
Linear–time Path and Motion Planning Algorithm for a Tree Climbing

Robot – TreeBot

Tin Lun Lam, Guoqing Xu, Huihuan Qian and Yangsheng Xu

Abstract— This paper proposes a path and motion plan-
ning algorithm for a tree climbing problem. This problem is
challenging as the shape of tree is complex and irregular. To
our best knowledge, this is the first paper dealing with the
path planning problem on natural tree environment. Different
from conventional motion planning approach that requires
constructing a complex configuration space, this paper divides
the planning problem into two parts, i.e., path and motion
planning problem so as to reduce the dimension of the problem.
An intuitive method to represent a climbing space is proposed
that highly simplifies the path planning problem. With the use
of a dynamic programming algorithm, an optimal path to reach
a target position can be acquired in linear time. In addition, an
efficient motion planning algorithm for a tree climbing robot
named TreeBot is developed to make TreeBot follow the planned
path.

I. INTRODUCTION

Tree maintenance is important to protect both trees and

human lives. To reach an upper part of trees for maintenance,

workers always put a tool at the end of a long rod to help

get close to the target position. However, it will become

infeasible if the target position is very high. To solve this

problem, the workers need to climb up the tree to perform

the maintenance. Since tree climbing is a dangerous task for

human, the development of a tree climbing robot is necessary

to replace human work.

In literature review, there are only few robots designed for

climbing on a tree. WOODY [1] is one of the tree climbing

robots designed for replacing human works on tree. It climbs

on trees by embracing a whole tree trunk. RiSE V2 [2] is

a wall climbing robot that uses six legs to maneuver. It is

demonstrated that the robot is able to climb up tree vertically.

To our best knowledge, there is no related works for the

motion planning problem on these tree climbing robots.

The motion planning problem is challenging as the shape

of tree is irregular and complex. There are many motion

planning works for climbing on structured settings such as

wall and glass window [3], [4], [5]. However, the natures of

the structured settings are different from trees that make the

motion planning methods not adoptable to the tree climbing

problem.

In conventional motion planning approach [6], the config-

uration space (a set of possible transformations that could be

applied to the robot [7]) of the problem must be constructed

to help solve the problem. However, the formulation of the

T. Lam, G. Xu, H. Qian and Y. Xu are with the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, and
the Department of Mechanical and Automation Engineering, The Chinese
University of Hong Kong, Hong Kong SAR, China. {tllam, gqxu,
hhqian, ysxu}@mae.cuhk.edu.hk

Fig. 1. Prototype of the tree climbing robot - TreeBot

configuration space is complex as it involves complicated in-

teraction between the environment and the robot kinematics.

In addition, a high degrees of freedom (DOF) and continuous

motion of a robot results in a high dimensional and huge

configuration space that makes the problem difficult to solve.

In this paper, an efficient motion planning algorithm for a

tree climbing problem is proposed. The proposed algorithm

is mainly designed for a novel tree climbing robot named

TreeBot. The prototype of TreeBot is shown in Fig. 1.

TreeBot is an innovative robot that is able to climb on

many types of trees with high maneuverability. In order

to solve the planning problem efficiently, the problem is

divided into a path planning and a motion planning problem

and solves it one by one so as to reduce the dimension of

the problem space. In the path planning sub-problem, it is

assumed that TreeBot is in point size and holonomic such

that the kinematics of the robot can be ignored. It is aimed

at finding an optimal path to reach the target position on the

2D manifold. The path planning algorithm includes several

constrains to make the robot easy to follow. Since it only

considers a 2D manifold of tree surface, the dimension of

state space is relatively small.

An intuitive method is developed to represent the climb-

ing space. It highly simplifies the path planning problem

in linear-time complexity. A dynamic programming (DP)

algorithm is adopted to find the optimal path according to

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4988

Front Gripper

Controller

and battery

Continuum body

Rear Gripper

Fig. 2. Structure of TreeBot

specified constrains and requirements. As for the motion

planning sub-problem, it is aimed to find an appropriate

motion of the robot so as to follow the planned path. An

effective strategy for motion planning is proposed that the

solution can be obtained without any searching effort and

state space formulation.

The following sections are organized as follows. Section II

gives a brief introduction of the design and locomotion of

TreeBot. The method of state space formulation is presented

in Section III. The path planning algorithm is discussed in

Section IV while the motion planning algorithm is presented

in Section V. Experimental results are shown in Section VI.

Finally, conclusions and future works are presented in Sec-

tion VII.

II. INTRODUCTION OF TREEBOT

TreeBot is a tree climbing robot that composed of two

grippers and a continuum body. The grippers are attached at

the ends of the continuum body respectively. Fig. 2 illustrates

the structure of TreeBot. The grippers are used to hold the

robot on the tree surface while the continuum body is used

for maneuver. The continuum body has three DOF which

is able to bend and extend. The locomotion of TreeBot is

similar to the locomotion of inchworm that moves forward by

extending and contracting the body. The relationship among

the robot body, front and rear gripper are illustrated in Fig. 3.

The continuum body is in arc shape. According to [8], the

shape of the continuum body can be represented by three

parameters, i.e., S, κ and φ as shown in Fig. 3. Let the rear

gripper is located at the origin, to put the front gripper to

the target coordinate ~Pt =
[

xt yt zt
]

, the posture of

the continuum body becomes:

φ = tan−1 yt

xt

(1)

κ =
2 cos θ1

√

xt
′2 + zt2

(2)

S = θ/κ (3)

where θ = 2
(

π
2 − θ1

)

, θ1 = tan−1 zt
xt

′
and xt

′ = xt cosφ+
yt sinφ.

Fig. 3. Notations and configurations of TreeBot

III. STATE SPACE FORMULATION

Before working on the path planning problem, the state

space to the problem should be formulated. A tree is com-

posed of a trunk and numbers of branches. In this paper,

a trunk is also treated as a branch. It is assumed that

the relationship among branches can be represented by a

tree data structure as illustrated in Fig. 4. To climb to a

target position, there is a unique sequence of branches to go

through. For example, if the target position is at branch 8 and

the initial position is at branch 1, there is only one way to

go, i.e., branch 1 → branch 4 → branch 8. The sequence can

be obtained simply by using the backward search method in

the tree data structure. As a result, for the path planning, the

climbing space of other non-passing branches can be ignored.

Nonetheless, the non-passing branches should be considered

as obstacles.

To represent the climbing surface of each branch, the tree

surface is discretized in numbers of points. The shape of

tree is first decomposed by numbers of rings as shown in

Fig. 5. The normal direction of a ring is equal to the growing

direction of a shape of branch. The distance between each

ring is separated in certain value such that the rings do not

intersect. The shape of ring is defined by the outer shape

of the specified position of a branch and hence it is not

necessary be a perfect circle. Finally, each ring is equally

discretized by certain numbers of points. Each point contains

the information of the 3D Cartesian Coordinates and the

normal vector of the surface of that point.

There are two situations that make TreeBot cannot reach a

point: 1) the upper space of a position is not large enough for

robot to go through which is a constant space for TreeBot. It

may result by the upper space is occupied by other branches

or 2) the gripping surface of a point is concave that the

gripper cannot grip the surface tightly. The state space should

contain the information of the unreachable points.

The information of the shape of tree can be obtained

by many means such as laser or vision based sensing [9],

[10]. Since this paper focuses on the planning problem, it is

assumed that the shape of tree is given. The details of the

sensing and the state space conversion problem will not be

discussed in this paper.

4989

(a) (b)

1

3

2
4

5
67 8

Fig. 4. Representation of the relationship among branches by tree data
structure (a) Real tree structure; (b) Branches relationship represented in
tree data structure.

Each ring is
decomposed
in n points

Fig. 5. Method of tree surface discretization

IV. PATH PLANNING

To go to the target position and avoiding obstacles are

the basic requirements for path planning. In addition, to

make a planned path easy to be followed by TreeBot, the

path planning should have certain requirements. In order

to eliminate the pull out force generated by the gravity,

TreeBot should climb on a top side of the climbing surface as

illustrated in Fig. 6 colored in red. Furthermore, the shorter

path also reduces the energy consumption. It also implies

a smoother path that makes TreeBot easier to follow. As a

result, the path should be optimized so as to 1) go to the

target position, 2) minimize the climbing distance, 3) climb

on the top side of the climbing surface and at the same time

4) avoid obstacles.

A. Dynamic Programming

Dynamic programming (DP) is an efficient algorithm that

is proved to be able to find global optimum solution to a

problem [11]. It works well on discrete state that is difficult

to search exhaustively. As a result, the DP algorithm is

adopted to the path planning problem. To apply DP, the first

step is to represent the problem in a DP formulation, i.e., to

identify the state, action, action value and the state value to

the problem.

State Si,j : The states of the problem are the discrete

points defined in Section III. The states are arranged in a

matrix form with m rows and n columns that illustrated in

Fig. 7. A state is denoted as Si,j where i and j denotes

Fig. 6. Coordinates and notations of the shape of tree and the gravity
vector.

the row and column in the workspace respectively. The first

row represents the starting ring (ring 1) while the last row

represents the ring that contains the target position (ring m).

The elements in each row represent the points in that ring.

Action Si,j → Si+1,k: It is assumed that the target

position will not locate on the starting ring hence no repeated

movement on a same ring is needed. The available movement

is only the points on the next ring. This assumption is

reasonable as the climbing motion rarely requires moving

laterally without moving up or down. This assumption highly

reduces the search space to the problem.

Action value Q (Si,j , Si+1,k): The action value is defined

as the sum of the reward values:

Q (Si,j , Si+1,k) = −D(Si,j , Si+1,k) + a0ni+1,k +Oi+1,k

(4)

where D(Si,j , Si+1,k) represents the Euclidean distance be-

tween Si,j and Si+1,k. Oi,j is the obstacle value. The value

is 0 if there is no obstacle and −∞ if an obstacle presented.

Obstacle means the unreachable point defined in Section III.

a0 is a positive scalar value to adjust the weight of ni,j in

(4). ni,j relates to the amount of the pull out force generated

by the gravity at that point. Refer to Fig. 6, the pull out force

is directly proportional to the z component of the normalized

surface normal vector zi,j . Hence, the value of ni,j is defined

as:

ni,j = zi,j − 1 (5)

where ni,j ∈ [−2, 0].
State value Vi,j : By given a target position and the reward

values, the state value of each state can be defined. The state

value of row m-1 should solely be the distance to the target

position, i.e.,

Vm−1,j = Q(Sm−1,j , Sm,t) (6)

where Sm,t denotes the target state.

The state value of other states can be found by:

Vi,j = max (Vi+1,k +Q (Si,j , Si+1,k)) (7)

where k ∈ [1, n] and i ∈ [1,m− 1].
The possible next states of each state are the points in

next row. As a result, by using DP, the computational com-

plexity is only O(mn2). Actually, the value n is a problem

4990

Ring 1

Ring m

.³

.³

.³

.³

.³

.³

.³

.³

.³

.

.

Starting

position

Target position

Fig. 7. State space representation for dynamic programming

independent value that will not change due to the height of

tree. Therefore, the computational complexity should only

be O(m) that the problem can be solved in linear time.

Optimal Path: When the state value of each state is

defined, the optimal path can be obtained by starting at an

arbitrary position or the first row of state with maximum state

value, then select the state in next row which the sum of state

and action value Vi+1,k + Q (Si,j , Si+1,k) is largest where

Si,j and Si+1,k are the current and next state respectively.

B. Dynamic Environment

The environment of tree structure will rarely change in

short time. The main reason of the change of environment

may due to a more accurate information of the shape of tree

is obtained when TreeBot gets close to that region. Since

the calculation of state value is a top-down process, for a

climb up motion, the change of environment at the lower part

does not affect the state value at the upper part. As a result,

only the state values at the lower part need to be modified.

The path can then be updated according to the updated state

values.

V. MOTION PLANNING

The path planning algorithm generates a 3D path on the

manifold of tree surface with high likelihood of success. The

next task comes to the motion planning to make TreeBot

follow the planned path. The ideal solution is that all the

steps of robot (front and rear gripper) and the robot body

can place on the planned path. However, to find a motion

that both front and rear gripper and the continuum body on

the planned path may not feasible due to the nonholonomic

constraints of the robot kinematics. It is assumed that there

is a certain tolerance for the path following problem. This

assumption is applicable as the path is planned to keep away

from the obstacle to a certain distance. Searching methods

can be applied to find the global optimal motion sequence

to fit the planned path. However, it is time consuming.

As a result, a computational efficient strategy to find out

a suboptimal solution is developed instead of searching

exhaustively.

(a) (b)

(c) (d)

Fig. 8. Procedures for arc fitting: (a) Path segment; (b) Transformation;
(c) Plane fitting; (d) Arc fitting

A. Motion Planning Scheme

Although it may not able to put both grippers and contin-

uum body on the planned path, either one of the gripper can

place on the path, then determines the position of another

gripper so as to minimize the path following error. The front

gripper based method, i.e., put all the steps of front gripper

on the planned path, is adopted as it is much more intuitive.

In this method, the extension motion is used to move the

front gripper to the planned path while in the contraction

motion, the rear gripper adjust the orientation of TreeBot to

make the next extension motion best fit to the planned path.

The procedures of the motion planning scheme are shown

below.

1) Path Segmentation: As it is planned to place the front

gripper on the planned path, the first task is to determine

the target positions of the front gripper on the planned

path. The path between the target positions of the front

gripper are defined as path segments of the planned path. As

TreeBot has variable length of step, the problem becomes

how to determine the length of the continuum body in

climbing motion. Since the gripping motion takes time, in

order to climb up efficiently, the body in contraction motion

should be as short as possible while the body in extension

motion should be as long as possible so as to minimize

the numbers of gripping motion. In order to simplify the

problem, the length of contraction motion is set as the

minimum admissible length while the distance between the

target positions of the front gripper is set as constant. Once

the planned path is segmented in numbers of pieces, the next

task is to determine the optimal position of the rear gripper

in each step according to the path segments.

2) Plane Fitting: Since the continuum body is in an arc

shape, to find an optimal direction of the rear gripper that

make the future motion fit the future path segment, the path

segment should be approximated as an arc. To achieve this,

the path segment is first fitted into a plane. It is assumed

4991

that the start and end point of the path segment are on the

plane. The path segment is first translated so that the start

point is at the origin and then rotated (rotate θz about z-axis

then rotate θy about y-axis) to put the end point on z-axis

as shown in Fig. 8(b).

To find the fittest plane as illustrated in Fig. 8(c), an

optimal θp should be determined such that the rotation about

z-axis of θp results in the minimum absolute x component

value. Let [xi, yi, zi] be the transformed coordinates of the

path segment, θp can be obtained by minimizing:

xi cos θp − yi sin θp (8)

By using the least square method and consider all the

points:
∑ d

dθp
(xi cos θp − yi sin θp)

2
= 0 (9)

Implies:

tan θp =
−q ±

√

q2 + 4

2
(10)

where q =
∑

yi
2
−

∑
xi

2

∑
xiyi

.

3) Arc Fitting: To find an arc to fit the path segment, the

path segment is first transformed into 2D. Then the path is

rotated about z-axis of θp so as to rotate the fitted plane to

y-z plane. The path is projected on y-z plane thus becomes

a 2D path as illustrated in Fig. 8(d). The approximated arc

must pass through the start and end point of the path segment.

Let the number of sampling points of the path segment be

η, (y1, z1) and (yη, zη) be the start and end points of the

path segment. (yi, zi) represents the points of the path where

i ∈ [1, η]. Let (yc, zc) and r be the center and the radius

of the approximated arc respectively. To cross the start and

end point, the approximated arc should fulfill the following

equations:

(y1 − yc)
2
+ (z1 − zc)

2
= r2 (11)

(yη − yc)
2
+ (zη − zc)

2
= r2 (12)

To combine (11) and (12):

zc = a− byc (13)

where a =
(y1

2+z1
2)−(yη

2+zη
2)

2(z1−zη)
and b =

y1−yη

z1−zη
.

The distance error ei of a point to the approximated arc

can be found by:

ei = (yi − yc)
2
+ (zi − zc)

2
− r2 (14)

Sub. (11) into (14):

ei = (yi − yc)
2
+ (zi − zc)

2
−

[

(y1 − yc)
2
+ (z1 − zc)

2
]

⇒ei=
(

y1
2+z1

2
)

−
(

yi
2+zi

2
)

−2 (y1+yi) yc−2 (z1+zi) zc
(15)

Sub. (13) into (15):

ei = gi + hiyc (16)

where gi =
(

y1
2 + z1

2
)

−
(

yi
2 + zi

2
)

− 2a (z1 + zi) and

hi = 2b (z1 + zi)− 2 (y1 + yi).

y

z

End point

center
patharc

�r

Start point

Optimal position

Optimal direction

Fig. 9. Optimal position and direction of the rear gripper

By using the least square method and consider all data

points, i.e.,

∑ d

dyc
ei

2 =
∑ d

dyc
(gi + hiyc)

2
= 0

⇒ yc = −

∑

gi
∑

hi

(17)

Once the value yc is obtained, the value zc and r can be

found by (11) and (13) respectively.

4) Optimal Direction of the Rear Gripper: By arc fitting,

the center and the radius of the approximated arc can be

obtained. Then the optimal position and the direction of the

rear gripper can be determined as illustrated in Fig. 9. In the

figure, the green dot and arrow represent the optimal position

and the direction of the rear gripper respectively while the

red arc represents the contraction posture of the continuum

body. The rear gripper can place at this position and direction

only if the direction of the front gripper is tangential to the

starting point of the approximated arc. However, the direction

of the front gripper is uncontrollable when the position of

the front gripper is fixed as it is a nonholonomic system.

As a result, the optimal position is neglected and the target

direction of the rear gripper is set to the optimal direction.

By this method, the position of the rear gripper will shift out

of the optimal position. The shift will not affect much of the

path following result as the shift is small when compared to

the length of path segment.

The optimal direction of the rear gripper ~vrg in the global

frame can be obtained by:

~vrg = Rotz (−θz)Roty (−θy)Rotz (−θp)

0
cos θr
sin θr

(18)

where θr = tan−1 zc
yc
−
(

π
2 + Smin

r

)

, Smin is the length of the

continuum body in contraction motion that colored in red in

Fig. 9, Roti (θ) denotes the rotation matrix about i-axis in

angle θ where i ∈ x, y, z.

B. Motion to Target Position

1) Front gripper: The target positions of the front gripper

are defined by the path segmentation. To determine the

posture of the continuum body to place the front gripper

4992

Fig. 10. The concept to determine the posture of continuum body in
contraction motion

on the target position, the target position is first transformed

into the rear gripper frame, i.e., the center of the rear gripper

is at the origin and the direction vector of the rear gripper

is on the z-axis as shown in Fig. 3. Then the posture of

the continuum body to place the front gripper to the target

position can be obtained by (1), (2) and (3).

2) Rear gripper: The optimal direction of the rear gripper

is determined in Section V-A.4. To put the rear gripper in this

direction, the position of the rear gripper may not on the tree

surface. It is assumed that the surface at the target position

of the rear gripper and the position of the front gripper has

similar properties as their distance is short in the contraction

motion. To make the target position of the rear gripper on

the tree surface, the optimal direction vector is projected on

the plane defined by the surface normal at the front gripper

position. As a result, to find the posture of the continuum

body to place the rear gripper, ~vrg is first transformed to the

front gripper frame that the center of the front gripper is at

the origin, the direction of the front gripper is on the z-axis

and the surface normal vector is on the x-axis as shown in

Fig. 10. Then ~vrg is projected on the y-z plane (arrow colored

in blue in the figure). Finally, the posture of the continuum

body to place the rear gripper can be determined as:

φ = −sign (θrg)
π

2
(19)

κ = abs (θrg)/Smin (20)

where tan θrg = z′

y′
.

VI. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the proposed

path and motion planning algorithm, a tree model that

composed of three branches is constructed. The tree surface

is discretized as shown in Fig. 11. The rings are marked in

different colors to distinguish the branches they belong to.

The obstacles are marked as magenta.

A. Path Planning

To evaluate the path planning algorithm, the target position

is located at the top of the branch 2 while the initial position

is located at the bottom of branch 1 as shown in Fig. 11.

Fig. 12 illustrates the reward value ni,j and Oi,j of the

Branch 1

Branch 2

Branch 3

Obstacles

Target position

Initial position

Fig. 11. Experimental tree model

0

50

100

150

200

0

20

40

60

80

−10

−5

0

n
m

R
e
w

a
rd

 v
a
lu

e

−8

−7

−6

−5

−4

−3

−2

−1

Fig. 12. Reward value of the selected state space

selected state space, i.e., branch 1 and branch 2. In the figure,

the hollow regions represent the location of obstacles. The

state space arrangement in Fig. 12 may not imply the actual

geometric relationship. The planned path by the proposed

path planning algorithm is shown in Fig. 11 colored in black

and Fig. 12 colored in grey. In the figures, it can be observed

that the planned path is succeeded to go to the target position

by avoiding the obstacles and go through the positions with

high reward value.

B. Motion Planning

Based on the planned path, the proposed motion planning

algorithm has been applied. Fig. 13(b) illustrates the motions

of the robot obtained by the proposed motion planning

4993

 (a) (b)

Motion 1

Motion 4

Motion 3

Fig. 13. Result of the motion planning. (a) Simple method; (b) Proposed
method

algorithm. In order to show the motions of the robot clearly,

the obstacles are not displayed in the figure. In the figure, the

red line indicates the robot body while the blue and magenta

arrows denotes the position and direction of the front and

rear gripper respectively. The black line denotes the optimal

path generated by the proposed path planning algorithm. It

can be observed that the motions of the robot are close to

the planned path. It shows the effectiveness of the proposed

motion planning algorithm to track the planned path.

A simple motion planning method has also been applied

for comparison that illustrated in Fig. 13(a). In the simple

motion planning algorithm, the target direction of the rear

gripper is simply equal to the direction of the front gripper.

It can be noticed that by using the simple motion planning

method, several motions (motion 1, 3 and 4) of the robot are

far from the planned path. In that, the motion 1 and 3 went

through the obstacles and hence resulted in fail climbing. The

comparison of these two motion planning results reveals the

significance of the proposed motion planning algorithm.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In conclusion, this paper proposed a global path and

motion planning algorithm for a tree climbing problem that

can be solved in linear time. An intuitive method is proposed

to represent the climbing space so as to simplify the com-

plexity of the problem. A dynamic programming algorithm

is adopted to find the optimal climbing path that minimizes

the climbing effort and avoids obstacles. A computational

efficient motion planning algorithm for a tree climbing robot

named TreeBot is also proposed to guide TreeBot to climb

along the planned path. The proposed motion planning result

is compared with a simple motion planning method. Result

reveals that the significant improvement can be made by

using the proposed motion planning method.

B. Future Works

The proposed motion planning algorithm segments the

planned path in constant length. Although this method per-

forms well in the experiment, an adaptive length of a path

segment that according to the curvature of the future path

may result in better performance. This method should be

evaluated in the future. On top of that, a global optimal

motion planning solution should be obtained in the future so

as to compare the result with the solution generated by the

proposed motion planning algorithm. Finally, the proposed

algorithm will be implemented on TreeBot to evaluate the

actual climbing performance in the future.

REFERENCES

[1] Y. Kushihashi, Y. Koji, et al. “Development of tree-climbing and
pruning robot woody-1 - simplication of control using adjust function
of grasping power” (in japanese). Proceedings of JSME Conference

on Robotics and Mechatronics, pp. 1A1-E08, 2006.
[2] M. J. Spenko, G. C. Haynes, J. A. Saunders, M. R. Cutkosky, A.

A. Rizzi, “Biologically Inspired Climbing with a Hexapedal Robot”,
Journal of Field Robotics, vol. 25, no. 4-5, pp. 223-242, 2008.

[3] Z. Fu, Y. Zhao, Z. Qian and Q. Cao, “Wall-climbing Robot Path
Planning for Testing Cylindrical Oilcan Weld Based on Voronoi Di-
agram”, Proceedings of the 2006 IEEE/RSJ International Conference

on Intelligent Robots and Systems, October 9 - 15, 2006, Beijing,
China.

[4] C. Balaguer, A. Gimenez, J.M. Pastor, V.M. Padron and M. Abder-
rahim “A climbing autonomous robot for inspection applications in 3D
complex environments”, Robotica, Vol 18, Issue 3, May 2000, Pages:
287 - 297, Cambridge University Press.

[5] Yeoreum Yoon and Daniela Rus, “Shady3D: A Robot that Climbs
3D Trusses”, 2007 IEEE International Conference on Robotics and

Automation, Roma, pp. 4071-4076, Italy, 10-14 April 2007.
[6] Steven M. LaValle, “Planning Algorithms”, Cambridge University

Press, 2006.
[7] T. Lozano-Perez. “Spatial planning: A configuration space approach”,

IEEE Transactions on Computing, C-32(2):108-120, 1983.
[8] Jones, B.A., Walker, I.D., “Kinematics for Multisection Continuum

Robots”, IEEE Transaction on Robotics, vol. 22, no. 1, pp. 43- 55,
February 2006.

[9] Dirk Hhnel, Wolfram Burgard, Sebastian Thrun, “Learning compact
3D models of indoor and outdoor environments with a mobile robot”,
Robotics and Autonomous Systems, 44 (1), pp. 15-27, 2003.

[10] David Monnin, Armin L. Schneider, Frank Christnacher and Yves
Lutz, “A 3D Outdoor Scene Scanner Based on a Night-Vision Range-
Gated Active Imaging System”, Proceedings of the Third International

Symposium on 3D Data Processing, Visualization, and Transmission,
pp. 938-945, 2006.

[11] Dreyfus, Stuart E., Law, Averill M., “The art and theory of dynamic
programming”, Academic Press, 1977.

4994

