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Abstract— An adaptive multi-dimensional compliance model
reference controller was implemented in real-time on a 4
degrees of freedom (DOF) of the humanoid Bristol-Elumotion-
Robotic-Torso II (BERT II) arm in Cartesian space. The robot
manipulator has been controlled in such a way as to follow the
compliant passive behaviour of a reference mass-spring-damper
system model subject to externally sensed forces/torques in
all DOF. The relevant reference model converts all measured
torques into their equivalent forces at the end-effector and
reacts accordingly. The suggested control scheme takes in
particular account of the multi-variable aspect and the problem
of body own torques when measuring external torques. The
redundant DOF were used to control the robot motion in a
human-like pattern via effort minimization. Associated actuator
saturation issues were addressed by incorporating a novel anti-
windup (AW) compensator.

I. INTRODUCTION

Human-robot physical interaction is one of the most im-

portant scenarios of human-robot cooperation. Human safety

is at the core of human-robot cooperation and interaction.

Compliance control can help in achieving safe human-robot

interaction. There are two options for compliance, passive

compliance and active compliance. Passive compliance is

based on a suitable robot mechanical build, which avoids

physical injury at impact or due to other interacting forces.

However, passive compliance cannot be used in our case.

This is due to the fact that our BERT II robotic arm is

inherently rigid.

In our case, an active compliance control scheme has

therefore been used to make it safer for interaction with

humans. The torque sensors installed in the robot joints have

been used to implement the scheme. Active compliance has

been investigated by various researchers to deal with the

safety aspects of human-robot interaction some of the related

work can be found in [1] - [10].

Often compliance or impedance controllers are model-

based nonadaptive schemes, e.g. [1], [3], [5], [8], [11] - [14].

However, for a large scale multi-redundant robot system,

exact identification is rather complex. Component ageing

or damage may invalidate these dynamics identifications.

Hence, it is preferred here to use adaptive schemes which

can guarantee predesigned passive characteristics in the face

of a changing system.

In general, there are two main types of adaptive control

schemes i.e. model reference adaptive control (MRAC) and

self tuning (ST) adaptive control. In MRAC, the adaptation

mechanism works, so that the plant response becomes the

same as that of a reference model (see [15]). The reference

model in our case is a second order mass-spring-damper

system.

The authors of [16]-[18] (see also [19] for an advanced

formulation) have suggested two model free adaptive com-

pliant control schemes for rigid link manipulators. The first

one is an adaptive impedance controller. In this approach,

the impedance of the end effector is ensured via an MRAC

scheme guaranteeing a passive reference system. The second

scheme is an adaptive position/force controller in which the

end effector’s space is separated into the direction in which

the end effector can move and the direction it is exerting

force. The controller then ensures the desired values of force

and position in the corresponding directions.

The main control strategy applied in this paper is a

model reference adaptive compliance controller (see [17]).

The main controller is augmented by an additional effort

minimizing ‘posture’ controller. This ‘posture’ controller

controls the redundant DOF via minimization of an effort

function (which is a function of gravity and will be defined

later in this paper) to achieve human like motion based on

the work of [20]-[22].

Aspects of the problem of sensing external torques via

robot body-internal torque sensors are suitably addressed

by estimating the major body own torques first to extract

external torques. Moreover, the control scheme presented by

[17] is adjusted to allow for a more versatile set of controller

parameters suited to the multi-variable control problem of

multi-redundant robots.

The adaptive controller does not account for actuator

saturation, causing windup of the adaptation algorithm. To

avoid this, an AW compensation system given in [23] has

been employed for the scheme of [17].

Based on the comments above, the paper provides the

following contributions:

• Extension of the adaptive compliance controller scheme

from [17], to allow for better multi-variable control

performance.

• Extending the controller to include an AW compensator

to make it safer, as without it, the controller will

destabilize because of actuator saturation.

• Inclusion of a posture torque controller to generate

human like motion.

• Successful implementation of the scheme on a real

system (humanoid BERT II arm).

II. ADAPTIVE COMPLIANCE CONTROL

The MRAC adaptive controller developed by [17]; has

been employed and extended here by an AW-compensation

scheme while the controller scheme has been suitably mod-

ified to improve multi-variable control performance. The
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scheme is similar to our recent work [24]. Where, a one

dimensional compliance control scenario was investigated

while in this paper a multi-dimensional compliance scenario

has been considered. We assume the general structure of the

robot dynamics is given by:

M(q)q̈ + V (q, q̇) + G(q) = T (1)

where M is the inertia matrix, a function of the n joint angles

q. V is the coriolis/centripetal vector, which also represents

viscous and nonlinear damping. G is the gravity vector. T

is the input torque. The Cartesian space dynamics are now

given as follows: Instead of joint torques, the dynamics

equate to the forces, acting on the end effector:

A(q)Ẍ + µcc(q, q̇) + f(q) = F (2)

where A = (JM−1JT )−1, µcc = J̄T V − AJ̇q̇, f = J̄T G,

F = J̄T T and X is the robot end-effector Cartesian position,

i.e. [x, y, z]T , and J is the Jacobian of the robot arm’s

kinematics.

Cartesian velocities are defined as Ẋ = Jq̇. The matrix J̄

is the inertia weighted pseudo Jacobian inverse is given by

J̄ = M−1JT (JM−1JT )−1 [25], (see also [26]).

The Cartesian position of the end effector is used here to

define the motion task of the robot. Hence, the dynamics

of (2) represent here the Cartesian or Task dynamics. The

adaptive Cartesian/task control law is:

F = ÂẌ∗

d + B̂Ẋ∗

d + f̂ + Fext + [2k + K̂]r (3)

where, Â, B̂, f̂ and K̂ are adaptive gains given later,

while k is a positive scalar constant chosen by the designer.

Moreover, the modified velocity and acceleration error are

given by Ẋd

∗

= Ẋd+Λex and Ẍ∗

d = Ẍd+Λėx respectively.

The Cartesian position error is given by ex = Xd − X ,

where Xd the Cartesian demand position derived from a

reference model, to be discussed later. The demand position

Xd is the result of the reference model discussed later in this

section. The vector r is the filtered error and is defined as:

r = ėx +Λex and Λ is a 3×3 diagonal matrix with positive

values. The adaptive law estimating the gravity vector is

given as:
˙̂
f = −Kα1

f̂ + Kβ1
r (4)

The inertia matrix in Cartesian coordinates is estimated in:

˙̂
A = −Kα2

Â + Kβ2
r(Ẍ∗

d )T (5)

Coriolis/Centripetal forces are indirectly estimated via the

matrices B̂ and K̂:

˙̂
B = −Kα3

B̂ + Kβ3
r(Ẋ∗

d )T (6)

˙̂
K = −Kα4

K̂ + Kβ4
rrT (7)

using the following dynamically changing forgetting factor:

Kαi
= Kαi0

+ Kαi1
||Ẋ|| with the assumption that Kβi

,

Kαi0
and Kαi1

are positive definite diagonal matrices with

i = 1−4. Note the minor but practically important difference

of using diagonal gains for the adaptation laws in difference

to [17]. This allows for better tracking of multi-variable

Fig. 1. Robot interacts with the environment like a spring mass damper
system.

control performance in contrast to [17]. The applied torque

for adaptive control is: T = JT F which is sufficient to

control the Cartesian/task dynamics (2). Nevertheless, the

dynamics of (2) represent only three degrees of freedom and

other control terms have to be augmented to retain stability of

the other (n−3) degrees of freedom, representing the posture

or null-space dynamics in relation to the task dynamics.

The reference impedance model characteristics are defined

by the mass matrix Ms, the damping coefficient matrix

Cs and the stiffness coefficient matrix Ks. These values

determine the behaviour of the reference model:

MsẌd +CsẊd +KsXd = −Fext +MsẌr +CsẊr +KsXr

(8)

where, Fext is the external Cartesian forces sensed through

the joint torque sensors , Xr is the reference trajectory and

Xd is the new demand to compensate the external forces.

Hence, Ms, Cs and Ks can be used to adjust the level

of compliance. As the main control approach is applied to

a multi-redundant system, the motion is under-constrained,

and some links may follow bounded but seemingly random

trajectories for a Cartesian demand position. Therefore, a

posture torque controller has been added which deals with

the redundant motion, to generate a human like movement

pattern by minimizing the effort (a function of gravity)

during reaching to a particular point in the robot work space.

The method here is adopted from previous work by [20], [21]

(see also [22]). The ‘posture’ controller Tp is in the null space

of the adaptive Cartesian controller, hence, it does not affect

the main controller:

T = JT F + NT Tp, NT = (I − JT ˆ̄JT ) (9)

where I is the identity matrix. ˆ̄J is the preliminary estimate

of the inertia weighted pseudo Jacobian inverse defined

earlier. The posture torque, Tp is calculated in the same

way as given in [20], [21] and [24] by minimizing the

joint effort function Up = GT (Km)−1G, where, G is the

gravitational vector term from equation (1), and Km is the

actuator activation matrix, having positive diagonal elements.
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III. ANTI-WINDUP COMPENSATOR

Due to the highly dynamic character of the adaptive

control scheme, actuators can become saturated. This has

shown to cause windup of the adaptation algorithms (4)-

(7), causing destabilization of the robot controller, creating

a highly unsafe environment for humans. Hence, a suitable

avoidance of the windup of the adaptation algorithms guaran-

tees the controller performance in case of saturation. Another

important aim is to recover nominal adaptive control perfor-

mance, once the actuator saturation is overcome. Therefore,

an AW compensator system is adopted from [23], originally

developed for a neural network control scheme. Two func-

tions DZKf
(||F ||) and c(DZKf

(||F̄ ||)) are introduced for

this anti-windup compensator:

DZKf
(||F ||) =

{

||F || − Kf , if ||F || > Kf

0, if ||F || ≤ Kf
(10)

Kf is the artificial limit, imposed on the control signal. The

function c(·), 0 ≤ c ≤ 1 is a smooth scheduling element

defined as follows,

c(DZKf
) =

K2

fδ

(Kf + DZKf
)(Kfδ + DZKf

)
(11)

where δ is a positive design constant. The purpose of

scheduling element c is to activate a sliding mode element

when actuator saturation is foreseen due to large amplitudes

in F . When c = 1, only the adaptive controller is active and

if c = 0, only a sliding mode control is active. If 0 < c < 1,

both adaptive and sliding mode controllers are active, each

at a reduced level. Using c(DZKf
(||F ||)) and DZKf

(||F ||)

the adaptation laws for Â, B̂, f̂ and K̂ are modified online.

The adaptive law estimating the gravity forces becomes then:

˙̂
f = −Kα1

f̂ + Kβ1
cr (12)

Similarly, the adaptive law estimating the inertia matrix is

modified to:

˙̂
A = −Kα2

Â + Kβ2
cr(Ẍ∗

d )T (13)

˙̂
B = −Kα3

B̂ + Kβ3
cr(Ẋ∗

d )T (14)

˙̂
K = −Kα4

K̂ + Kβ4
crrT (15)

Equation (14) and (15) are the modified form of the adaptive

laws indirectly estimating coriolis/centripetal forces while

the forgetting factors are modified to:

Kαi
= Kαi0

+ Kαi1
||Ẋ || + Kαi2

DZKf
(16)

where Kαi2
are positive definite diagonal design matrices.

Note that the adaptation laws of (13)-(15) are now also

including c in contrast to (4)-(7). This modifies for c → +0
the adaptive laws into autonomous asymptotically stable

systems so that windup prevention is introduced, which is

enhanced by the increase of the forgetting factor in (16).

Using this modified adaptive law, this changes the control

law to:

F̂ = cF + (1 − c)Kf

r

||r||
(17)

and the applied torques are now:

T = Sat(JT F̂ + (I − JT ˆ̄JT )Tp) (18)

where, Sat(·) is the saturation function defined by the

amplitude limits of the actuators and ˆ̄J accounts for the

uncertain M̂ . The argument of the function c(DZKf
(||F ||))

has been omitted in the equations above using only c. Note

that Kf has to be chosen so that JT F̂ remains strictly

within the linear region of Sat(·), considering JT F̂ as the

argument. A block diagram of the overall control scheme is

shown in Figure 2.

The anti-windup compensator significantly enlarges the

region of attraction of the control system in contrast to the

adaptive control scheme alone, which destabilizes, once the

control signal is saturated due to the adaptive control scheme.

This is avoided by introducing an amplitude limited sliding

mode element which replaces the adaptive scheme until the

magnitudes of f̂ , Â and K̂ have recovered to smaller values.

Fig. 2. Model reference adaptive compliance controller with AW compen-
sator and effort minimizing controller.

IV. RESULTS & DISCUSSION

As mentioned, the BERT II arm has 7 DOF, however,

only 4 DOF namely, shoulder flexion, shoulder abduction,

humeral rotation and elbow flexion are used as shown in

Figure 1. The base coordinate frame is fixed in the shoulder.

The end effector position is specified with respect to the base

frame.

A. Joints Torque Sensors and Body Toques estimates

As mentioned before, the BERT II arm is equipped with

torque sensors in each joint to measure the external applied

forces/torques. These sensors are strain gauges arranged in

a wheatstone bridge. Torque sensors were experimentally

calibrated by hanging different weights and recording voltage

change. When there are no external forces/torques, the joint

torque sensors measure the gravity torques TG εℜ4×1 (plus

also Coriolis/centripetal force if the robot arm is moving).

However, at lower velocities, coriolis/centripetal torques will

be very small as compared to gravity torques. It is necessary

to compensate for these body inherent torques when measur-

ing external torques and forces. This is achieved by posing
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the gravity torque as a linear parameterized expression:

TG = φ̂W (q) (19)

where φ̂ εℜ4×6 contains the parameter estimates depending

on the robot and the sensors scale, while W εℜ6×1 is the

regressor function formed by the geometric nonlinearities of

the robot. Thus, W is a matrix consisting of suitable sin/cos

functions. The parameter matrix φ̂ is estimated during an

initial test period using a recursive least square algorithm

minimizing
∑

i ‖ TGi − T̂Gi ‖
2, φ̂ is constant during normal

operation. As a result, the actual body torques (TG) and their

estimates (T̂G) are shown in Figure 3. These estimates of the

gravity torques allows differentiating of external torques Text

from body-own torques of the robot: T̂ext = Tmeasured−TG

In fact, we are using Text = Dz(Tmeasured − TG),
where, Dz is the dead zone function, to avoid the small

errors in TG affecting Text. The external torques, Text, result

from external forces, Fext, acting on the end-effector of the

robot in x − y − z coordinates. Thus, the external torques

Text have to be mapped to these forces, Fext, using the

inverse of Jacobian J defined earlier. Note that J is not

invertible and it has been found that the pseudo inverse in

this case gives numerically wrong results for certain poses,

giving incorrect, large amplitudes for the estimated values

Fext. Similarly, it was found that the damped pseudo-inverse

JT (JJT + ρ2I)−1 also gives large errors when computing,

Fext in some cases. The most suited approximate inverse in

our case is the inverse using singular value decomposition

(SVD): J = USV T , where U and V are unitary (possibly

non square) matrices and S is a matrix, where only the

diagonal values are nonzero, holding only the non-negative

singular values of J . The SVD based Jacobian inverse

is: J−1

SV D = V S−1UT Hence, the estimated end-effector

Cartesian forces are: Fext = J−T
SV DTjoints

B. Tracking and Compliance Results

Good tracking can be observed in experiments on the real

robot as shown in Figure 4. In this experiment on the real

BERT II arm, the end-effector was moved in a circle in the

X − Z plane by giving a sine wave position demand to z

and cosine wave position demand to x.

In the absence of external forces, the robot end-effector

should follow the reference trajectory Xr. In the presence of

external contact forces the reference trajectory is modified

for Xd and the robot will follow this new demand trajectory

defined by the impedance reference model (8) to compensate

for the external forces.

The MRAC-approach allows us to design well-defined

levels of compliance for safe human-robot interaction by

choosing the correct values for the parameters Ks and Cs for

x− y− z direction. Thus, it was tested for different stiffness

and damping values imposed via the model reference given in

equation (8), for external contact forces. The results produced

in an experiment when external forces in x − y − z were

applied by pushing and pulling the robot end-effector while

using different values of Ks and Cs, two of the experiments
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Fig. 3. Robotic arm’s body torques estimates, TG, T̂G .
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are shown in Figures 5-6. The end-effector trajectory follows

the demanded reference model trajectory nicely.

C. Anti-windup Compensator results

Practical tests have shown that without an AW compen-

sator, actuator amplitude limits of ±3000mA are reached and

the control system becomes easily unstable. Inclusion of the

AW compensator prevents instability due to saturation. As

mentioned previously, the scheduling element c = 1 means

that the adaptive scheme is only active (see equation (17)). If

c = 0, the sliding mode element alone is active, if 0 < c <

1, then both the sliding mode and the adaptive controller

are active. For the real robot, it is seen that the adaptive

controller is operating for most of the time, while the sliding

mode scheme is only used over a short span of time when

any of the actuators reaches its amplitude limit. This is
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40Ns/m and with Msxyz = 2Kg.

particularly observed in Figure 7 for the scheduling element

c which remains most of the time at c = 1. Hence, the AW

scheme is effective, avoiding instability due to saturation but

also recovering the nominal adaptive controller performance.

Figure 7 also shows the motor current inputs of the humeral

rotation joint and the shoulder flexion joint, which stay

within the actuator amplitude limits of ±3000mA. The other

two actuators (elbow flexion and shoulder abduction) are not

shown, as in this experiment, their amplitude remained well

below their amplitude limit. Note that this AW scheme also

adds to the safety of the control scheme as it allows for the

adaptive scheme to operate in the nominal case, while the
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Fig. 6. Cartesian position x, y and z, when external contact
forces(Cartesian) act for Ksxz = 50N/m, Csxz = 30Ns/m, Ksy =
30N/m, Csy = 100Ns/m) and with Msxyz = 2Kg.

AW scheme returns control to the case without saturation as

quickly as possible, avoiding stability and performance loss

in case of actuator saturation.

V. CONCLUSION

In this paper, we have focused on a practical active

multi-dimensional compliance control technique for achiev-

ing safety in the face of human-robot physical interaction. We

have shown that multi-dimensional compliance and flexibil-

ity can be achieved with some acceptable compromises in ac-

curacy. The redundant DOF has been used to generate human

like motion by minimizing muscle(actuator) effort(which is

a function of gravity). In particular, we have been able to
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design different levels of compliance, which is important

for the different situations of human-robot interaction that

could occur in the real world. AW compensator has been

added to deal with the actuators saturation caused by adaptive

controller, which increases safety by avoiding instability

caused by actuators saturation.
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