
Emergence of bipedal walking through body/environment interactions

Shingo Shimoda, Yuki Yoshihara and Hidenori Kimura

Abstract— In biological regulatory systems, all computations
result from spatial and temporal combination of simple and
homogeneous computational media. This computational scheme
realize the adaptability to unpredictable environmental changes,
which is one of the most salient features of biological regula-
tions. To investigate the learning process behind this computa-
tional scheme, we propose a learning method that embodies the
features of biological systems, termed tacit learning. We have
constructed a controller based on the notion of tacit learning
and applied it to the control of the 36DOF humanoid robot
to create the bipedal walking adapted to the environment.
Experiments on walking showed a remarkably high adaptation
capability of tacit learning in terms of gait generations, power
consumption and robustness.

I. INTRODUCTION

Adaptations to unpredictable environmental changes are
the highest-priority task for all living organisms to survive
in the natural environment. In the long history of evolution,
living organisms have developed regulatory systems that
form a network of simple and homogeneous computational
media. Homogeneity here means that each computational
medium follows identical activity rules and computations for
regulations are carried out by accumulating local activities of
computational media subject to the identical rules. In brains,
for example, neurons modify their synaptic connections,
quantities of releasing neurotransmitters, conductances of ion
channels and so on based on their innate rules and creates
behaviors adapted to the environment[1]. Similar processes
of adaptations can be observed in other biological regulatory
systems such as intracellular regulations[2]. We termed this
feature of biological regulations compound control[2]–[6].

Usage of homogeneous computational media for regula-
tions is considered to be an effective and economical way of
embedding the regulatory mechanism taking into account the
limited resources of biological systems[2]. One of the most
serious problems of the homogeneous computational media
network, however, is how to distinguish the difference of the
environmental informations which are represented by homo-
geneous signal flows inside the network. Biological systems
should have some mechanisms to distinguish them because
biological systems are very sensitive to small environmental
changes.

Whereas recent studies have succeeded in clarifying the
details of biological computational media[7][8] and their
network structures[9][10], the process of organizing the
activities of the computational media and creating global
behaviors still remains as an attractive research topic.

Construction of artificial controllers that are capable to
adapt to unpredictable changes is the interesting approach
to understand the adaptation process since artificial systems
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are much easier than biological systems to analyze that
process[11]. Recent advances in artificial learning and adap-
tive methods for robot controls, however, have not reached a
level of biological systems’ adaptability[12]–[18]. One of the
most critical problems of the conventional approaches is the
way of specifying goals of learning. In many cases, goals
of learning are specified in advance by using supervising
signals such as teaching signals in neural networks[12]–[14]
and reward functions in reinforcement learning[15], which
are not changed during learning.

In the previous papers[3][4], we proposed an unsupervised
learning scheme based on the features of the biological
regulatory systems. We termed this learning scheme tacit
learning. To apply tacit learning to the learning of bipedal
walking, the network of the artificial computational media
was implemented to the controller of 14DOF bipedal robot.
The robot succeeded in learning the bipedal walking in com-
pletely model-free fashion. Balance, which is an important
factor of bipedal walking, emerged within approximately 10
minutes through the motions in the real environment[19].

This success of tacit learning provides insights into the
process of creating behaviors through the motions in the
real environment. In that experiment, the proposed networks
had some innate connections between the sensors and the
motors in the form of reducing the sensor inputs by the
motor actions, just like our motion of withdrawing our hands
from hot plates[3]. These innate connections generated the
reflexive actions through body/environment interactions. The
environmental informations were taken into the network by
these reflexive actions.

We consider that the way of acquiring the environmen-
tal information through the reflexive actions strongly con-
tributes to distinguish the environmental informations in the
computations using the homogeneous computational media.
The process of creating behaviors from the environmental
informations acquired through the reflexive actions is, how-
ever, still unclear though we experimentally succeeded in
learning the bipedal walking. In the paper[3], we developed
a mathematical model of the proposed network based on
the individual activities of the artificial computational media.
The aim of this paper is to investigate the process of creating
the behavior based on the mathematical model and show the
adaptability of tacit learning.

II. TACIT LEARNING

A. Feature of tacit learning

The fundamental idea of tacit learning comes from the fea-
ture of biological regulatory systems in which all regulations
results from spatial and temporal combination of simple and
homogeneous computational media. Protein-protein interac-
tions in intracellular regulations and the networks of neurons
in brains are the prominent examples of such regulatory
systems.
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Fig. 1. Conceptual image of task and its execution

Based on this feature of biological systems, tacit learning
is characterized by the following features. First, the controller
for tacit learning is a network of homogeneous computational
media. The learning progresses through accumulating the
individual activities of the computational media that are oper-
ated by their innate rules. Second, the sensor-motor connec-
tions are organized in the network such that the sensor inputs
are reduced by the motor actions. These innate connections
create the reflexive actions through body/environment inter-
actions. The combination of these reflexive actions generates
the primitive motions taking the environmental information
into the network. Third, no supervising signal is used in the
learning process. The environmental informations taken into
the network through body/environment interactions lead the
primitive motions to the behaviors adapted to the environ-
ment.

B. Definition of task for tacit learning

Tacit learning should be discussed with specified target
behaviors because tacit learning is the way of creating behav-
iors adapted to the environment achieving specified purposes.
In the case of learning of bipedal walking discussed in [4],
the specified target behavior was the locomotion part of
walking that swings a leg forward alternately. The balance
and the walking rhythm emerged through tacit learning
depending on the conditions of the walking surface and the
weight of the robot.

We define rigorously the way of specifying target be-
haviors as task for tacit learning. Let x denote the vector
representing the state of a plant to be controlled such that
the behavior is described by a transition of x from an initial
state to a specified state. As an example, motions of n DOF
arm are described by the transition of the state of the joint
space x = [θ1 θ2 · · · θn]T . Here, θi denotes the angle of
Joint i. A target behavior always becomes a transition of x

from an initial state to a specified state in the sate space.
These specified states are called target states.

State space is usually very large especially in the learning
of devices with many degree of freedoms, while the target
states some time involve only handful degree of freedoms.
Let us take a learning of the motion of picking up an object
by using a redundant arm as an example. One of the target
states is the posture that the end-effector of the arm reaches
the object, which is not unique for a redundant arm. In such
a case, a target state can be expressed as the set of state x,
which we call target set.

The task is defined as a series of the target sets. Figure 1
illustrates the conceptual image of the definition of the task.
A and Σi denote a set of all possible state of x and the target

sets, respectively. In the case of bipedal walking, the target
sets are defined by the motions of swing legs. The motions
of supporting legs and other joints are chosen freely from
the target sets. By choosing the trajectories that connect the
target sets, behaviors of the plant to be controlled are created.
Behaviors may be the adapted ones to the environment when
appropriate trajectories are chosen. We use tacit learning to
choose the trajectories for creating adapted behaviors by ac-
quiring the environmental information through the reflexive
actions as mentioned in the previous subsection.

Now, tacit learning is defined to be a process of finding
adapted behaviors to the environment carrying out a specified
task. In the following sections, we discuss the process of
finding the behaviors by tacit learning with the experimental
results.

III. EMERGENCE OF TRAJECTORY BY TACIT LEARNING

A. Network structures for tacit learning

As mentioned in the previous section, tacit learning is
executed through accumulating the activities of the computa-
tional media. We proposed the artificial computational media
in [4] whose activities are fundamentally governed by the
classical McCulloch-Pitts neuron model[20], which has the
two states, firing denoted by 1 and rest by 0. The difference
of our model from the original McCulloch-Pitts model is the
threshold modification to keep the firing frequency in the
appropriate range. The threshold of each neuron is increased
∆θ or decreased ∆θ when the neuron fires or is at rest. The
mathematical expression of this neuron model is given in
[3]. We call this neuron mode Variable Threshold Neuron
(VTN).

A network of VTNs has a strong computational power
such as four arithmetic operations, conditioned reflexes
and input accumulation by selecting appropriate threshold
patterns[4]. In the paper [3], we developed the two networks
based on these computational power. One is the output
regulation network, which can find the appropriate threshold
pattern of VTNs to control the state of the unknown plant
connected to the network to the specified reference. The
other is the self-reference generation network, which can
find the threshold pattern that can reduce the quantity of the
input to the plant by creating the control reference through
body/environment interaction. The details of these network
structures are given in [3]. Here, we describe the block
diagrams of these networks.

The block diagrams of the overall network configurations
are described in Fig. 2. The controller C in the block
diagrams is the network of VTNs called cluster described
in Fig. 3 a, which is composed of a series of VTNs with
a common input. The output from the cluster is the number
of firing VTNs. The initial values of all thresholds in the
cluster are set to be equally distributed in a single band of
width α + β. Here, α and β denote the values for threshold
incremental step ∆θ and decremental step ∆θ, respectively.
Under this assumption on the thresholds, the output from
the cluster becomes 0 when the input is smaller than all
thresholds, and all VTNs fire when the input is larger than all
thresholds. Actually, the output from the cluster becomes the
saturation system described in Fig. 3 b. An interesting feature
of the cluster activity is that the non-saturated area moves
depending on the output from the cluster. Non-saturated area
moves to bring the area closer to the input value as described
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The output from the cluster becomes the saturated value. The non-saturated
area moves toward the input by tuning their thresholds.

in Fig. 3 b based on the activities of VTNs. The mathematical
expression of the cluster activity is given in [3].

In the output regulation network, the output from the
network Oo is the value of multiplication between the output
from the cluster x1 and the output from the integrator x2 that
is the integral value of the difference between the reference r
and the input Io as described in Fig. 2 a. At the equilibrium
state of the output regulation network, the input Io converges
to the reference r and the cluster finds the appropriate
threshold patterns in the environment. The control loop
drawn by the thick lines acts as the reflexive response. The
role of this loop is discussed with the experimental results
in the next subsection.

In the self-reference generation network, the reference
signal in the output regulation network is replaced with
the integrator of the output Os. At the equilibrium state,
Os should be 0 otherwise the output x5 from the integra-
tor continues changing. Thus, the self-reference generation
network might be able to find the appropriate threshold
pattern that tunes the output from the network to 0 if the
environment allows. The mathematical expressions of these
network activities are described in [3].

B. Posture control of 2DOF manipulator by tacit learning

To discuss the process of creating behaviors by tacit
learning, we posed the 2DOF manipulator described in Fig.
4 a a task: to make a specified angle in the upper joint, called
Joint 2, from the vertically standing posture as shown in Fig.
4 b and c, respectively. In this task, the angle of the lower
joint, called Joint 1, was not specified but chosen freely by
tacit learning. The target set Σ of this task is described as
follows:

Σ = {(θ1, θ2) | ∀θ1, θ2 = θd} (1)

which can be expressed as a line in the Cartesian space of
θ1 and θ2 illustrated in Fig. 5. Here, θ1, θ2 and θd denote
the angles of Joints 1 and 2, and the desired angle of Joint
2, respectively.

We used the self-reference generation network to control
Joint 1 and the output regulation network to Joint 2 as

standing posture
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Joint 2

θ2 θd=

Joint 1

Joint 2

300

300
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c d
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Fig. 4. 2DOF manipulator:a Overview of 2DOF manipulator. b Posture
that the manipulator is standing vertically. c The upper joint (Joint 2) is
specified to θd and the lower joint (Joint 1) is remained freely to choose
the angle to adapt to the environment. The posture that joint 1 is controlled
to be the center of mass of the manipulator is on the vertical line passing
through the attachment point of Joint 1 is called zero-torque posture. d

Definition of parameters

described in Fig. 6. In this configuration, the plant can be
described as follows:

M

[

θ̈1

θ̈2

]

+ B = U (2)

Y = Cθ (3)

M =

[

I1 + m1a
2

1
+ l2

1
m2 + ζ + 2ξ cos θ2 ζ + ξ cos θ2

ζ + ξ cos θ2 ζ

]

B =

[

−ξ(2θ̇1 + θ̇2)θ̇2 sin θ2 + k1 cos θ1 + k2 cos(θ1 + θ2)

ξθ̇2

1
sin θ2 + k2 cos(θ1 + θ2)

]

θ =
[

θ1 θ̇1 θ2 θ̇2

]T

, U =
[

u1 u2

]T
,

Y =
[

y1 y2

]T
, C =

[

1.0 0.1 0.0 0.0
0.0 0.0 1.0 0.1

]

,

ζ = I2 + m2a
2

2
, ξ = l1m2a2,

k1 = (m1a1 + m2l1)g, k2 = m2a2g

Ii : Inertia moment of each arm (See Fig.4)

li : Length of arm

ai : Length from joint to center of gravity

mi : Mass of arm (m2 includes mass of payload.)

The most interesting feature of this experiment is how
the self-reference generation network for Joint 1 finds its
values during the learning. Fig. 7 illustrates the experimental
result. A payload with weight 360g was attached to the top
of the manipulator in this experiment. The angle of Joint
2 smoothly converged to the pre-defined reference, which is
π/4 rad in this experiment. Joint 1 was rotated in the positive
direction at first because the balance of the manipulator
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was broken by the motion of Joint 2. The reflexive action
that was mainly controlled by the loop described by thick
lines in Fig. 2 b appeared immediately after Joint 1 was
rotated by the loss of balance. The reflexive action of Joint
1 stimulated other network loops in Fig. 2 b. The angle of
Joint 1 finally converged to -0.26rad, where the manipulator
can keep balancing without torque to Joint 1 as shown in
Fig. 7 c. Through tacit learning, the self-reference generation
network worked to find zero-torque posture, for which the
torque to Joint 1 is zero.

The equilibrium point of the self-reference generation
network is described as follows:

y1(t) = x5(t), x4(t) = 0.0, u1(t) = 0.0, x3(t) =
Nβ

α + β
(4)

Here, N denote the number of VTNs in the cluster. Under
the mechanical limitation of Joint 1 which is −π < θ1 < π,
the angle of Joint 1 at the equilibrium point becomes

θ1 = tan−1

(

k2 cos θd + k1

k2 sin θd

)

, (5)

which corresponds to zero-torque posture. The reflexive
action led the angle of Joint 1 to the above equilibrium angle
that was decided by the environment, the body parameters
of the manipulator and the desired angle of Joint 2 without
any explicit information about zero-torque posture.

The reflexive action of Joint 1 was created by
body/environment interaction, which was the loss of balance
by attracting the gravitational force to the manipulator body
in this case. Thus, when the body parameters were changed,
the motion of Joint 1 was automatically changed. ∗ in Fig. 7
d describes the converged angle of Joint 1 when the weight
of payload was changed. Without information to the network
about the changes, the angle of Joint 1 converged to the
neighborhood of the equilibrium point calculated through Eq.
(4) that is illustrated in Fig. 7 d as the solid line.

IV. EMERGENCE OF BIPEDAL WALKING BY TACIT

LEARNING

A. Definition of task for bipedal walking

We apply tacit learning to a emergence of bipedal using
36DOF humanoid robot described in Fig. 8. As discussed in
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Section II, the motions of putting the legs forward alternately
were used as the target sets. Actually, we take four postures
in one step as the target sets as described in Table I. In
the target sets, we specified the motion of the swing legs
and don’t care the motion of supporting leg like Joint 1
in 2DOF manipulator experiments. The output regulation
networks were used to control the specified joints and the
self-reference regulation networks were used for other joints.

B. Experiments of bipedal walking

The reference values of the specified joints in the experi-
ments are summarized in Table I. The target set was switched
to the next one when the specified angles converged to the
references. To create the periodic motion, Σ8 and Σ1 were
connected.

The movies of the experiments are on [19]. At the initial
state, the robot fell down even though the legs moved for-
ward. After about 10 minutes, the motion of the supporting
leg was tuned and the robot kept walking. Fig. 9 describes the
lateral angle of the hip joint (Jr 6 in Fig. 8) before and after
learning the walking. The motion of the joint that rotated
randomly in the initial couple of minutes became periodic
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TABLE I

TARGET POSTURE FOR WALKING AND SPECIFIED ANGLES

Balance on Right Leg

Left Leg Up

Left Leg Down

Waiting after Left Leg Step

Balance on Left Leg

Right Leg Up

Right Leg Down

Waiting after Right Leg Step

Σ1

Description
Specified DOF

-

-

Jr 6

(0.08)
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(-0.08)
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Fig. 9. Time histories of the joint Jr6

gradually and eventually periodic motion emerged after 10
minutes.

Fig. 10 describes the trajectories of Jr 6 when the state
moved from Σ2 to Σ3. The broken lines represent the
trajectories that were used before learning was complete.
These lines appeared at the first 3 minutes. The solid lines
are the trajectories after the robot became able to walk
continuously, which appeared in the final 2 minutes. The
trajectory modification from the broken lines to the solid
lines happed in the process of searching the equilibrium
point by the reflexive actions, which was the same process
of Joint 1 in 2DOF manipulator experiments discussed in the
previous section. We observed the similar convergences of
the trajectories of other unspecified joints.

C. Adaptability of bipedal walking to environment

Our interest is how well the created walking gait was
adapted to the environment. We discuss on this problem in
the following three aspects.

The first is the efficiency of the walking gait. The effi-
ciency is one of the important indexes to discuss adaptability
of walking gaits to the environment[21]. It is natural to think
that the better efficiency implies the more adapted gait to
the environment. We use the following index to evaluate the
efficiency[22]:

E =
energy comsumption

(mass of the robot) × (traveled distance)
. (6)

Fig. 11 describes the time history of this index during
learning the walking. The efficiency of human’s walking
and other full-control humanoid robot walkings are also
illustrated in Fig. 11 as the broken lines[22]. The result
shows that the efficiency of our robot was getting better
as the learning progressed. At the final stage of learning, it
became less than one-fifth of other full-controlled humanoid
robots and almost the same value of human’s walking.
This remarkably high efficiency level was achieved by the
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Fig. 11. Time history of energy efficiency E described in Eq. (6) during
learning bipedal walking

reduction of the power consumption by keeping balance
without torque during walking. This walking style is similar
to the humans’ walking and corresponds to the zero-torque
posture in 2DOF manipulator experiments.

The second is on the autonomous changes of the walk-
ing rhythm. In the experiment, we did not set any time
dependent parameters. The periodic walking rhythm emerged
through body/environment interaction. Thus, when the body
parameters and/or the environment were changed, the rhythm
was automatically changed as described in Fig. 12 in which
the weight of the robot was changed abruptly after learning
the walking. Without any explicit information about the
weight change, the rhythm was tuned slower when the weight
became heavier and vice versa. These changes are reasonable
to adapt the behaviors to the weight changes.

The final one is on the difference of the torque working on
the ankle depending on the walking surfaces. As you can see
in the movies on [19], our method succeeded in creating the
walking on natural turf, not only on the flat and hard surface
in lab. Fig. 13 a describes the time histories of the torque
working on the ankle after learning the walking. The results
show that the controller required much larger torque for the
walking on turf than that in lab. We can observe the similar
changes of torque in our walking. Fig. 13 b describes the
electromyogram (EMG) data of the tibialis anterior muscle
which controls the angle of the ankle when a human walked
on asphalt and on sand beach. As seen in Fig. 13 b, we know
empirically that we use much more power to keep balance
while walking on sand beach than on asphalt. Thus, the
emergence of appropriate torque depending on the surface
conditions in our experiments implies that body/environment
interactions created the walking gate adapted to the environ-
ment.

The observations on the above three aspects imply that
the behaviors created by tacit learning are not just adapted
to the environment, but share many features with biological
behaviors. We believe that these similarities come from the
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feature of the activity rules of VTNs and their network,
which change their thresholds to reduce their outputs when
the environmental inputs increased. In tacit learning, the
environmental informations were analyzed based on this
feature. These processes tend to save energies in carrying
out a specified task in the environment. This would also be
important for biological systems to increase the chance of
survival in the natural environment.

V. CONCLUSION

The notion of tacit learning has been introduced to develop
the artificial control system with remarkable adaptability
to unpredictable environmental changes. The fundamental
computational algorithm of tacit learning is based on the
feature of biological regulatory systems in which all reg-
ulations result from spatial and temporal integration of
homogeneous computational media that act subject to innate
rules. A network of the homogeneous computational media
that connects the sensors and the motors in a proper ways is
of great advantage to orchestrate the flow of heterogeneous
environmental informations. We developed the networks of
the artificial computational media and implemented them to
control the humanoid robot.

The experimental results showed that the reflexive actions
originated with the innate sensor-motor connections in the
network led the primitive motions to the sophisticated be-
haviors adapted to the environment. Even small changes
of the environment influenced the learning results because
the reflexive actions were caused by body/environment in-
teractions. The three observations discussed in Section IV
verified the high adaptability of tacit learning in the natural
environment.

In the proposed networks, the environmental informa-
tions taken into the network by the reflexive actions
played the roles of supervising signals for learning. This
learning scheme is strongly associated with the notion
of affordance[23] that is recognized as the key factor in
cognitive and intelligence. In our case, the environmental
informations were mainly used to create the motions of the

joints without the concrete references and led to the adapted
behaviors. The creation of the meaningful behaviors from the
purposeless actions by using the environmental informations
should be the essential process to establish adaptation and
intelligence in man-made machines.
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