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Abstract— Image-guided surgery offers great advantages to
surgeons through the possibility to track tools in 3D space
and to navigate based on the virtual model of the patient.
In the case of robot-assisted procedures, both the inherent
accuracy of the system components and the quality of the
registration procedures are critical to provide high precision
treatment delivery. One of the major barriers towards more
technology-integrated procedures is the fact that alterations in
the operating room environment can fundamentally change the
performance of the system, decrease the accuracy, and therefore
pose significant danger to the patient. Surgical events from the
control point of view may include motion of the robot, motion
of the camera, or motion of the patient. The paper describes a
new concept to treat these events, to track and automatically
compensate for abrupt changes that may affect the accuracy of
a robot-integrated interventional system. Our solution is to use
all available information at a given time, including the intra-
operative tracker’s internal base frame, to distinguish between
different surgical events. The concept has been developed and
tested on the neurosurgical robot system at the Johns Hopkins
University. Initial experiments performed on data recordings
from simulated scenarios showed that the algorithm was able
to correctly identify the cases.

I. INTRODUCTION

Computer-Integrated Surgery (CIS) refers to theory and

technology intended to improve the efficiency and accu-

racy of health care delivery. CIS means the combination

of innovative algorithms, robotic devices, imaging systems,

sensors and human–machine interfaces to work cooperatively

with physicians in the planning and execution of surgical

procedures [1]. A subfield of CIS is called Image-Guided

Surgery (IGS), where the digital system is not necessarily

involved in the physical part of the operation, but improves

the quality of surgery through better visualization or guid-

ance. IGS means the accurate registration (correlation and

mapping) of the pre-operative (MR, CT) or intra-operative

(ultrasound, fluoroscopy) data set of the patient to the actual

location within the operating room (OR). It may be useful to

register further devices, e.g., robots to the setup, providing

not only free-hand navigation, but also accurate positioning,

or guidance of a tool.
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A. Imperfections of CIS systems

Robots can support surgeons with advanced targeting,

steady positioning and precise task execution, surpassing

human capabilities. Effectiveness—accuracy of treatment

delivery—of an interventional system is crucial, especially

when it is operating semi-autonomously. Researchers are

focusing on improving systems through eliminating errors

that may originate in:

• CT/MR imaging errors and resolution issues

• volume model generation errors

• inaccurate treatment planning

• errors introduced by hardware fixation

• noise on intra-operatively collected data

• registration errors

• inherent inaccuracies of surgical tools and actions

• patient motion

The overall application accuracy of a system can be affected

in a complex manner by all of these. Errors can vary in

frequency, amplitude and correlation, therefore combined

hardware and software solutions are required to effectively

reduce their effects. Probably the most dangerous deviations

are the small, incremental changes in the setup and the

OR environment, causing errors that are hard to detect

immediately by the human operator or assistant.

B. State of the art in patient motion tracking

The event of patient motion occurs when the body moves

relative to the base of the equipment executing the surgical

plan. The fundamental problem with patient motion is that

without proper identification and compensation, the whole

surgical plan may become obsolete. If noticed in time, re-

registration is recommended to avoid damaging the patient.

However, re-registration is usually time consuming and cum-

bersome, therefore it should be avoided, whenever possible.

From the technical point of view, many sources of errors

can be represented as patient motion. The main sources of

external (i.e., excluding physiological) patient motion during

surgery include:

• large forces applied by surgeon (e.g., bone milling)

• bumping into the operating table

• leaning against the patient

• inadequate fixation

• equipment failure

The robot’s position information and the tracking data

must be kept consistent throughout the operation. Currently

deployed systems use different approaches, but most of them

relies of rigid anchoring. Smaller robots, such as the Smart-

Assist [2] (Mazor Surgical Technologies Inc., Caesarea, Is-

rael) or the MBARS [3] may be bone-mounted. This requires
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more invasive fixation on the patient side (bone screws),

and large forces may still cause relative motion between the

patient and the tool. In orthopedics, there are significant inter-

actions, making it necessary to use more invasive fixations.

Using a large robot with strong, rigid attachments to the

patient may introduce the danger of serious tissue damage.

The ROBODOC system [4] (Curexo Tech. Inc., Fremont,

CA) was the first Food and Drug Administration (FDA)

approved automated bone milling robot for hip replacement,

and it uses bone-attached fixation together with a bone

motion sensor to detect fixation failures. If the bone moves

more than 2 mm despite the fixation, the system halts, and

calls for re-registration. There is a clear trend in surgical

applications to shift towards less invasive solutions.

One option is to use multiple Dynamic Reference Bases

(DRB—rigid bodies constructed from trackable markers),

to follow the motion of the robot base and the patient

separately. Unfortunately, not every tracking system supports

this, and it may cause difficulties to maintain the line-of-

sight without disturbing the physician. Extending the active

workspace of a tracking system may result in higher inherent

accuracies due to the inhomogeneity of their fields. Some

commercial systems combine surface-mounted and in-body

fiducials to track external and physiological organ motion,

though it requires a separate operation just to place the

markers. A successful example is the CyberKnife radiation

therapy system (Accuray Inc., Sunnyvale, CA) that can track

both skin motion through a special suit and organ motion

by taking bi-plane x-ray images and locating fiducials (gold

beads in this case) that were implanted preoperatively [5].

Robotic setups could include accelerometers and gyro-

scopes to detect sudden changes; however there is need for

electronic coupling and the resolution may not be sufficient

for proper compensation. Besides, these would increase the

costs and complexity of the system. CCD cameras can survey

the OR, and image processing techniques could solve the

localization problem, but the resolution may not be high

enough, and it might have significant hardware requirements.

Further, dynamic registration and correction for patient

motion has been implemented with PET scans [6], [7] to

improve image quality through compensated reconstruction.

However, these setups only considered rigid environment,

where neither the camera, nor the PET gantry moved.

While significant effort has been invested to describe the

surgical workflow with mathematical models [8], relatively

few projects have dealt with the modeling of the OR setup

and environment in general. Dynamic correction for un-

forseen events remains a significant challenge with currently

used typical intra-operative navigation systems.

II. GENERAL CONCEPT FOR MOTION

COMPENSATION

A tracking-based minimally invasive concept for patient

motion compensation was proposed earlier [9] to support

systems with less rigid fixation setup or limited surgical

navigation capabilities. It is based on the principle that during

regular operation, the position of the surgical tool mounted

Fig. 1. General control concept of image-guided robotic systems

on an IG robot can be controlled precisely, once its location is

known relative to the base coordinate system. The base frame

can be chosen arbitrarily as long as it is connected to the

robot frame (and possible other control frames, such as the

navigation systems) through known homogenous transfor-

mations. A generic robot-integrated image-guided system’s

schematic diagram is shown in Fig. 1. The nodes represent

control frames, and the lines homogenous transformations.

The camera system is able to track in 3D both the motion of

the patient and the tip of the robot. Typically, the origin of

the trackable marker (Robot Rigid Body—RRB) and the Tool

Center Point (TCP) of the robot might be different. In this

case, the fixed transformation connecting them is obtained

from calibration, if not known a priori.

Control signals are practically computed in the DRB frame

(patient’s coordinate system), and are transformed to the

robot base frame (ROB) executing a series of homoge-

nous transformations through the camera’s coordinate frame

(CAM):

Control|ROB = DRB

CAM
T · CAM

RRB
T · RRB

TCP
T · TCP

ROB
T · Control|DRB. (1)

It is possible to close the entire control loop in Fig. 1 through

calibration, acquiring the transformation between the ROB

and the DRB frames. This can be computed under stationary

conditions (during the setup) by calculating:

DRB

ROB
T = DRB

CAM
T · CAM

RRB
T · RRB

TCP
T · TCP

ROB
T. (2)

Throughout the surgery, when unintentional motions of the

patient with respect to the robot are detected—i.e., deviations

from the original ROB to DRB transformation—it is possible

to compensate for the change by recomputing (2). This

ensures that the original surgical plan stays valid.

The effectiveness of the concept depends on the inher-

ent accuracy of the different elements—the robot and the

navigation system—and the registration. First and foremost,

the spatial localization can be corrupted by noise. In the

case of the most typically used optical trackers, noise varies

with the used marker type, the lighting conditions and the

position and angle of the rigid bodies in the cameras’ field of

view. In the case of electromagnetic tracking, susceptibility

to ferromagnetic materials in the proximity of the sensor
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TABLE I

DIFFERENT SURGICAL MOTION SCENARIOS TOGETHER WITH THE REQUIRED ACTION TO TAKE IN THAT DISTINCT CASE.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Camera Moving (Y/N) Y Y Y Y N N N N

Patient Moving (Y/N) Y Y N N Y Y N N

Robot Moving (Y/N) Y N Y N Y N Y N

Desired action Re-register Slow robot Slow robot Slow robot Slow robot Slow robot

Fig. 2. The decision-making chart showing the evaluation of different OR situations.

can cause significant distortions. Beyond measurement noise,

latency is also a major problem, making it harder to close

the control loop for compensation through (2). Furthermore,

robotic systems typically run in 20–100 Hz cycles at the

highest control level; however, commercially available track-

ing systems are not capable of more than 5–60 Hz data

acquisition, depending on their modality. Slower sampling

rate only allows less frequent and therefore less accurate

localization.

A. New Surgical Case Identification Concept

In an integrated surgical robotic setup (Fig. 1) changes in

the operating room setup are due to the different elements

moving relative to each other. Alterations can be modeled as

distinct events of camera motion (CamMot), patient motion

(PatMot), the regular motion of the robot (RobMot), or

the arbitrary combination of these. It can be assumed that

the robot is anchored rigidly to the ground, therefore its

base cannot move during the procedure. The deriving eight

categories—surgical cases from the control point of view—

are listed in Table I. From the application point of view, these

events can be categorized either as free motion (regular safe

operation), or potentially dangerous situation (when some-

thing is moving, but we are still able to compensate for it)

and finally forbidden event, when re-registration is necessary

to regain accuracy in control. During potentially dangerous

events, it is required to slow the robot proportionally to the

factor of the risk, to allow for the collection of multiple

measurements to reduce the probability of damage. This

generic description allows for a unified handling of any IG

system complying with the structure outlined in Fig. 1.

A robust method is required to identify the different

surgical cases, and an optimal position estimation technique

for each can be derived separately. According to Table I,

Case 8 refers to the completely stationary state, and during

regular operation only the robot is moving and performing

the desired tasks (Case 7). To support flexibility and line of

sight, time to time, the camera might be moved or relocated.

General practice allows for the free adjustment of the camera

position, as only the DRB

CAM
T−1· RRB

CAM
T is used to generate control

signals. It is crucial to reliably separate Case 1, 2, 5 and 6

from the rest, as patient motion is the critical event we wish

to compensate for.

To apply the concept described above, the position changes

of the DRB (i.e., the amount of patient motion) must be

known. To be able to determine it, all available information

of the system should be used. The novelty of our concept is
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that it incorporates in the calculations the navigation system’s

inner coordinate base frame as well. To rely on the camera

internal frame (CAM), it must be assured that the camera

itself does not move during the evaluation period. This option

has not been investigated by other groups, as we know. In

a general OR setup, this may be inconvenient to achieve

through the rigid fixation of the camera system, therefore

dynamic event recognition is required. It is important to note

that camera repositioning occurs rarely during a procedure,

although it must be monitored and compensated accurately.

Under the given condition, Cases 5, 6, 7 and 8 can be

best handled by using the camera frame as an individual

reference for patient motion (basically equivalent to having

an additional DRB). This allows for the easy handling of

Cases 5 and 6 using CAM as a reference, and assuming that

we have an accurate recording of the robot’s motion. When

the robot is static, we can use its position as a temporary

reference frame to determine possible CamMot (Cases 2

and 4). Subtracting the camera motion from the recorded

difference in the DRB’s position, PatMot can be identified

and numerically determined through ∆( CAM

DRB
T−1· CAM

RRB
T ) = 0+

PatMot, where ∆ means the increment between two control

cycles. If the robot is moving, the equation is extended with

the precisely known displacement of the robot’s tip in the

last cycle (RobMot)—transformed to the CAM frame (Case

3).

B. Specific Issues With Motion Compensation

In practice, the aforementioned errors complicate the sit-

uation. Each decision point becomes less reliable due to

the distribution of random errors. Fig. 2 summarizes the

new surgical event decision concept, including the error

margins. Every time the camera measurement is involved

in the decision condition, an error tolerance zone should be

considered—proportional to the noise parameters (Fig. 3).

In accordance with the literature, we consider unisotropic

Gaussian noise distribution [10]. The NoiseCam parameter

should be determined for every device based on manufac-

turer’s specification or experiments. Typically, intra-operative

tracking systems provide sub-millimeter accuracy even with

the consistent calculation of DRB

CAM
T−1 · RRB

CAM
T . If the sum of

two independent measurements are used from the camera

(e.g., to distinguish Case 2 and Case 4), the resulting noise

distribution is the convolution of the component noise dis-

tributions. (If Xi has Gaussian distribution with parameters

N(0, σ2), then
∑

n

i=1
Xi also has Gaussian distribution with

parameters N(0, nσ2).)
There are certain assumptions we make in order to treat

the system in a unified way:

• information about the state of the robot is available

• the robot is more precise than the navigation system

• the noise parameters of the components are known

• the latencies between the system components are known

In general, we use all relevant information given at a point

of measurement to make optimal decision on what surgical

conditions apply to the current OR setup. First, we com-

pensate for average latencies occurring in the system. Next,

we need to distinguish whether the robot is moving or not.

Usually, this information is directly available through the

servo feedback. Averaging over time may help reducing the

error, however, the safe control of the system during patient

motion events must also be addressed. Alteration might either

be a sudden, or a gradual event (drift or shift), and it can

take seconds for the DRB to settle. It must be ensured

that in the mean time the robot does not move beyond

a user-defined safety margin—typically 1 mm—it can be

scaled down accordingly. To dampen the effect of noise

(primarily in the camera system), filtering can be applied

to the signal. Due to the sudden changes (relative to the

time resolution of a navigation system), we only perform

average filtering while the system is static. Based on the

average noise distribution of a camera system, we defined the

window size for averaging. Position and orientation values

of the rigid bodies are averaged through a maximum of 50

cycles. If patient motion occurs, these values (averaged over

avg old cycles) will be stored, and motion event will be

computed relative to these. When the system stabilizes, a

new average is cumulated in every cycle (avg new). When

avg new == avg old, we replace the older value with the

new one. Fig. 3 illustrates a single patient motion event to

support this concept (in 1D for clarity). While performing

PatMot and CamMot computations based on Fig. 2, the

following values are stored:

∆RRB = ∆ RRB

CAM
T = RRB

CAM
T |avg new − RRB

CAM
T |avg old (3)

∆DRB = ∆ DRB

CAM
T = DRB

CAM
T |avg new − DRB

CAM
T |avg old. (4)

Based on these, we can update the DRB

ROB
T and CAM

ROB
T trans-

formations, originally determined through the initial robot

registration phase.

In the unlikely event when everything is moving at the

same time, the algorithm should still be able to determine

the individual positions, but the overall uncertainty of the

estimation would be too large, therefore it is recommended

to re-register the system. In currently deployed robots (such

as the ROBODOC), this is a common practice to require

re-registration if deviation from the original registration is

noticed. In addition, if patient motion and camera motion

occurs within 5 updates, re-registration is required again, due

to the decreased accuracy of the shorter averaging period.

A simulation environment was developed under MATLAB

R2008b (Mathworks Inc., Natick, MA) to verify the new

concept. A setup similar to Fig. 1 was defined, where a

robot and the patient are both tracked. Simulation parameters

were chosen to be in the range of a general surgical robot

regarding both range and speed of motion. Patient and

camera motion events were determined based on previous

real-life observations. The total length of the simulation was

160 s, assuming 10 Hz control cycle. RobMot, CamMot and

PatMot events were permutated, leading to the following

Case series in accordance with Table I: 8–7–3–4–6–5–2–1,

each lasting for 20 s, and consisting of a larger scale motion

and two smaller, but faster motion. First simulations were

performed under idealized conditions, with no noise and zero
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Fig. 3. Scheme of averaging for patient motion events

latency. The results showed the perfect identification of the

surgical cases. The overall effectiveness is expressed with

the percentage of correct Case identifications was 99.5%.

III. EVALUATION STUDY

A. The JHU Neurosurgical Robot

The concept introduced in the previous section was tested

on a neurosurgical robot system developed at the Center

for Computer-Integrated Surgical Systems and Technology

(CISST ERC) at the Johns Hopkins University [11]. The

project uses a modified robot and navigation making it

capable of helping and increasing the performance of human

surgeons (Fig. 4). The NeuroMate manipulator (formerly

marketed by Integrated Surgical Systems Inc., Sacramento,

CA) is a 5 degree-of-freedom (DOF) robot, originally built

for stereotactic procedures. The StealthStation intra-operative

navigation device is also commercially available (Medtronic

Inc., Louisville, CO). It tracks the 3D position and orientation

of sets of optical markers forming a rigid body. This version

of the StealthStation only allows for the detection of two

frames (i.e., a fixed reference frame and a moving probe).

Both devices are approved by the FDA. An Anspach eMax 2

high-speed bone drilling surgical instrument (The Anspach

Effort Inc., Palm Beach Gardens, FL) was attached to the

tip of the robot through a 6 DOF force sensor (JR3 Inc.,

Woodland, CA, USA) to measure the forces and torques

applied to the end-effector. The robot is guided in cooperative

control mode for the removal of cranial bone on the skull

base, while virtual fixtures (safety boundaries) are applied

to protect critical anatomical structures [12]. The control

software successfully integrates open source and proprietary

components. It extensively relies on the cisst open source li-

braries (https://trac.lcsr.jhu.edu/cisst), developed for surgical

robotic applications at Johns Hopkins.

B. Test Data for Evaluation

Unfortunately, there is very little published data on patient

motion [13], [14]. For consistency, we examined several

motion patterns correlating to the different events within the

Fig. 4. Neurosurgical robot setup at the Johns Hopkins University,
consisting of a manipulator, a surgical navigation system, a visualization
console, and a robot controller computer.

OR, described in Section II. For evaluation purposes, we

generated the following motion patterns:

• applying arbitrary forces on the cranial frame

• applying arbitrary forces on the robot

• applying arbitrary forces on the patient cart

• crisp motion of the DRB (bumping into it)

• drifting motion of the DRB (primarily rotation)

The initial experiments showed that the compliance of the

cranial frame (Mayfield Infinity Skull Clamp) and the Neuro-

Mate arm can already result in 0.85 mm and 1.55 mm RMS

errors, respectively, therefore reducing the effectiveness of

the treatment without proper compensation.

We performed test sequences according to the eight surgi-

cally relevant scenarios presented in Table I. These record-

ings were used for comparable evaluation of the new method.

To be able to apply event based compensation, the specific

parameters of the JHU system had been identified. We found

that the inherent noise (standard deviation) of the Medtronic

navigation system is [0.0185, 0.0134, 0.0474] along x, y, z

axes (in mm) and [0.0029, 0.0009, 0.0029] in rotation along

the same axes (in degrees), respectively. Spatial location

within the workspace of the camera showed little deviation

from these averaged values. On average, the StealthStation

updates its interior position information in every 108 ms, and

in total, the measurements arrive to the controller computer

with 259.9 ms delay compared to the robot’s signals.

C. Results and discussion

Preliminary results proved that our method managed to

identify the most extreme events (Case 1 and 8) with 100%

accuracy, and the more complex events with approximately

80% on average. Case 6 and 7 can be identified with a higher

success rate, while Case 2 and 4 (and also Case 3 and 5)

are harder to distinguish. The proposed gradually extending

window averaging provides position estimation as soon as the

dynamic reference frame (therefore the patient) stabilizes,

and updates the registration transformations continuously,

with increasing precision.

As the data sets were acquired on a physical system,

imperfections of the different devices could lead to false

clustering. The jitter in latency may also cause trouble, mak-

ing it harder to distinguish surgical cases from each other.
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Correlated motion patterns may further degrade accuracy.

This may be an issue with actual bone milling with loose

head fixation, when the robot’s motion can induce patient

motion, and the whole can look like a camera motion from

the control point of view. Frequency domain identification of

simultaneous motion types may help to separate Case 1 and

3. It should be mentioned that these cases happen seldom

during regular clinical settings (i.e., the assistant should not

adjust the camera while the surgeon is operating). The overall

structure of the surgical case identification allows for a more

generic, probability-based handling of the events that may

lead to a more robust classification in the future. We plane

to perform data collection on patient motions during actual

surgeries to be able to better tune the parameters.

D. Limitations

The theoretical performance and robustness of the pro-

posed method may be affected by many factors. While aver-

age communication latency can be compensated accurately, it

evokes that overall prediction will be delayed with the max-

imum latency. This must be taken into consideration when

designing the safety margins for the application. Sometimes,

due to timing issues, latency may have a variance or jitter.

Overall safety boundaries should be built in the surgical plans

to tolerate maximum localization errors caused by occasional

longer delays. If one component is significantly slower than

the other, it may be hard to achieve real-time compensation.

There is always a possibility to reduce the robot’s speed to

collect sufficient information, however, this may result in the

unnecessary prolongation of the surgical procedure which is

absolutely undesired. While false positive characterization

of patient motion events may not mean inherent danger, it

should be avoided to ensure smooth operation of the system,

and the possibility to reduce operating time.

Both the inherent inaccuracies of the components and

the registration procedures may introduce localization errors.

In the case of an integrated system, this error can be

magnified through the computation of a chain of homogenous

transformations, where angular errors (in the estimation of

rotation angles) will be multiplied out by the translational

parameters. This should be handled through the extension of

the method, involving probability based computation of the

tool’s location instead of using deterministic models.

IV. CONCLUSION

In the case of robot-assisted image-guided surgery or

radiation therapy, precision is vital, therefore accurate posi-

tioning of the surgical tool is required. Different approaches

have been experimented to robustly identify surgical events

(such as patient motion), that may endanger the success of

the operation or could cause damage to the patient. The aim

of the research was to improve surgical robot navigation

through decision-tree based event recognition, allowing to

choose the best control option for the given case.

A new approach has been proposed for integrated IGS

systems, using the intra-operative navigation device’s internal

coordinate base frame to better estimate the possible changes

in the operating room environment. The advantage of the

method is that it is arbitrary scalable to any improve different

setups. Possible events have been categorized and defined

as patient motion, camera motion, robot motion and the ar-

bitrary combination of these. A measurement-based method

was given to identify the actual case, and perform the desired

action to enhance patient safety. The method was tested

on an image-guided, cooperatively controlled neurosurgical

robot developed at the Johns Hopkins University CISST

ERC center. Different motion scenarios were simulated and

recorded. The algorithm managed to robustly identify the

most frequently occurring surgical cases.
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