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Abstract— In this article the main objective is to perform a
search in an unknown area with multiple robots in order to
determine the region with highest chemical gas concentration as
well as to build the chemical gas concentration map. The search-
ing and map building tasks are accomplished by using mobile
robots equipped with smart transducers for gas sensing. Robots
perform the search autonomously by using their own data
and the information (position information and sensor readings)
obtained from the other robots. Moreover, simultaneously the
robots send their sensor readings of the chemical concentration
and their position data to a remote computer (a base station),
where the data is combined, interpolated, and filtered to form
an real-time map of the chemical gas concentration in the
environment. To achieve this task as a high-level path planning
algorithm we use a decentralized and asynchronous version of
the Particle Swarm Optimization (PSO) algorithm which also
allows for time-varying neighborhood.

I. INTRODUCTION

In recent years the number of studies on application of

robotic odor-sensing technology has increased substantially.

Mobile robots equipped with chemical sensors can be useful

for a number of application areas including safety, security,

and environmental inspection. Instead of humans, robots can

be dispatched to areas with odor contamination for inspec-

tion, or providing continuous monitoring of the contaminated

environment for specific characterization of the odor. In

this paper, we address the problem of determining the gas

distribution in indoor environments by a swarm of mobile

robots equipped with on-board gas sensors.

There are a number of works on odor source localization

and mobile olfaction search [1], [2]. Most of the works on

chemical sensing with mobile robots assume an experimental

setup and source localization by one robot with specific navi-

gation algorithm for exploring the environment and spreading

into the environment. Moreover, some studies [2] present

methods where the odor classification and gas distribution

are combined for source localization and gas distribution

map building. Also multiple odor sources are used and the
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resulting gas distribution map is combined with laser range

finder and sensor data. In another work gas distribution

mapping problem is solved by using concentration grid maps

by mobile robot. Where mapping technique is introduced

using Gaussian weighted functions to model chemical con-

centration data in point of measurements [3]. However, in

most of the works mentioned above gas distribution map

building is performed by using a single robot system.

This paper focuses on a different approach which exploits

decentralized asynchronous particle swarm optimization with

multiple robots to solve chemical concentration map building

problem of an unknown plumed (i.e., contaminated) envi-

ronment. The PSO was first introduced by Eberhart and

Kennedy and used for optimization of continuous nonlinear

functions [4]. Later, Marques and his colleagues [10], [11]

adapted PSO to the multi-robot odor searching problem,

investigating both theoretically and experimentally the appli-

cation of a PSO inspired search strategy for detecting odor

sources across large spaces. They also compare the PSO with

other gradient based search strategies.

Some other works in adapting the PSO algorithm to

multi-agent search applications were done by Pugh and

Martinoli [5] and Jatmiko et al. [6]. In [5] the authors develop

two different approaches which are adapting PSO to multi-

robot search and adapting multi-robot search to PSO. Similar

work was performed in [6] where the effect of the wind was

also considered. Hereford proposed a new version of PSO

algorithm called distributed PSO (dPSO) in [7]. His work

is focused on both achieving scalability of the algorithm

to a large number of robots and decreasing communication

burden between robots. In another work [8] he developed a

version of the PSO through distributing processes among

several mobile bots which is called physically-embedded

PSO (pePSO). A distributed PSO algorithm is implemented

also in [9] where a multi-robot search algorithm based on

chemotaxis behavior in bacteria is used and the parameters

of the proposed algorithm are updated using distributed

PSO. Doctor and his colleagues discuss using multiple robot

searches involving one and more than one targets [12].

They focus on optimizing the parameters of the PSO search

algorithm.

This study is continuation of the work in [13], where

a new decentralized and asynchronous version of PSO is

considered. It is claimed in [13] that direct application of

canonical PSO to the multi-robot search may lead to an

unsatisfactory performance. First of all, note that the sensing
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and communication capabilities of the robots are usually

limited, which may results in time dependent interactions.

Furthermore, the robots cannot jump to their next way points

and it may take different robots different amount of time to

traverse their path from their respective current way points

to their next way points. In order to overcome these short-

comings the authors propose a version of the PSO algorithm

where particles are allowed to operate asynchronously and

exchange information using dynamic neighborhood topology

in order to improve performance of the canonical PSO. The

proposed method is tested using KheperaIII robots and using

experimentally collected data in order to determine the area

with highest concentration.

Note that, there are important differences between this

work and works in [5], [6], [7], [8], [11], [12], [13]. First

of all the robots here operate in a real gas environment

and perform sensing using an onboard chemical sensing

hardware, whereas the mentioned works either assume that

the robots have sensing capability and use previously col-

lected and smoothed data [11], [13], or operate in a dif-

ferent environment such as different lightening conditions

using photo sensors [5], [7], [12]. Moreover, in addition to

determining the areas of high gas concentration here the

robots perform real-time gas concentration map building.

The obtained chemical gas concentration map is visualized

in real-time on a remote computer (base station).

II. PROBLEM DEFINITION

Consider an application in which a group of robots are

required to perform a search in an unknown environment

contaminated with a chemical substance. The chemical sub-

stance is possibly dangerous for human beings. Therefore,

search by autonomous robots is more suitable to the problem.

Moreover, search by multiple robots in parallel can possibly

lead to a faster performance. Assume that the robots are

equipped with the necessary hardware equipment to sense

the chemical (or set of chemicals) which contaminate the

environment. The objective is to build the map of chemical

concentration as well as to determine the region with the

highest concentration of the contaminant. Such information

might be useful for experts who may determine whether

the concentration level of the chemical is within tolerable

levels or constitute a danger. Moreover, composition of

different chemicals can be determined. The higher chemical

concentration areas usually occur very close to the sources

of chemicals and determining the region with high con-

centration might give information of the location of the

leaks (i.e., chemical sources) contaminating the environment.

Such a situation can arise in, for example, a building (such

as large warehouse) under fire where burning of certain

chemicals might be really dangerous since certain levels

of some chemicals might lead to explosion. Moreover, the

composition of the chemical might give an idea of what are

the burning materials. All this information can be collected

by the robots without endangering the lives of firefighters

and critical decisions might be taken (i.e., such as whether

to go in or not) based on the information obtained by the

robots.

In order to be able to perform efficient search the robots

must be able to pass their sensor readings as well as other

needed information among each other. Moreover, they are

required to pass the information to a remote computer (a base

station) where the data should be collected and combined

and visual information (i.e., a 3D map) must be provided in

real-time to an operator.

III. EXPERIMENTAL SETUP

A. Environment and Robots

In this section we provide a short description of the

experimental setup which is used in implementations. The

experiments are performed with KheperaIII mobile robots

equipped with the “kheNose” sensing system using TGS2620

alcohol sensors manufactured by Figaro. This type of chem-

ical sensors show decreasing resistance in the presence of

reducing volatile chemicals in the surrounding air. They

are often used in mobile robotic systems, because they are

inexpensive, highly sensitive, and relatively unaffected by

changing environmental conditions such as room temperature

and humidity. They are interfaced to the KheperaIII robots

through interface board called “kheNose” shown on top of

the robot in Figure 2(b) and described in more detail in the

next subsection. The setup consists of experimental arena

with no obstacles (shown in Figure 1) and 3.40m×2.40m×
1.35m in dimensions. Moreover, the experimental arena is

covered by a transparent vinyl cover. It constitutes a small

scale representation of a large building (such as a warehouse)

filled with a chemical. Ethanol, which is a volatile and

Fig. 1. Enclosed experimental setup.

colorless liquid, is used as chemical gas. For that purpose

we use an air bubbler system composed of two bottles half

filled with ethanol, an air pump, and plastic tubes to inject

the evaporated alcohol into the arena. The pressure of the

air pump can be adjusted manually between 150mbar -

550mbar. In order to provide gas circulation the front right

corner of the covered arena is left open to let air flow inside

it.

For this implementation KheperaIII robots shown on Fig-

ure 2(a) are used. They are equipped with Intel PXA255

processor working at 400 MHz. Movement of the robots are

provided by 2 brushless DC servo motors. Robots have 9 in-

frared and 5 ultrasound sensors located in the periphery. Each

motor is controlled by its own PID controller implemented

4176



(a) KheperaIII robots (b) KheperaIII with
kheNose

Fig. 2. KheperaIII robots equipped with kheNose sensing system and 3DM
GX2 Microstrain IMU.

in a PIC18F4431 microcontroller and this microcontroller is

also used for measuring odometry information of the robot.

The motor control blocks act as slave devices on an I2C bus

while communicating with a master DSPIC30F5011. The

DSPIC30F5011 microcontroller is also used to obtain the

sensor measurement. For robot odometry correction we used

an IMU (Inertial Measurement Unit) which is manufactured

by MicroStrain, shown on top of the robots in Figure 2(a).

3DM-GX2 IMU sensor is a high-performance gyro enhanced

orientation sensor which utilizes miniature MEMS sensor

technology. Orientation error is dominant in odometry lo-

calization system errors. Reduced error rate in orientation

is inverse proportional to localization consistency. IMU is

integrated to Khepera III robots to reduce error rate in robot

orientation. Thresholding method is used to integrate IMU

data to odometry localization. Basically, when the change in

robot orientation is larger than a predefined treshold, IMU

data is used for calculating the turn rate, otherwise odometry

data is used in localization.

In order to navigate and avoid robot to robot collisions arti-

ficial potential functions [14] are used for low-level control of

robots. With this objective in order to move the robots to their

next way-points we use quadratic attractive potential function

and require robots to move along their negative gradients.

Also, in order to avoid collisions between the robots we

use repulsive potential function which is activated when the

distances between robots become smaller than a predefined

constant value. The repulsive potential forces are calculated

using infrared sensors. In addition, we augment the potential

functions based collision avoidance with a priority based

robot to robot collision avoidance. In other words, when two

robots get in a close collision distance the robot with smaller

ID waits until the robot with larger ID avoids the collision

and continues on its path.

The robots used in this paper are unicycle agents moving

in R
2 with the dynamics

ẋi(t) = v̄i(t) cos(θi(t)),
ẏi(t) = v̄i(t) sin(θi(t)),

θ̇i(t) = wi(t)
(1)

where Pi(t) = [xi(t), yi(t)] is the position vector and θi(t)
is the steering angle of agent i at time t. It’s control inputs

are the linear speed v̄i(t) and the angular speed wi(t).
The implementation operates as follows: robots start the

search from entrance of the experimental area. Their first

way-points are assigned intentionally far away from each

other whereas the second way points are assigned ran-

domly. The objective of this step is to spread the robots

and cover the area as much as possible at start for better

mapping of the gas concentration and better performance

of the asynchronous PSO algorithm. Robots communicate

with each other using the TCP/IP protocol over a wireless

ad-hoc network to share their acquired information of gas

concentration and position. They also send the acquired

information to a nearby computer (base station). After the

two initial steps the robots start asynchronous PSO as higher

level path planning and determine their next way-points using

the algorithm by exploiting their measurements/knowledge

and the measurements/knowledge of other robots in the

system. The robots move from their current way-points to

the next way-points while avoiding obstacles by means of

potential functions. This algorithm is expected to achieve

convergence of the robot swarm into the region of highest

chemical concentration. Moreover, a remote PC is used as

“Base Station” for gathering data from robots and obtaining

a real-time 3D map of the chemical concentration. Matlab

and a trial version of the Golden Surfer9 software are used

as the main processing and visualization tools in the base

station.

B. Chemical Sensors and kheNose

KheNose is a modular olfactory sensing system for Khep-

era III mobile robots. This device is composed by a main

board, with robot interfacing and processing capabilities, and

an array of gas sensing nostrils, a temperature and humidity

sensor, and up to three small thermal anemometer boards.1

Each sensing board contains a Transducer Electronic Data

Sheet (TEDS) stored in an EEPROM memory, providing

plug-and-play capabilities to the system [18]. The TEDS

contains relevant information about the transducers, namely

their type, target gases, range and calibration data. The main

board contains a Microchip dsPIC33F controller which ac-

quires all the analog and digital information from the sensors,

processes that data and sends it to the Khepera III KoreBot

extension board through an I2C interface. The whole system

architecture is inspired by IEEE1451.4 standard for smart

sensors. The system can operate as an odor compass, being

able to measure airflow intensity and direction while it

classifies the detected odors [19]. The odor classification is

achieved by means of a feedforward neural network. This

classification can be done using the steady-state response of

the gas sensor array or, for faster classification, using the

coefficients of the discrete wavelet transform of the sensor

array transient response [20].

1) Calibration of multiple olfactory systems: The conduc-

tance G of tin oxide gas sensors varies with the concentration

C of a target reducing gas accordingly with following

relationship [21]

G = G1PR
n (2)

1In the current work, only the information provided by a Figaro TGS2620
metal oxide gas sensor was employed.
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where G1 is the conductance for a small concentration C1 of

the reducing gas, PR = C/C1 is the relative concentration

of the gas, and n is a constant dependent from the gas and

from the sensor.

In multiple robot olfactory experiments it is fundamental

to have the sensing systems calibrated against the same

standard values, so the measurements can be merged in a

single concentration map. In the current experiments, the

response from a single metal oxide gas sensor per “kheNose”

was employed, so the following fast calibration method was

implemented:

1) All the employed systems were placed in an enclosed

environment where fixed amounts of a target gas

(ethanol vapor) could be inserted.

2) The conductance in clean air was registered as Gair .

3) A small volume of ethanol vapor was inserted into

the calibration space and, after stabilization of the

sensors, the conductance corresponding to the existing

atmosphere concentration C1 was registered as G1.

4) The same volume of ethanol was inserted into the cal-

ibration space and the conductance G2 corresponding

to the concentration C2 = 2C1 was registered.

Fixed amounts of ethanol vapor can be inserted into the

calibration space using a large syringe or a Mass Flow

Controller, as shown in Figure 3. In that figure the robots

are inside an acrylic glass calibration box, containing a fan

mixer to homogenize the atmosphere.

Fig. 3. Calibration setup.

After the previous calibration procedure, the constant

n of each sensor could be determined. In operation, for

concentrations above C1, equation (2) was employed and

for concentrations below that value, a linear interpolation

between the output to clean air and the output to C1 was

employed.

IV. ASYNCHRONOUS PSO

In this section we briefly describe the PSO algorithm

which is used as the main high-level path planning algorithm.

In particular, first we describe the standard PSO algorithm

following which we discuss also its modified version used

in this article. PSO is a population based direct search

algorithm which is in general suitable for multi-robot search

applications. However, there are also important differences

which are discussed in [5]. Two of the main differences can

be stated as: (i) the robots cannot jump to the next position,

whereas the particles can do; (ii) the communication range

of the robots can be limited, whereas there is no such

constraint for the particles. (See [5] for more details.) These

differences can lead to degradation of performance or even

failure of the standard PSO when it is applied directly to

multi-robot search without any modification. We discuss

the differences in detail in the subsection on decentralized

asynchronous PSO. However, for completeness let us first

discuss the standard PSO algorithm.

A. Canonical PSO based search algorithm

In this article we use the PSO version proposed by Clerc

and Kennedy in [17]. It uses a “constriction coefficient” to

prevent the “explosion behavior” of the particles (see [17]

for more details). At the kth iteration the update of particle

i, i = 1, . . . , N , can be described as

vi(t
i
k+1) = χ

[

vi(t
i
k) + ϕi

1(t
i
k)
(

bi(t
i
k)− pi(t

i
k)
)

+ϕi
2(t

i
k)
(

gi(t
i
k)− pi(t

i
k)
)

]

pi(t
i
k+1) = pi(t

i
k) + vi(t

i
k+1)

(3)

where tik is the update time. Note that in this article each

robot is considered as a particle from PSO view-point. The

robot dynamics operates in continues time t and the instances

at which robot/particle i performs its kth iteration is denoted

with tik. Here pi(t
i
k) ∈ R

2 represents the position (way point)

of the i’th particle at time tik, bi(t
i
k) ∈ R

2 represents the

best position of the i’th particle from time t = 0 to time

t = tik, gi(t
i
k) ∈ R

2 represents the best position of the

neighborhood of the i’th particle from time t = 0 to time

t = tik. The value pi(t
i
k+1

) ∈ R
2 which is calculated in (3) is

the next (desired) way point to which the robot should move.

The learning coefficients ϕi
1(t

i
k) ∈ [0, ϕ̄1]

2 and ϕi
2(t

i
k) ∈

[0, ϕ̄2]
2 are two dimensional uniform random vectors. At

each iteration these random vectors respectively determine

the relative significance/weight of the cognitive and social

components in the iteration. The constant parameter χ > 0
is the constriction parameter which prevents the explosion

behavior, i.e., particles having high velocities leading to

their scattering in the search space. For efficient performance

and prevention of the explosion behavior in (3) we use the

components of the ϕi
1(t

i
k) and ϕi

2(t
i
k) learning coefficient

vectors proposed by [17] as

ϕi
1j(t

i
k), ϕ

i
2j(t

i
k) ∈ [0, 2.05], j = 1, 2; i = 1, . . . , N. (4)

The constriction parameter χ > 0 is calculated using (refer

to [17])

χ =

{

2κ

ϕ−2+

√
ϕ2

−4ϕ
, if ϕ > 4,

κ, else.
(5)

Here ϕ = ϕ̄1+ϕ̄2 and κ ∈ [0, 1]. Similar to the work in [13],

considering ϕ̄1 = ϕ̄2 = 2.05 and κ = 1, the constriction

parameter is calculated as 0.7298 for this implementation.
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B. Asynchronous PSO based search algorithm

As mentioned before there are important differences be-

tween robotic search and PSO search. The robots have to

traverse the entire path between the current way-point and

the next way-point calculated by the PSO algorithm. Since

the distance between the current positions and the next way-

points can be different for different robots in the standard

PSO a robot which arrives at its way-point earlier than the

other robots has to wait for them in order to perform its

PSO iteration. Moreover, since the communication range of

the robots is usually limited and the area to be searched can

be large during the search process the robots may exit the

communication range of their neighbors, which may result

in indefinite wait and stall by the system. Furthermore, per-

manent communication and robot failures can lead to failure

of the overall search. Realizing these potential problems a

decentralized asynchronous PSO inspired multi-robot search

algorithm which allows also for dynamic neighborhood and

possible time delays is proposed in [13] (which is also

inspired by the earlier works in [15], [16]). The algorithm

can be briefly described by the pseudocode given in Table I

which is taken from [13]. In Table I S(bi) refers to the sensor

reading at the best position of the robot and S(gi) is the

sensor reading at the global best position. Note that this ver-

TABLE I

PSEUDOCODE OF THE ALGORITHM

Initialize the variables
Assign the first way points randomly
while (Stopping criteria is not satisfied) do

while (Agent has not arrived to its way point) do

Move towards the desired way point
Read concentration data from the environment
Update S(bi)
Listen to data from other robots
Send data to base station
if (Collision distance to other robots) then

Apply priority based collision avoidance
end if

end while

Broadcast own S(bi)
if (S(bi other) > S(gi) or S(bi) > S(gi)) then

Update S(gi)
else

Use previous S(gi)
end if

Calculate a new way point using Equation (3)
end while

sion of PSO does not suffer from above mentioned problems

since the robots do not have to synchronize and can continue

operation using the available inforamtion only.(See [13] for

more details.) Also, mentioned above before initiating the

algorithm in Table I the robots move to points away from

each other for better coverage of the area. During this step

they also continuously sense the environment and send the

information to the base station.

V. EXPERIMENTAL RESULTS

In this section we present the results obtained in the

implementation considered. We use three Khepera III robots

in the experiments. Initially the robots are located near to the

entrance of the experimental area. Their first way-points are

assigned intentionally far away from each other in order to

enclose the environment as much as possible for better map

building of the gas distribution. After reaching the first way-

point the next way-points are assigned randomly(as seen in

Table I). In order to share their acquired information robots

communicate with each other using the TCP/IP protocol

over wireless ad-hock network. Moreover, they also send

their position and “kheNose” sensor data gathered from the

environment to a remote computer (base station) during the

search. The data received by the base station is combined,

interpolated, and filtered to form a real-time map of the gas

concentration. We used krigging estimation and a gaussian

filter with a [5, 5] mask.

The map is visualized in real-time as a three dimensional

plot to be viewed by an operator. We performed experiments

with several different gas source locations in the environment

two of which are shown here. For the first case presented in

Figures 4 and 5 three sources are placed in the environment

at the locations (1.5, 1.6), (1.65, 1.6), and (1.6, 1.4). Figure 4

shows the trajectories of the robots superimposed on the

contour plot of the extracted environmental map for an

example run and bold stars represent the source locations

in the environment. The paths of different robots are repre-

sented with different types of curves. The 3D plot of the

Fig. 4. Trajectories of robots.

Fig. 5. 3D representation of chemical concentration.

obtained ethanol concentration in the environment is shown

in Figure 5. As can be seen from the figures the robots gather

in an area with high gas concentration (which, in general,
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Fig. 6. Trajectories of robots.

Fig. 7. 3D representation of chemical concentration.

may not necessarily be the global maximum). The plots

presented in Figures 6 and 7 show the results for another run

in which there are two gas sources in the environment located

at (2, 0.9) and (2, 0.7). As can be seen from the figures the

robots aggregate at the area of high concentration of the

ethanol gas in the environment. In both of the experiment a

map of the ethanol concentration is obtained. It is a realistic

map since the peaks of the map occur very close to the gas

sources. Only three robots where used in the experiments

due to lack of resources. It might be possible to obtain better

results with higher number of robots.

VI. CONCLUDING REMARKS

In this study cooperative chemical concentration map

building using Decentralized Asynchronous Particle Swarm

Optimization inspired search is performed by mobile robots.

The implementation is realized in a laboratory setting with

Khepera III robots equipped with “kheNose” chemical sens-

ing system with Figaro alcohol sensors and real ethanol gas.

The results show that the robots succeed in extracting a

three dimensional map of the concentration and aggregate in

regions which they perceive as areas of high concentration.

Possible applications might include search in large buildings

such as warehouse under fire. Future research might focus

on comparing the performance of the algorithm with the

performance of alternative methods. Affords in this direction

continue.
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