
15: end for
16: end for

In the set of all criteria, only criteria with a good differen-
tiation rate, low cost memory and fast execution time [17]
will be used in online stage. In the end, these criteria values
form the database to be used as input in the online stage.

B. Online stage

The aim of this stage is to differentiate, in real-time, an
object on the Smart Surface using criteria values previously
calculated in the offline stage. But to do this, we must first
reconstruct the global view of the object, then apply the
differentiation algorithm to differentiate the object. The
online stage is divided in two phases, reconstruction phase
and differentiation phase, detailed in the following.
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Fig. 4. The binary matrix of some cells during the first communication
step.

1) Reconstruction phase: Once the object is on the Smart
Surface, each cell knows its status (if it is covered by the
object or not), but it does not know the status of its neighbors.
The cells covered by the object are called active cells. Each
active cell does an iterative process and aims to reconstruct
the binary representation of the object. This iterative process
consists in two steps: communication and computation steps.

a) Communication step: In this step, all active cells are
communicating with their neighbors. This communication is
done by sending a message. Each active cell will send a
message that consists of a matrix of bits, the matrix size is
the same as the smart surface size1 (1 bit per cell). Initially,
the matrix of each cell is filled with 0, except for the bit
corresponding to itself, which is set to 0 if no object is seen
by the sensor, and 1 if the object covers the sensor; in fact, in
the first communication all the active cells know only their
status and nothing about the state of their neighbors (see
Figure 4).

Throughout the re-iteration of the communication phase,
all the active cells will extend their state thanks to the
received matrices from their neighbors, until they reach a
global view of the object.

b) Computation step: The computation step consists
in updating the view of each cell according to the views
collected from its neighbors in the communication step. This
update consists in applying the union operator between all
received matrices and itself one. Formally, let MCell be a
matrix corresponding to the view of cell Cell and M1,1,
M2,1, M3,1, M1,2, M3,2, M3,1, M3,2 and M3,3 the matrices
corresponding to the 8 neighboring views respectively. The
updated matrix of the cell Cell is obtained by applying the
equation 1:

MCell =
i=1,j=1⋃

i=−1,j=−1

Mi,j (1)

Figure 5 shows, as example, the matrix of the four active
cells during each computation step.

1In order to reduce memory footprint, it is possible to only use a rectangle
of size maximum mask, plus a few lines/columns to avoid oversize errors.
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Fig. 5. Example of the matrix of the four active cells during each
computation phase.

To sum up, during the reconstruction phase all the cells
execute simultaneously (the time is discrete) the following
steps:

1: repeat
2: Send its matrix to the neighbors
3: Receive the matrices from its four neighbors
4: Do a union bit by bit among its matrix and the four matrices

received
5: Store the result in its own matrix
6: until NbIterations > MaximumSize

It can be proved that after N steps (N is the height plus
the width of the object), this algorithm converges and each
cell has the binary representation of the object currently
on the smart surface. The number of steps is therefore not
dependent on the smart surface size.

2) Differentiation phase: Once each cell has the binary
representation of the object, the criteria are computed. These
values are compared to the criteria values for each model,
computed in the offline stage. If there is a criterion or a
combination of criteria which uniquely identifies the object,
then the object is differentiated. If not, then the object is
moved and the online stage restarts.

The algorithm is repeated for each new image sent by the
camera that films the moving object on the Smart Surface.

The differentiation phase can be summarized by the fol-
lowing algorithm:

1: repeat
2: Calculating the values of criteria
3: Comparison of criteria values calculated with the models in

the database
4: Save the differentiation result
5: until differentiation result > threshold
6: if object is differentiated then
7: Send the differentiation result to the control block
8: else
9: Wait for the object to move to another place and run the

Fig. 6. The three different objects to sort.

process again
10: end if

This finishes the differentiation stage. The differentiation
block sends to the control block the information of the dif-
ferentiation result and the position of the object (coordinates
of the bounding rectangle) on the Smart Surface. The control
block takes the responsibility from now on, either to give the
object a small movement in order to retry differentiation or
to move the object to its destination.

IV. MOTION CONTROL

The application of the Smart Surface is to sort various
objects which are successively placed on the distributed-air-
jet manipulator. Each kind of object must be conveyed to
the right position to be collected. For instance, we chose a
set of 3 different objects to carry out the experiments (see
Figure 6). The O and R objects must be sent to the east
edge of the manipulator, the H object to the west edge. This
task could fit for example in the feeding of assembly line
workstations.

As explained in the previous section, as soon as the object
is not discriminated, it is maintained (while moving) in the
center of the manipulator. Once it is recognized, the control
corresponding to the type of the object is applied. Finally,
when the object is collected outside the manipulator, another
one is placed on the manipulator and the process restarts.

The differentiation stage returns the type of the object and
the coordinates of its bounding rectangle. This information
is sent to each independent controller at intervals of time
T (sampling period) and is noted s(k) at time step k (see
Figure 2). s(k) contains five discrete values:

• xmin(k) the abscissa of the western active sensor;
• xmax(k) the abscissa of the eastern active sensor;
• ymin(k) the ordinate of the the northern active sensor;
• ymax(k) the ordinate of the southern active sensor;
• t(k) the type of the object (0 if not discriminated yet,

1 for H object, 2 for R object and 3 for O object).

Then each controller sends a command to its associated
valve. The control signal sent to the ith valve is noted ui(k)
and can take two discrete values (1 for opening and 0 for
closing).

The goal of the control is to send the object toward a
direction according to the type of the object. The direction
is coded by 1 for east, -1 for west and 0 if the object must
not be conveyed at the moment. The direction is noted d(k)
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Fig. 7. The distributed-air-jet manipulation surface.

and is defined by:

d(k) =


−1 if t(k) = 1
0 if t(k) = 0
1 if t(k) = 2 or t(k) = 3

(2)

More complex tasks could be achieved. Actually, the
objective is to conduct the proof-of-concept of our distributed
control architecture as the following experiments show it.

V. EXPERIMENTAL RESULTS

A fully integrated approach using MEMS still remains ri-
gid and costly in fabrication. So to test and validate the Smart
Surface concept, we designed a prototype of pneumatic
surface with conventional technologies. This distributed-air-
jet manipulation surface associated to a software emulating
the distributed architecture helps to conduct the proof-of-
concept of future Smart Surfaces. Our basic idea behind
emulation is to develop programs (emulators) that can be
run on current software computing platforms to validate the
functions and behaviors of “virtual” hardware distributed
cells.

A. The Distributed-Air-Jet Manipulation Surface

The distributed-air-jet manipulation surface is a 120 ×
120 mm2 square surface upon which an object is moving in
aerodynamic levitation (see Figure 7). The device consists
of 3 parts detailed in the exploded view of Figure 8:
• The upper-block is drilled of 15 × 15 orifices; each

orifice is 0.4 mm in diameter;
• The lower-block is drilled of 112 holes in staggered

rows; These holes connect one hole out of two of the
upper-block to independent air inlets; between holes a
network of diagonal channels connects the other holes
of the upper-block to a common air inlet located on the
side of the lower-block.

The object is maintained in constant levitation thanks to
the airflow that comes through the lateral common air inlet.
The airflow spreads over the network of diagonal channels
and then through one hole out of 2 of the upper-block.

Main air-jet

Induced air-flow

Sustentation
orifice

Propulsion orifice

Fig. 8. Cross view of the distributed-air-jet manipulation surface with one
opened valve.

Fig. 9. Complete hardware configuration.

An object can be moved by generating strong vertical air-
jets through the others holes of the surface. Each orifice is
driven by an independent solenoid valve (3/2 normally closed
valve). When a valve is open, air-flow comes through both
blocks and generates a vertical air-jet on the front side of
the upper-block. The air-jet creates an induced air flow that
pulls the object toward the orifice (see Figure 8).

The experimental setup for the distributed-air-jet
manipulator is composed of air pressure control systems, the
set of solenoid valves and its control system, and computer
vision processing. Figure 9 describes the complete hardware
configuration. More details on the working of this device
can be found in [18].

For conducting the proof-of-concept of a future Smart
Surface composed of distributed cells integrating sensors, we
used a camera to emulate the cells sensors in order to do the
offline and online stages of the first phase. The camera is
placed above the distributed-air-jet manipulator and provides
the top view of the entire surface. The image processing
calculates the state bi(k) of every emulated sensor i for each
frame k based on the grey level of pixels. bi(k) is one if
the object is above the sensor i and zero elsewhere. The
number of sensors of the grid was determined beforehand
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(a) t=0.4s, the object is not identi-
fied

(b) t=2.4s, the object is still not
identified

(c) t=3.4s, the object is identified
and the valves on its left are ope-
ning

(d) t=4.1s, the object is moving
toward the west edge of the surface

Fig. 10. Image sequence of an experiment with the H object (dark crosses
represent inactive sensors, light squares represent active sensors and dark
circles represent opened valves).

by a Sensor Network Calibrator and the size of this grid was
set to (15× 15) sensors [19]. Figure 10 shows the working
of the sensor emulation.

B. Motion Control

For this task, the control laws are quite simple. To carry
the object to a direction, the valve in this direction must be
opened. We note with xi the abscissa of the air-jet linked to
the valve i. The control law of an air-jet is defined by:

ui(k) =


1 if d(k) = 1 and xi > xmax(k)
1 if d(k) = −1 and xi < xmin(k)
0 elsewhere

(3)

C. Experimental Results

Figure 10 shows an image sequence extracted from a video
made during the experimental manipulation. First, an object
is placed on the surface. The distributed architecture observes
several images of the object before identifying it. Finally,
when the object is identified (H in this case), the controllers
open the correct valves in order to convey the object in the
desired direction.

Figure 11 shows the trajectory (abscissa projection) of
three different objects placed successively on the surface.
These results can be further appreciated in the video clip
accompanying this paper2.

Before conveying the object, it must be recognized (diffe-
rentiated) using emulated sensor values (which give a binary
matrix). The differentiation is obtained by calculating criteria
values from a set of values obtained from emulated sensors.
These criteria values will be compared to those from the
database.

2Also available at http://www.femto-st.fr/~guillaume.laurent/
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Fig. 11. Abscissa of the center of the object according to time for three
experiments with different parts.

We assume that an object is moving on the surface and,
as it is moving, the measurements are received from the
emulated sensors. While this happens, we try to differentiate
the object.

In these experiments we use a set of 17 criteria sorted
by their relevance for differentiation. When an object is on
the surface, we calculate the values of the first criterion and
compare it to the values of the same criterion from our
database. If we successfully differentiate the object (as being
of type R, O or H), the process stops, otherwise it passes to
the following criterion. If no criterion is successful, the object
is called not differentiated NoDiff.

Sometimes, the object can be wrongly differentiated. To
cope with this, we use a predefined threshold and, when a
type exceeds this threshold, we consider the object as being
of that type.

Figure 12 shows the differentiation result obtained for the
distributed architecture by observing several postures of the
object before identifying it. The differentiation threshold is
arbitrarily set to 60%. In each figure we notice that the
differentiation threshold greater that 60% gives the same
result as for H, O and R.

During object moving, it is possible that between two sets
of values received from the emulated sensors, the binary
representation of the object does not change. That’s why, we
are also interested in having different binary representations
of objects (DiffBR), representing the values received from
the emulated sensors.

In the same figure it can be noticed that after 3.3 seconds,
the three objects have different DiffBR: the object H has 45
DiffBR, while O and R have only 10 and 17 respectively.

Note that in these experiments we do not consider the
execution time, because our aim is not to obtain a fast
differentiation but only to differentiate an object using a set
of values obtained from emulated sensors.

The process is highly reproducible and robust. We perfor-
med dozens of experiments for each of the objects. It can be
noticed that for each experiment, the object was successfully
identified and conveyed.
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Fig. 12. Differentiation result for experiments when the H, O, and R object
respectively is put on the Smart Surface.

VI. CONCLUSION AND FUTURE WORKS

The paper presents a distributed control architecture for
a smart surface used to sort different micro-parts. The
surface is a grid of cells, each cell containing a sensor, an
actuator and a processing unit. This distributed architecture is
validated on a real manipulation surface. Results show that,
thanks to the algorithms used, this specific architecture is
really able to recognize the micro-parts, and to convey them
to the desired border of the Smart Surface.

One of the ideas of our future work is to test the distributed
architecture with less different shapes than O, H and R,
and to perform more complex tasks such as the sorting
of two objects simultaneously. The second objective is to
increase recognition speed and to implement this distributed
architecture in a decentralized hardware circuit.
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