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Abstract— Mobile robots that are employed in people’s homes
need to safely navigate their environment. And natural human-
inhabited environments still pose significant challenges for
robots despite the impressive progress that has been achieved
in the field of path planning and obstacle avoidance. These
challenges mostly arise from the fact that (i) the perceptual
abilities of a robot are limited, thus sometimes impeding its
ability to see relevant obstacles (e.g. transparent objects), and
(ii) the environment is highly dynamic being populated by
humans. In this contribution we are making a case for an
integrated solution to these challenges that builds upon the
analysis and use of implicit human knowledge in path planning
and a cascade of replanning approaches. We combine state
of the art path planning and obstacle avoidance algorithms
with the knowledge about how humans navigate in their very
own environment. The approach results in a more robust
and predictable navigation ability for domestic robots as is
demonstrated in a number of experimental runs.

I. INTRODUCTION

In general path planning answers the question “How
can I navigate to a goal position from my current loca-
tion?”. Most of the established approaches assume that
apriori knowledge about the new environment is available
(usually a 2D map representation denoting obstacles and
free spaces) and try to compute a plan towards the robot
goal [1]. These approaches are purely map-based, with-
out considering any prior experience about navigating the
environment. Generally, two types of planning algorithms
can be distinguished. The first is to compute a path from
the robot’s start location to the goal deterministically [2]
applying a navigation function, such as NF1 presented in [3].
In contrast, the alternative approaches tackle the problem
probabilistically, trying to plan a sequence of actions (a path)
associated with all possible positions of the environment to
the goal [4]. They consider the probabilistic nature of robot
motion and perception [5], [6] explicitly in their planning
domain. As discrepancies resulting from dynamic obstacles,
such as doors and humans, usually exist between the apriori
map and the real environment, local strategies handling those
objects are required for a robot to execute the computed path
plan. Several classical approaches have been proposed to
continuously react to obstacles perceived with robot sensors,
e.g. DWA (Dynamic Window Approach) [7] applying con-
strained search in velocity space to obtain optimal actuator
commands, VFH (Vector Field Histogram) [8] employing
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a two-stage data-reduction process to represent the world
model with a polar histogram and select the most suitable
steering direction among this histogram with a low polar
obstacle density, ND (Nearness Diagram) [9] describing
environments (robot and goal location, obstacles, as well as
free space) with sectors centered on the robot location and
designing robot actions according to predefined situations,
and so on. By these means, a robot is able to efficiently fulfill
the long-term plan, while reacting to unexpected obstacles
quickly.

However the main drawbacks of path planning approaches
mentioned above lie in the representation of the environment
created with the limited perception from robot sensors and
the computational complexity especially for calculating a
universal plan in real time.

In this paper, we propose to not only rely path planning
on the static configuration of the environment but instead
employ the knowledge gained from an analysis of human
pathways. Humans sharing an environment with a domestic
robot are taken into account with the assumption that path
planning might benefit from human strategies. By means of
this we seek to overcome the limitation of robot perception.
It shall enable the robot to avoid static or potential dynamic
obstacles like walls on the hallway or hazards near the door-
way for safely planning, and enable it to reach goals more
efficiently. Consequently, people are invited in an interactive
scenario, the so-called Home-Tour (see section III), in which
the robot cannot only explore the environment and build a
map effectively, but also observe the behavior of the guide-
person during the navigation of the environment to positively
affect its own navigation abilities. A combination of human-
aware path planning, dynamic replanning abilities, and dy-
namic obstacle avoidance is proposed in this contribution.

The remainder of this paper is organized as follows. After
discussing the most recent works on path planning within
interactive scenarios in section II, the robot and the designed
Home-Tour are introduced in section III. Subsequently, de-
tails of path planning and the replanning scheme are intro-
duced in section IV. Experimental results are presented in
section V, before concluding our work in section VI.

II. RELATED WORK

In 2007, Gockley et al. [10] were one of the the first
to propose that knowledge about paths of a human guide
could be exploited by robots that needed to make regular
trips between specific locations in hospital environments.
Path planning for a mobile robot in domestic environment is
widely studied, e.g. by Zender et al. [11] and Topp [12]. In
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Fig. 1. The robot BIRON II with its hardware components shown on
the right. From top right: Pan-/Tilt-camera, interfacial microphone, Pioneer
5DOF arm, and laser range finder.

both works a robot followed a person during a guided tour
and the geometric features for environment representation
were lines extracted from straight structures like walls,
without details for small objects. Therefore the built map
is not necessarily sufficient for navigation actions. The so-
called Navigation Nodes leading the robot to goals were se-
lected from the robot trajectory and kept sparse. The robot’s
trajectory planned through these coarse navigation nodes will
be based on the planning in the static graph, finding the
shortest route. Their representation does not contain any
information about the actual routes people walked along.
It only creates new nodes if no node already exists within
a distance of approximately 1m. Moreover the choice of
sparse nodes for path planning might neglect details from
person movement, namely the strategy of the guide-person
which could be helpful for obstacle avoidance, such as going
through a door. The robot may get into trouble as well,
when it is far from those Navigation Nodes and without
connection to them, or the connections between those nodes
are cut off by dynamic obstacles. Therefore, an appropriate
approximation and representation of person trajectories, a
occupancy-based path planning and replanning abilities are
key for robust navigation in these environments.

III. ROBOT SETUP AND SCENARIO

Our approach is integrated with BIRON II (see
Fig. 1) based on the research platform GuiaBot™ by
MobileRobots!. BIRON II is a consequent advancement of
the BIRON (Blelefeld Robot companiON) platform [13],
which has been under continuous development since eight

www.mobilerobots.com
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Fig. 2. Overview of the data flow for path planning and replanning. Person
trajectory during an interactive scenario and environment information are
both observed by the path planning module to compute or correct a plan.

years. Inside the base there is a laser range finder mounted at
a height of about 30cm for the perception of the surroundings
in front of the robot. Measurements are taken in a horizontal
plane covering a 180° field of view. The color video camera
is mounted for visual perception of the scene and for detailed
focusing on persons, areas, and objects. Sound direction can
be located with the two interfacial microphones equipped on
the top of the robot’s body. The upper part of the robot’s
body houses a touch screen as well as the system speaker
used for speech output in user interaction.

As mentioned in section I, we have designed an interactive
scenario, the so-called Home-Tour. In this scenario a robot
is shown around by a user in a real-world apartment and
expected to exploit the acquired knowledge, e.g. about the
spatial layout and navigation strategies of the guide-person,
to autonomously provide services to the users later on.
The guide line of the Home-Tour is not necessary to be
specified. The user can choose an arbitrary route in terms
of her or his own decision and spatial understanding of the
environment. However, the guide-person should show the
places which the robot may visit and are allowed to enter,
so that the robot can obtain sufficient information of the
new surroundings. Furthermore, the guided tour should be
expected to be performed efficiently considering that the user
is familiar with her or his own apartment.

As a capability bridging the gap between the movement
of the person and the robot especially for the Home-Tour
scenario we have designed person-following behavior [14].
To realize a following process person tracking is an important
prerequisite. The user who is interacting with the robot is
tracked with a multi-modal person detection and tracking
system from our previous work [15] combining the cam-
era (face detection), laser (legs detection) and microphone
data (sound location), and providing person positions in
polar coordinate system with respect to the robot. During
the Home-Tour the human movement containing navigation
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strategies of the guide-person is observed by the robot. All
of the person positions obtaining from the tracking system
are recorded to build a graph with multiple layers, as will
be elaborated on in section IV-A.

For local navigation the ND (Nearness Diagram) approach
tackling cluttered obstacles typically in indoor environments
has been integrated into BIRON II. As the person positions
are defined in a local frame, both the robot poses and the
person positions have to be calculated in a common world
frame. When the robot knows where it is with respect to the
environment, it can navigate and provide services to people.
Therefore, the ability of pose estimation in an incrementally
built world frame, namely the global representation of the
environment makes a mobile robot truly autonomous [16].
A Rao-Blackwellized particle filters [17] based SLAM?
approach [18] from the library MRPT [19] has been equipped
on our robot platform. During a Home-Tour the surroundings
would be finely represented with grids whose values imply
the probability of the occupancy covered by obstacles. As
will be presented in section V, the robot will benefit from the
occupancy grids not only for the map-based path planning
NF1 [20] which calculates a list of free grid cells leading
from the robot position to the goal, but also for the perception
of dynamic changes, such as a post-closed door of the
environment in a replanning process.

Fig. 2 presents the current system, where the path planning
and replanning component marked with yellow provides a
sequence of actions, namely the set of subgoals, to the
component of obstacle avoidance (ND), in terms of the basic
information from the surroundings (the grid map) and the
observation of the person behavior during the Home-Tour.

IV. PATH PLANNING

Considering the disadvantages of pure map-based ap-
proaches as well as static trajectory-based systems dis-
cussed in section I and II, we have designed a graph-based
planning/replanning approach using the information about
the guide-person’s behavior. Thus, the robot is expected
to benefit from human navigation strategies, as described
in section I. Since the search space of our approach is
constrained to paths generating from positions of the guide-
person during the Home-Tour, a map-based path planner has
been integrated as a supplement, suppose no plan can be
calculated by the graph-based planner.

A. Graph Creation

As discussed in section III, human behavior is observed by
the robot during the whole guided tour. The person tracking
system provides dense information about person positions
calculated in the world frame, namely the occupancy grid
map of the environment created by the SLAM component.
The naive path planning approach is to let the robot follow
the person positions which have been stored during the
guided tour in chronological order. Then a path from A to
B can be found, only if the user has gone directly from

2 Abbreviation of Simultaneous Localization And Mapping.
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Fig. 3. Human Trajectories (black) and Robot Paths (red): In a) the original
human trajectories are from A to C and from B to D. If the robot intends
to navigate from A to B, a trajectory switch is necessary. In b) the person
went from A, via B, C and D to E. If the robot navigates from A to E, the
robot does not need to take the detour over C (unless there is an obstacle
between B and D, which can be avoided using the path via C).

A to B before. Thus, trajectory changes (see Fig. 3(a)) are
not possible. Besides, human paths containing unnecessary
detours (see Fig. 3(b)) can not be detected.

Hence, the person positions are inserted as nodes N; into
a graph G'noEdge Without connections between the nodes.
The creation of edges in the graph will be discussed later
on in this section. Considering that during the Home-Tour
introduced in section III different locations are shown to the
robot one after another, the whole human trajectory (all of the
person positions) is segmented into sub-trajectories, where
each sub-trajectory illustrates the set of person positions
beginning at location A and ending at the subsequent location
B shown by the guide-person. In particular the first sub-
trajectory records the person positions from the beginning
of the scenario to the first location, while the last one stores
the person trajectory from the last location to the end of the
guided tour. The whole graph G'y,g4ge, namely the set of
nodes IV;, is divided into graph layers G'pqyer, on which the
corresponding sets of person positions from sub-trajectories
are stored. In other words, the graph Gnogage can be
regarded as graph union or graph join of all graph layers
G Layer [21], since no edges have been connected between
the nodes yet. Therefore, each node IV; of the graph G noEdge
can be assigned to a corresponding layer G rqyer( N,;)S’ and
all nodes belonging to a graph layer Gpqyer represent a
sub-trajectory of the guide-person. A virtual grid with a
predefined resolution different from the resolution of the
occupancy grid map is laid over the built map, and the
number of nodes is limited to one per virtual grid cell.

The connection of graph nodes is created simply under the
restriction of distance. Newly added nodes get connected by
an edge to all neighbor nodes whose grid cell distance is
smaller than a certain threshold. By this means, nodes lying
on different graph layers might be connected, suppose they
are near by each other; while there might be no edge between
nodes on the same layer, when they are far from each other.
A graph Garuitipie can be therefore created with graph join
of multiple layers G'rqyer conditioned on the predefined
distance restriction. The edge weights w(N;, N;) are initially

3Note that a node with the same coordinate might be passed by the guide-
person not only once. For such nodes they might belong to different graph
layers.

3277



set to the euclidean distance between the connected points
N;, N;j. The A* search algorithm [22] is applied to find the
least-cost path if it exists. With the initial weights the shortest
distance path will be found.

However, the shortest path might be not human-like, as
some details from the human trajectory could be ignored
by A*. Therefore, the timestamp ts(V;) memorising when
node NV, is added into the graph is taken into account. If
the timestamp difference between the two selected nodes is
greater than a defined threshold ©;, the initial edge weight
will be multiplied by a penalty factor oy, in that a long
time span between two nodes may indicate that they are not
neighbors on the original human path.

In addition, frequent changes between different human
sub-trajectories should be prevented. The robot ought to
follow one sub-trajectory as long as possible, unless the
switches are necessary for the robot to reach a goal. As
described above, instead of building one graph recording
all person positions, multiple graph layers are created (see
Fig. 4). Edges connecting nodes from different layers are
allowed. However, they will suffer from a multiplied penalty
factor oy on the base of the initial edge weights. This, again,
makes graph layer changes rare, although not impossible.

Altogether, the path calculated by A* is a compromise
between the shortest distance way from A to B and an
imitation of human behavior which the robot watches during
the Home-Tour. Thus, the edge weight w(N;, N;) between
two nodes N;, N; is defined as follows:

P
W(Ni Nj) = pi(Ni, N3) - po(Niy Ny) - [ [ NG| | ()
where
ap if [ts(N;) —ts(N;)| > ©
PN Ns) :{ lt otlller\(zvisez ) t 2

and

) N ap if GLayer(Ni) 7é GLayer(Nj)
pu(Ni, Nj) = { 1  otherwise 3)
Note that oy > 1 and o; > 1. In section V we will show that
the proposed approach is a trade-off allowing the robot both
to benefit from qualities of human navigation and to make
decisions for graph layer switches autonomously.

B. Replanning

A precise plan calculated from a static environment rep-
resentation may be inappropriate to be executed because
of dynamic objects, such as humans or moved furniture.
Applying the laser sensor, ND [9] can avoid obstacles in the
way to subgoals. Whenever a subgoal which may be near to
a dynamic obstacle cannot be reached within a certain time
period, the robot tries to go to the next subgoals. Thus, ND is
expected to overcome temporal obstacles, such as passersby,
or objects obstructing the path not completely, and drive the
robot to the goal using the current plan.

If the application of the local approach (ND) is not
successful, the current plan is marked invalid and obstacles
between the robot and the subgoal are detected in the current

Layer 1

Trajectory change

Layer2  qrajectory change

Fig. 4. Two layers created from the corresponding human sub-trajectories.
Light blue nodes belong to layer 1, while dark blue nodes belong to layer
2 including the two black nodes A and B. Two possible paths from A to B
are depicted with red and green edges. The graph search algorithm would
prefer the green path, since the red one contains two expensive layer (sub-
trajectory) changes.

occupancy grid map. For this purpose, grid cells contained
in an ellipse covering the area between the robot and the
subgoal are inspected, as Fig. 5 illustrates. If the percentage
of occupied cells in this area exceeds a threshold, the object
obstructing the current plan is confirmed and replanning is
triggered. Considering the failure of ND and the detected
obstacle between the robot and the next subgoal, this subgoal
is marked as an unreachable node NN,,.. Given the radius of
the robot, the neighbors of the node inside this radius are
marked as well. A*-search is then repeating, ignoring the
invalid nodes. If no obstacle can be detected in the path found
by A* but ND still fails, NF1 is used for path planning as
the last resort.
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Fig. 5. Finding dynamic obstacles using the gridmap. Free grid cells are
depicted in white, occupied cells in black. An obstacle is detected, since the
occupied cells (orange) outweigh the free cells (yellow) in the area between
the robot and the subgoal.

Furthermore, NF1 can be seen as a general fallback
strategy whenever A* cannot find a path from the built graph
G pMuitiple discussed above. This is the case if either no
connection within the graph between the start and the target
node can be found, or the robot position is too far away from
any node. The second case mainly occurs when the robot is
manually placed at a location where it has not been before or
it explored autonomously. While the robot is following the
NF1 path, A* constantly tries to find the path switching back
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to the preferred behavior computed from the graph G psuitipie
as soon as possible.

In this manner, the robot is expected to benefit from both
the map-based path planning and navigation strategies of the
guide-person, so as to solve the planning problem posed at
the beginning of section I effectively.

V. EXPERIMENTS

The proposed approach has been evaluated with BIRON IT
in a real environment resembling an apartment with real
subjects. Fig. 6 illustrates the grid map of the environment
built after the guided tour and the start as well as the end
position of the robot. The gray-scale indicates the probability

Background

Fig. 6. Occupancy grid map of the environment. The both open door D1
and D2 during the Home-Tour, a table whose four legs can be perceived
by the robot and the start as well as end pose of the robot are depicted in
the map. The background indicating the unperceivable areas of the robot is
marked as well.

whether the grids are occupied by obstacles perceived from
laser sensor. White corresponds to free with high certainty,
while black implies occupied with high certainty. The possi-
blity of the unperceivable grid cells, such as the background,
is assigned 0.5 implying the maximum uncertainty. As the
guide-person had to be regarded as an obstacle during the
whole Home-Tour, the occupied area of the person was
defined with the multi-modal person detection and tracking
system mentioned in section III and excluded from the laser
plane. A table about 1.60m x 0.80m x 0.72m is depicted
with a blue rectangle. As the laser range finder can perceive
a plane in front of the robot at a certain height, only the
four legs of the table can be seen by the robot. The both
doors D1 and D2 were opened, while the robot was following
the guide-person. The multiple graph layers presented with
different colors were created, when different locations were
shown to the robot (see Fig. 7.). Comparing with the built
Navigation Graph presented in [11] and [12] more details
about the person movement and the environment represen-
tation are recorded. Map-based path planning, such as the
NF1 approach, as well as the replanning process dealing with
the dynamic objects that may obstruct the current plan are

therefore feasible to be integrated into the proposed graph-
based approach. As discussed in section IV-A, each layer
stores the person positions from one location to another, if
it exists. The green sub-trajectory provides the movement
information of the guide-person from location A to B, while
the graph layer with violet illustrates the set of the person
positions from D to the end position of the guided tour, as
no subsequent location is shown to the robot. Notice that
edges connecting nodes from different layers are allowed to
realize layer switches, when the sub-trajectories of the person
interweave each other.

Fig. 7. Multiple graph layers created during the Home-Tour. Different
colors illustrate different sub-trajectories of the guide-person from one
location to another, as described in section IV-A.

The route of the guide-person began from A, via B, C,
D, and ended in proximity to the start position A. The
region between A and D corresponds to the corridor of
the real environment. Since the robot followed the person
and travelled through some places of the new environment
only once, the uncertain (gray) areas, such as the corridor
between the both doors could be found in Fig. 6. Those
cluttered gray points in front of the robot at its start pose
were created before the guide-person had been detected
with the person tracking system. Once the guide-person was
identified, no such points were added into the grid map
during the subsequent guided tour.

After perceiving the new surroundings the robot would
be expected to reach a goal set in the free space of the
already visited environment. That is also a precondition
for a domestic service robot. In the experiment the robot
was required to return to place C. The path for the robot
to the goal is computed using the approach described in
section IV-A and illustrated in Fig. 8(a). Since no graph
layer containing the sub-trajectory of the guide-person from
A to C is available, layer change is necessary for the robot
to find a path. In order to compare the resulting path from
our approach with that from NF1, the both trajectories are
depicted with red and green respectively in Fig. 8(b). As
could be anticipated, the map-based approach NF1 found out
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Fig. 8. The computed path from the graph-based approach presented in
section IV-A and the map-based approach NF1. a) shows the found red path
from the built graph. Note that the path with a small detour results from the
edge weights defined in formula 1. The green path from NF1 crossing the
table is illustrated in b) compared with the red path containing navigation
strategies of the guide-person.

(b)

Fig. 9. Comparison of the planned and replanned path. a) shows the
planned path on the base of the built map during the Home-Tour. Tuning
edge weights defined in formula 1 the blue dashed shortcut would be an
alternative neglecting potential obstacles in the region shown by the green
arrow. Once the new obstacle D1 had been added in the grid map and
detected by the robot, replanning was started. The resulting path is illustrated
in b).

a shortest way to the goal without the consideration of the
unperceivable table, while the red path contains the strategy
of the guide-person.

Afterwards the robot tried to reach the subgoals on the
way which the guide-person had passed by to C, i.e. the red
path illustrated in Fig. 9(a). However, the door D1 lying on
the robot path was closed purposely. Once the local approach
ND was not successful and the robot was aware of the new
obstacle D1 in front which obstructed the path, as discussed
in section IV-B, replanning was started. The replanned path
computed from the graph and the closed door D1 added into
the map are shown in Fig. 9(b). Note that the uncertain (gray)
regions between the both doors are relatively certain (white)
now, compared with Fig. 6, since the robot has passed by
this area again. When the robot has reached C successfully
applying the replanned path, it was commanded to go back
to A. In principle, tuning edge weights defined in formula 1
a shortcut depicted with blue dashed in Fig. 9(a) is possible.
However, potential hazards that can be avoided with the red
path might exist in the area shown by the green arrow.

Except for comparing the paths planned from the map-

based and our approach in an environment partially perceived
by the robot, as shown in Fig. 8(b), we are interested in the
plans resulting from a fair situation as well, i.e. the obstacles
on the way to the set goal can be perceived by the robot
entirely. Therefore the robot position with orientation was
marked, when the robot went back to A, and the same goal
B was sent to the robot applying the path from our approach
and NF1. The result is illustrated in Fig. 10. As NF1 tries to
find a shortest path, the green trajectory leads the robot near
to obstacles, such as the wall and the door D2. In contrast,
more free space and smooth obstacles avoidance have been
considered by the guide-person for safely planning, as the
red trajectory shows, especially in the corridor and through
the door D2. The small mapped legs of the table depicted in
Fig. 6 are shown with the blue arrows as well.

Mapped table legs

Fig. 10. Comparison of the paths computed from NF1 and our approach
for the robot from A to B, given in Fig. 7. The green path from NFI is
close to obstacles, while the red path reveals navigation strategies of the
guide-person. The mapped table legs are shown with the blue arrows as
well.

VI. CONCLUSION

This paper presented a path planning approach on the
basis of a graph with multiple layers, representing movement
trajectories of guiding persons acquired during the so-called
Home-Tour. In contrast with the approaches based purely
on robot sensors, the human-like paths would be beneficial
for the robot considering navigation capabilities of human
beings, particularly when obstacles could not be perceived
by robot sensors. In addition, the trajectory of the guide-
person should be expected to result in collision free paths,
in that those paths implicitly contain human strategies for
obstacle avoidance, as well as human understanding of
spacial context. For the graph-based approach, efficiency,
effectivity and keeping the trajectory originally from the
guide-person have to be considered synthetically to compute
a robot path. Therefore, we have defined edge weights with
multiple factors, which take into account distance to the
goal, timestamp along the person trajectory and switches of
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graph layers. Since the ultimate goal for path planning is to
find a path from any location to any other location in the
environment, the map-based approach NF1 has been inte-
grated into the current system as a supplement to overcome
the limitation of the graph-based approach, i.e. it is almost
impossible for the trajectories of the guide-person to cover
any free space of the environment. If unexpected dynamic
obstacles obstruct the path, a cascade of replanning processes
will be triggerd trying to find an alternative. Comparing with
the works of Zender et al. [11] and Topp [12] we combine
the advantages of the graph-based search approach and the
map-based navigation (NF1) with the help of the occupancy
grid environment representation. This integrated approach
enables our robot system to more safely, while still efficiently
navigate in its environment.

Considering that the planned robot paths are calculated
in terms of the movement trajectory from the guide-person,
a practical and efficient solve might be obtained through
analyzing and optimizing the person paths. Trajectories inter-
woven with or closed to each other are generally caused by
repeated movements of the person through the same areas.
Merging those trajectories can refine the graph and make
the path planning and replanning process more efficient.
Although our approach is on the basis of the meaningful
person trajectories, unnecessary detours obtained from the
guide-person might be difficult to avoid in practice. Through
a comparison of the person movement with the perceived
spatial context of the environment, the robot would be ex-
pected to clarify the necessity of the current person behavior
in an inquiring manner.

Besides, the robot should carry out assignments on the
built map for next time. In other words, the robot has
to be able to localize itself on the known environment
representation. Hence, a particle filter based approach from
the MRPT library [19] for robot global localization [23] has
been integrated into the current system as well.

Notice that only the small table legs shown with the blue
arrows in Fig. 10 can be perceived by the robot and recorded
on the map. Adopting navigation strategies of the guide-
person such an unperceivable obstacle will not impede the
robot to perform navigation tasks though, in a dynamic envi-
ronment such a movable table may be placed on the planned
path for the robot and become a potential hazard. In fact,
two dimensional perceptual space of a fixed mounted laser
is not sufficient to ensure safe navigation in an unconstrained
environment. A motion generation taking 3D perception into
account is therefore meaningful and necessary. For the future
we are going to integrate a 3D Time-of-Flight camera on the
robot platform as an extension of the 2D laser sensor for a
full 3D motion generation from our previous work [24].
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