
Hybrid Elevation Maps: 3D Surface Models for Segmentation

B. Douillard, J. Underwood, N. Melkumyan, S. Singh, S. Vasudevan, C. Brunner, A. Quadros

Abstract— This paper presents an algorithm for segmenting
3D point clouds. It extends terrain elevation models by incorpo-
rating two types of representations: (1) ground representations
based on averaging the height in the point cloud, (2) object
models based on a voxelisation of the point cloud. The approach
is deployed on Riegl data (dense 3D laser data) acquired in a
campus type of environment and compared against six other
terrain models. Amongst elevation models, it is shown to provide
the best fit to the data as well as being unique in the sense that
it jointly performs ground extraction, overhang representation
and 3D segmentation. We experimentally demonstrate that the
resulting model is also applicable to path planning.

I. INTRODUCTION

This paper presents an algorithm to segment 3D point
clouds into separate objects by using a model of the ground.
The approach is developed in the context of an outdoor
activity monitoring system which involves a number of
robotic agents deployed in a campus environment. Each
robotic agent is equipped with multiple modalities including
laser sensors. This data must be: (1) integrated in a terrain
model for navigation and (2) segmented into different objects
for later classification. Current algorithms do not do both,
so it is proposed to combine the two related tasks in a
synergistic way.

The proposed algorithm builds on prior approaches to the
generation of 2 1

2D maps; also called elevation maps. Two
separate models are used for the ground and objects, utilizing
simple, established map representations where they are most
effective. The ground model is obtained by averaging the
height of the returns falling in each 2D cell of the terrain
grid. This results in a clean ground surface, but does not
represent objects well. Objects are instead represented by
detailed 3D voxels, generated efficiently by concentrating
on occupied 2D cells and reasoning on the minimum and
the maximum height of laser returns. Object voxels that
belong to the ground are reintegrated into the ground model,
allowing the algorithm to represent overhangs. This approach
results in the fast and accurate segmentation of scenes.

This study uses data from a stationary Riegl sensor. Shown
in Fig. 1(a), the Riegl sensor generates dense 3D point
clouds, providing a high amount of geometrical detail to test
segmentation techniques. It is, however, limited in extent.
The dataset used is shown in Fig. 1(b).

II. RELATED WORK

This section presents six models which were re-
implemented in the context of this study and from which
various aspects were retained in order to propose a novel
segmentation algorithm.

The authors are with the Australian Centre for Field Robotics, Sydney,
Australia; contact: b.douillard@acfr.usyd.edu.au

(a) (b)

Fig. 1. (a) The Riegl laser scanner. (b) Example of Riegl data: a 3D point
cloud in which each laser return is augmented with RGB values (note that
colour information is not used in this work).

A. Elevation Map Mean

Elevation maps are commonly classified as 2 1
2D models.

The third dimension is only partially modeled since the
terrain is represented by a grid in which each cell contains
only one height. A standard approach to computing an
elevation map is to average the height of the returns falling
in each grid cell [6]. This method will be referred to as an
elevation map of type “Mean”. Its output is illustrated in
Fig. 2(a).

The advantage of averaging the height of the laser returns
is that noisy returns can be filtered out: the set of green ver-
tical bars around the central white disk in Fig. II correspond
to noisy returns; such spikes do not appear in Fig. 2(a) due
to the averaging process. A disadvantage of the technique is
that it cannot capture overhanging structures. This aspect is
addressed by the proposed model.

Since this representation is able to generate smooth sur-
faces by filtering out noisy returns, it was chosen as the basis
for the ground part of the model.

B. Elevation Map Min-Max

The technique presented in [8] and developed in the
context of the DARPA Grand Challenge 2006 is used here
as the way to accurately capture the height of the returns
in each grid cell. It computes the difference between the
maximum and the minimum height of the returns falling in
a cell. A cell is declared occupied if its height difference
exceeds a pre-defined threshold (threshold hThresh in Ta-
ble I). Height differences provide a computationally efficient
approximation to the terrain gradient in a cell. Cells which
contain too steep a slope or are occupied by an object will
be characterized by a strong gradient and can be identified
as occupied. This technique generate models which will be
referred to as elevation maps of the type “Min-Max”. Its
output is illustrated in Fig. II.

The advantage of such a technique is that it does not make
an approximation by avoiding averaging and by reasoning on

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1532

(a) (b) (c)

Fig. 2. Three examples of elevation models generated using the data in Fig. 1. (a) Mean Elevation Map. Red indicates a high standard deviation of
height. (b) Min-Max Elevation Map. Yellow cells are the ground, green cells contain an object. (c) Map produced by the approach in [5]. Green is the
class “ground”, red is “vertical surface” and blue is “vertical surface containing a gap”.

the minimum and maximum height of the returns falling in a
cell. On the other hand, as mentioned in the previous section,
it is more sensitive to noise that an elevation map of the type
“Mean”.

Since this model does not make an approximation of the
height of the return, it was chosen as the basis of the object
part of the proposed model.

C. Multi-Level Elevation Map

The approach developed in [5] for representing multiple
levels of elevation was tested in the context of this study. It
is an extension of elevation maps which handles overhanging
structures and allows the generation of large scale 3D maps
(by recursively registering local maps). Our implementation
of this technique builds on the “Min-Max” approach de-
scribed in the previous section. The output it produces is
illustrated in Fig. 2(c). While the algorithm proposed here
also discretizes the vertical dimension in order to capture
overhanging structures, it differs from the work in [5] in two
ways. Firstly, the only classification proposed involves the
two classes “ground” and “object above the ground”. Further
differentiating objects may not facilitate segmentation, as
seen by walls classified differently around windows or other
causes of sparsity in the data. Secondly, the ground in [5]
is not used as a reference for vertical height. It is argued in
this work that such a reference is necessary when reasoning
on the variation of height over a grid. A flat surface may
be above and distinct from the ground. To avoid the need of
hand-crafting a sensor model, the implementation used here
reasons on the minimum and the maximum height of the
returns in the “vertical segments” in [5].
D. Volumetric Density Map

The approach proposed in [3] for discriminating soft and
hard obstacles was evaluated in the context of this study. The
output it produces is illustrated in Fig. 3(a). This technique
breaks the world into a set of voxels and counts in each
voxel the number of hits and misses of ray-traced laser data.
A hit corresponds to a return that terminates in a given voxel.
A miss corresponds to a laser beam going through a voxel.
The regions containing soft obstacles, such as vegetation,
correspond to a small ratio of hits over misses. This allows

traversable vegetation and noise to be filtered out. However,
as can be seen in Fig. 3(a), the tree canopies correspond to a
soft obstacle and would be partially filtered out based on this
approach. In the context of object recognition, this form of
segmentation would not be straightforward, but instead may
form a useful feature for classification, once segmentation
has been performed.

E. Ground Modelling via Plane Extraction

The approach developed in [7] for extracting mutli-
resolution planar surfaces was tested in the context of this
study. Its output is illustrated in Fig. 3(b). It involves
discretising the world into two superimposed 2D grids of
different resolutions. In our implementation, the two reso-
lutions are set to one meter and twenty centimeters. Each
grid cell in the two grids is represented by a plane fitted to
the corresponding laser returns via least square regression.
The least square error el is computed for a large plane (in
the coarse resolution grid) and the least square error es is
computed for the small plane (in the fine resolution grid).
By comparing the values of el and es in overlapping planes,
several types of regions can be identified: el and es are both
small in sections corresponding to the ground; el is small
while es is large in areas containing a flat surface with a
spike (a thin pole for instance); both el and es are large in
areas containing an obstacle. This method is able to identify
the ground while not averaging out thin vertical obstacles
(unlike an elevation map of type “Mean”). However, it is
not able to represent overhanging structures. The latter case
is addressed by the proposed algorithm.
F. Surface Based Segmentation

The method developed in [4] performs segmentation of
3D point clouds based on the notion of surface continuity.
Surface continuity is evaluated using a mesh built from data.
Such a mesh is illustrated in Fig. 3(d). The mesh is generated
by exploiting the physical ordering of the measurements
which implies that longer edges in the mesh or more acute
angles formed by two consecutive edges directly correspond
to surface discontinuities. This technique was applied to
a portion of the data shown in Fig. 1. Fig. 3(c) presents
the set of continuous surfaces (or 3D segments) extracted

1533

(a) (b) (c) (d)

Fig. 3. (a) Map coloured by the ratio of hits over misses [3]. Hard obstacles such as walls are in red, with soft obstacles such as vegetation in blue.
(b) Representation developed in [7]. Red corresponds to a large ratio el/es (see text), typical for objects, while the ground has a lower ratio. (c) The
extracted continuous surfaces from the Surface Based Segmentation technique. (d) Two individual segments, a lamp and the ground.

by the algorithm. In Fig 3(d), two individual segments are
presented. While this approach performs 3D segmentation, it
does not identify the ground surface. The algorithm proposed
here allows to jointly perform the two tasks.

G. Contributions

The novelty of this work is to present a terrain model
which provides an explicit separation of the ground, seg-
ments objects in 3D and represents overhangs. None of
the previously described algorithms can do all three tasks,
while the proposed algorithm achieves this without a major
increase in computation time. Objects are removed from a
mean elevation map, providing a good model of the ground.
The position and extent of objects are identified with a Min-
Max elevation map, allowing a detailed voxel representation
of objects to be built efficiently. The object model augments
the ground model by identifying ground patches beneath
overhangs.

III. THE HYBRID ELEVATION MAP SEGMENTATION
ALGORITHM

The Hybrid Elevation Map Algorithm is composed of two
main processes: (1) the extraction of the ground surface using
a mean elevation map; (2) the segmentation of the objects
above the ground, using a min-max elevation map. This
Hybrid algorithm is detailed in Algorithm 1, with parameters
in Table I. Name Value

gThresh 0.5 (≈ 27◦)
Ng 5

hThresh 20cm
resGlobal 40cm
resLocal 20cm

minSegmentExtent 10cm

TABLE I ALGORITHM 1 PARAMETERS

These parameters are chosen a priori given the typical
operating conditions encountered in the targeted applications:
semi-urban environments (as shown in Fig. 1(b)) mapped for
the navigation of Segways RPM 400 [1].

A. Ground Extraction

In Algorithm 1, line 1 computes a mean elevation map,
with a grid resolution of resGlobal. This produces a map
as in Fig. 2(a). The distorted obstacles are removed, which
protrude from the smooth ground. This is detailed in Algo-
rithm 2 and outputs the map in Fig. 4.

Input : mapMean, resGlobal, gThresh, Ng , hThresh
Output: gc
gf ← GenerateGradientField(mapMean) ;
tf ← ThresholdGradientField(gf , gThresh) ;
gc← ClusterGridCell(tf) ;
lc← IdentifyLargestCluster(gc) ;
gc← RmHighClusters(mapMean,gc,lc,Ng ,hThresh) ;
gc← CorrectGroundArtifact(mapMean, gc, hThresh);

Algorithm 2: ExtractGroundSurface

Fig. 4. Output of ExtractGroundSurface when applied to the data
shown in Fig. 1. Higher sections are in red.

To remove obstacles that protrude from the mean eleva-
tion map, surface gradients are computed by the function
GenerateGradientField. The gradients between a cell
b and its neighbours are computed, with the largest retained
as cell b’s gradient.

A threshold is applied on gradients to identify obstacles
(ThresholdGradientField), set to 0.5 in our imple-
mentation (a slope angle of 27◦).

The cells identified as belonging to the ground are con-
nected based on adjacency to form clusters of ground cells.
This is implemented by the function ClusterGridCell:
it traverses the ground grid and assigns the same cluster
Id to ground cells which are in contact of each other. The
function IdentifyLargestCluster is then run in order
to find the largest set of connected ground cells. This cluster
becomes a ground reference and is used to decide if other
small clusters in the scene belong to the ground. A reference
is required because locally smooth clusters may exist that are
not part of the ground surface. Function RmHighClusters
filters out these cases.

The final step is the correction of artifacts generated
during the computations of the gradients. The cause of
these artifacts is explained in Fig. 5(a). Such correction is
implemented by the function CorrectGroundArtifact
which proceeds as follows. For each non-ground cell b,

1534

Input : pts
Output : mapMean, listObject
Parameters: gThresh, Ng , hThresh, resGlobal, resLocal, minSegmentExtent

mapMean← GenerateMapMean(pts, resGlobal) ;
gc← ExtractGroundSurface(mapMean, gThresh, Ng , hThresh,) ;
mapMinMax← GenerateMapMinMax(pts, resGlobal, hThresh) ;
clusters← ClusterGridCell(mapMinMax) ;
for c ∈ clusters do

mapMinMaxLocal← GenerateMapMinMax(c, resLocal, hThresh) ;
[voxelSet mapMean]← GenerateVoxelSet(mapMinMaxLocal, resLocal, mapMean, gc, hThresh) ;
voxelClusters← ClusterVoxel(voxelSet) ;
listObject← AugmentListObject(listObject, voxelClusters, minSegmentExtent) ;

end

Algorithm 1. The Hybrid Elevation Map Segmentation Algorithm

it finds the neighbouring ground cells and computes their
average height. If the b’s own height is close (less than
hThresh apart), b is marked as a ground cell.

Since CorrectGroundArtifact modifies the set of
ground cells, the operations on line 3 and 4 of Algorithm 2
need to be repeated on the corrected set of ground cells.

(a) (b)

Fig. 5. Ground artifacts. (a) Three cells, with their heights as vertical
dotted lines. The arrows show the gradients. The middle cell is identified as
containing a steep slope (and so is removed) while in fact it does belong to
a flat area. (b) Mis-detection of ground cells. The two trees indicated by the
red arrows are surrounded by blank areas which were incorrectly removed
from the ground. This would prevent a path planner from finding a path
under the canopy of the trees. These “holes” are not present in the output
of Algorithm 2 (Fig. 8).

B. Object Segmentation

With the ground now identified, objects need to be ac-
curately represented and segmented. This hybrid algorithm
seeks to use the accuracy voxel grids provide, applied in a
efficient manner that incorporates the ground model. Each
object is to be represented by a set of voxels clustered
together. In addition, as the height of the ground is known,
the voxels of the ground below overhangs can be identified.

To begin with, a broad, “global” search for object regions
is done using a low resolution “Min-Max” elevation map (as
shown in Fig. II, implemented in line 3 of Algorithm 1).
If the height range in a given cell is above a threshold
hThresh, the cell is identified as an object. Occupied cells
are clustered, as illustrated in Fig. 6(a).

For each cluster c, a local, detailed Min-Max elevation
map is built. A voxel grid is then built upon this map to
get a detailed representation of the region. Each vertical bar

of the elevation map (the green bars in Fig. II) is divided
into voxels. The voxels which do not contain any laser
returns are disregarded. Voxels within one vertical bar are
merged if they are in contact. The output of the function
GenerateVoxelSet is illustrated in Fig. 6(b).

Voxels that belong to the ground are now identified using
the previous ground model. The ground is then added back to
the ground model (as can be seen in Fig. 8 under the canopy
of the trees). Identifying ground voxels plays an important
role in separating the objects during segmentation, detailed
below.

The identification of the ground voxels is implemented
in the function GenerateVoxelSet and proceeds as
follows. For a given cell c, the process looks up the Ng

closest ground cells in the grid mapMean and uses the mean
of their height as an estimate of the ground height. If the
returns in the lowest voxel in c have an average height which
is below zg + hThresh, the voxel is marked as belonging
to the ground.

Once a ground voxel is identified, the ground surface
can be refined. Recall that at this stage c belongs to the
local, detailed elevation map mapMinMaxLocal and that
the ground surface is represented by the global elevation
map mapMean. To integrate into the global map the fact
that a voxel from a local map belongs to the ground, the
function GenerateVoxelSet finds the cell cglobal in the
grid mapMean which is the closest to c. cglobal is then
updated: the mean height in the cell cglobal is re-computed
using only the returns that falls into the lower voxel in c.
This is the point in the process at which the reconstruction of
the ground under overhanging structures is performed. This
approach involves a communication between local and global
data structures by which object segmentation contributes to
ground segmentation. Voxels identified as belonging to the
ground can be seen in Fig. 6(b), as well as in Fig. 8.

With the detailed object voxels clearly identified as in
Fig. 6(b), they can be clustered together to form full object
segments (implemented by the function ClusterVoxel).
Its output is a set of 3D segments (or clusters); as illus-
trated in Fig.6(c). ClusterVoxel proceeds by grouping
contacting voxels into the same cluster. Voxels identified as
belonging to the ground are interpreted as separators between
clusters. This explains why an accurate estimation of the

1535

ground height as well as an accurate identification of the
voxels belonging to the ground is crucial to segmentation.

The last stage in the formation of the 3D segments
is the identification of noisy returns. This is achieved as
follows. The function AugmentListObject, in addition
to growing the list of 3D segments, identifies the voxels
which potentially contain noisy returns. Such voxels are the
ones which satisfy the two following conditions. (1) They
belong to a segment which is not in contact with the ground.
(2) The extent of the segment, in each of the three directions
defined by the reference frame axes, is below the threshold
minSegmentExtent (set to 10cm). Once the noisy returns
are identified, they are withdrawn from the map. The set of
returns identified as noisy in the data shown in Fig. 1 is
displayed in Fig. 7.

Fig. 7. The set of returns identified as noisy by the function
AugmentListObject. Each noisy return is indicated by a black dot.
The background map is the same as the one shown in Fig. 8.
C. The Hybrid Terrain Model

An example of a model produced by Algorithm 1 is shown
in Fig. 8. A number of aspects are now discussed.

First, it can be seen that the ground is properly re-
constructed under the canopy of the trees in the central area
as well as under the rope indicated by the black arrow. This is
achieved by the function GenerateVoxelSet; as detailed
in Sec. III-B. The building on the left side of the scene is
correctly clustered into one segment. The building on the
right side of the scene is identified as two distinct segments.
This is due to one of the palm trees occluding the building
from the sensor; this results in the vertical unobserved band
which can be seen on the furthest end of the building’s
wall. The majority of the trees are correctly segmented. The
palm tree furthest in the background has been segmented
into two components: the trunk and the palms. As in the
case of the building on the right side of the scene, missing
data due to occlusions causes over-segmentation. Since the
palms of the tree partly cover the trunk, the junction between
the trunk and the top part of the tree is not observed and
Algorithm 1 identifies two different segments. The cars in
the foreground are correctly segmented, apart from the case
shown in Fig. 6(c). The street lamps of the left side of the
scene are also correctly segmented. The bike racks along the
left building (indicated by the white arrow), are correctly

retained in the map and not filtered out as noise (unlike in an
elevation map of the type “Mean”). Due to small number of
returns however, these bike racks are over-segmented (more
than one colour per bike rack).

Since the data structure listObject contains the original
data organised into segments (note that the voxel based rep-
resentation is only intermediate), fine details are conserved;
for instance, the frame of the windows on the building on
the right, or the rope at the border of the grassy area in the
bottom part of the image.

IV. PERFORMANCE EVALUATION

This section presents an evaluation of the Hybrid Elevation
Map Segmentation Algorithm as well as a comparison to the
mapping techniques reviewed in Sec. II. The sets of results
are organised into two tables. Table II presents a comparison
of the various methods evaluated in this work. Tables III
presents a break down of the computation times for the steps
in the Hybrid algorithm.

To begin with, the results in Table II are analysed. The
first three columns indicate whether each of the algorithms
presented in Sec. II achieve the following tasks: (1) explicit
extraction of the ground (as opposed to extracting 3D sur-
faces without explicitly specifying which ones belong to the
ground); (2) representation of overhanging structures such as
the canopy of trees; (3) full 3D segmentation of objects. It
can be seen from Table II that the proposed algorithm is the
only one which performs all of these three tasks.

The fourth column provides computation times for each
of the algorithm applied to the dataset shown in Fig. 1.
In each case, the resolution of the main grid is set to 40
cm. The mention “Matlab” indicates that the algorithms
were tested using a Matlab implementation. The computation
times show that the proposed algorithm is the second slowest.
As implied by the three first columns of the table, it is
the only approach that jointly performs ground extraction,
overhang representation and 3D segmentation. Performing
these three tasks logically require more computations.

The values provided in this last column of Table II are
Root Mean Square Errors (RMSE). The RMSE is the square
root of the mean square error. The error distance used is
adapted to each model in the following way: in the voxel
based models, the error is given by the distance between a
laser return and the centre of the voxel it belongs to; in the
other models, the error is given by the difference between
the height of the estimated surface and the measured height.

The RMSE values were computed using the samples
contained in a hundred by hundred meter area centred at the
middle of the data set displayed in Fig. 1. The RMSE values
show that the proposed algorithm achieves the second best
performance after the Surface based Segmentation algorithm.
The modelling of the ground performed by the Hybrid
algorithm explains the difference with the Surface based
Segmentation approach: the ground model is produced by
averaging the height of the returns falling onto the ground
which results in a small but non zero RMSE value. On the
whole, the proposed approach generates an RMSE value at

1536

(a) (b) (c)

Fig. 6. Segmentation of the objects above the ground. (a) Illustration of the output of ClusterGridCell when applied to the map shown in Fig. II.
One colour corresponds to one cluster. (b) Illustration of the output of GenerateVoxelSet when applied to the cluster indicated in (a) by the light
blue arrow. Colours are mapped to height. The voxels identified as belonging to the ground are indicated by a beige colour. (c) Illustration of the output of
the function ClusterVoxel when applied to the set of voxels displayed in (b). One colour corresponds to one 3D segment (or cluster). The rectangles
indicate the footprint of the various segments. The segmentation is correct with respect to the two cars in the middle. On the other hand, the tree and the
car on the left are gathered in the same segment due to the proximity of a branch of the tree to the roof of the car. On the right, the tree is represented
by two segments due to the lack of data which prevents the algorithm from connecting the trunk of the tree to its foliage.

Fig. 8. Segmentation obtained with Algorithm 1 applied to the data shown in Fig. 1. The ground is represented by a mesh in which the colours are mapped
to height; blue corresponds to lower areas and red to higher areas. The ground mesh represents the data structure mapMean produced by Algoritm 1.
The segmentation of the objects above the ground is also colour coded: one colour corresponds to one 3D segment. Each coloured 3D point cloud is an
element of the data structure listObject. The dataset contains a total of 1,733,633 points. The black and white arrows indicate a rope and a bike rack,
respectively.

Algorithm Ground Extraction Overhang Representation 3D Segmentation Computation Time RMSE
Map “Mean” [6] no no no 1.77 min (Matlab) 1.725 m

Map “Min-Max” [8] yes no no 1.76 min (Matlab) 3.453 m
Map Multi-level [5] yes yes no 8.12 min (Matlab) 1.324 m

Ground Modelling via Plane Extraction [7] yes no no 13.13 min (Matlab) 1.533 m
Volumetric Density Map [3] no no no 10.01 min (Matlab) 0.297 m

Surface Based Segmentation [4] no yes yes ≈ 10 hours (Matlab) 0 m
Hybrid Map yes yes yes 14.28 min (Matlab) 0.077 m

TABLE II PERFORMANCE EVALUATION

1537

least two orders of magnitude smaller than the other models
that explicitly represent the ground (elevation maps of the
type “Mean”, “Min-Max” and “Multi-level”). This is due to
the ability of the hybrid approach to separate the objects
above the ground.

Detailed computation times of each of the function called
by Algorithm 1 are given in Table III. These values were
also obtained using the data shown in Fig. 1. For the last
three functions, the indicated time is the weighted average
of the computation time per cluster (clusters generated by
the function ClusterGridCell). The weights are the
number of voxels generated for each cluster (by the func-
tion GenerateVoxelSet). Using the numbers of voxels
as weights avoids underestimating computation times in a
dataset containing a dominating number of small clusters.

The elevation map of type “Mean” and “Min-Max” were
also implemented in C++: computation time is in that case
reduced from 1.7 minutes to 0.9 second for the dataset
shown in Fig. 1. This suggests that the implementation of
the proposed algorithm for real-time application is feasible
given that standard elevation maps are generated in less than
a second on a set of 1.7 million points.

Function Computation Time (Matlab)
GenerateMapMean 90 secs

ExtractGroundSurface 71 secs
GenerateMapMinMax 92 secs
ClusterGridCell 15 secs
GenerateVoxelSet 11 secs (average per cluster)

ClusterVoxel 13 secs (average per cluster)
AugmentListObject 9 secs (average per cluster)

TABLE III HYBRID ALGORITHM COMPUTATION TIMES

To also demonstrate that the 3D model generated by
the Hybrid Algorithm can be applied to path planning,
trajectories were generated in the map shown in Fig. 8 using
a Wave-Front Planner [2]. The resulting trajectory is shown
in Fig. 9. By separately classifying the terrain, the Hybrid
algorithm’s terrain model reduces the complexity and of the
path planning operations. It provides high-resolution terrain
navigation and obstacle avoidance, particularly with over-
hangs, yet allows for planning operations to be performed
efficiently in a reduced (2D) workspace. When used with
the Hybrid Algorithm the planner takes advantage and plans
on the segmented ground model. It is also able to check for
appropriate clearance around obstacles with complex geom-
etry and hence navigate through regions with overhanging
features more efficiently. In a tour of ten randomly selected
goal points (c.f. Fig. 9) this reduced the length of travel paths
by 11%.

V. CONCLUSION AND FUTURE WORK

This work has introduced an algorithm to perform seg-
mentation of 3D point clouds. The algorithm extends two
types of elevation maps: elevation maps of type “Mean” and
elevation maps of type “Min-Max”. The approach was shown
to be unique because it jointly performs ground extraction,
overhang representation and 3D segmentation. In addition,
it was shown that amongst elevation models it provides the
best fit to the data and that it can be applied to path planning.

Fig. 9. Sample trajectory calculated based on the segmentation. The
Segmentation Pipeline model allows a motion planner to factor 3D terrain
features. The red line shows a trajectory automatically generated from a
number of user-specified goal locations situated under overhangs (e.g., tree
canopies). The blue cells are those containing an overhang and traversed by
the trajectory. For comparison, the green line shows a path generated using
an Elevation Map Mean (to points nearest the user selected points when
these are under overhangs). This path is longer and gets confused by sparse
terrain features (such as the rope).

Future work will focus on several aspects including testing
the method on laser data provided by SICK and Velodyne
sensors, real-time implementation and classification of the
segmented point clouds.

VI. ACKNOWLEDGEMENTS

This research was undertaken through the Centre for Intelligent
Mobile Systems (CIMS), and was funded by BAE Systems as part
of an ongoing partnership with the University of Sydney. It was also
supported by the Rio Tinto Centre for Mine Automation and the
ARC Centres of Excellence Programme funded by the Australian
Research Council and the New South Wales State Government. The
authors would like to thank Matthew Johnson-Roberson for useful
discussions.

REFERENCES

[1] Segway Robotics. http://rmp.segway.com.
[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA, 2005.

[3] A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon,
M. Happold, H. Herman, T. Pilarski, P. Rander, S. Thayer, N. Vallidis,
and R. Warner. Toward reliable off road autonomous vehicles oper-
ating in challenging environments. International Journal of Robotics
Research (IJRR), 2006.

[4] N. Melkumyan. Surface-based Synthesis of 3D Maps for outdoor Un-
structured Environments. PhD thesis, University of Sydney, Australian
Centre for Field Robotics, 2008.

[5] P. Pfaff and W. Burgard. An efficient extension to elevation maps for
outdoor terrain mapping and loop closing. International Journal of
Robotics Research (IJRR), 26(2):217–230, February 2007.

[6] B. Siciliano and O. Khatib. Springer handbook of robotics. Springer,
2008.

[7] R. Simmons, L. Henriksen, L. Chrisman, and G. Whelan. Obstacle
avoidance and safeguarding for a lunar rover. In AIAA Forum on
Advanced Developments in Space Robotics, 1996.

[8] S. Thrun and et al. Stanley: The robot that won the darpa grand
challenge. Journal of Field Robotics, 23(9):661–692, 2006.

1538

