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Abstract— This work proposes a plausible approach for
a humanoid robot to define its own body parts based on
the correlation of two different sensory signals: vision and
proprioception. The high correlation between the motions in
vision and proprioception informs the robot that the visually
attractive object is related to the motor function of its own body.
When the robot finds the highly motor-correlated object during
head-arm movements, the visuomotor cues such as the body
posture and visual features are stored in a visuomotor memory.
Then, developmentally, the robot defines the motor-correlated
objects as the own-body parts without prior knowledge on
the body appearances and kinematics. It is also adaptable
to extended body parts such as a grasped tool. The body
movements are generated by stochastic motor babbling. The
visuomotor memory biases the babbling to keep the own-body
parts in sight. This memory-based bias towards the own-body
parts helps the robot explore the large head-arm joint space.
The acquired visuomotor memory is also used to anticipate the
own-body image from the motor commands in advance of the
body movement. The proposed approach was evaluated with
two humanoid platforms; iCub and James.

I. INTRODUCTION
How can a robot know its own body? This is a fundamental

question for embodied intelligence and also the early life of
primates. We are able to recognize our body under various
conditions; for instance, we naturally perceive our own hands
with gloves on. In this sense, it would be reasonable to
assume that some parts of our body perception are acquired
developmentally through the sensorimotor experiences. Our
main interest in this work is to realize a primate-like cogni-
tive system to perceive the own body developmentally. The
function of the own-body perception is considered essential
for robots to identify the self when interacting with people
and objects. Also, it is possible to perceive an extended body
when using a tool.

An overview of the proposed approach is depicted in Fig.1.
The principal idea is to simply move the body and monitor
the correlation of the visual and proprioceptive feedback.
Then, the robot defines the motor correlated objects as
the own body. When the correlation is high, image cues
of a visually attractive region are stored in a visuomotor
memory with the proprioceptive information. Since the visual
movement and the physical movement of the body parts
can be assumed dependent, the level of correlation helps to
distinguish the own-body from other objects. This correlation
is also useful to anticipate the appearance and the location
of the own body in sight.
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Fig. 1. Visuomotor correlation based own-body definition system. A
robot generates arm movements, and senses the visual and proprioceptive
feedback. When the feedback is correlated, the robot defines the watching
object as its own arm, and memorizes the visuomotor information. After the
short-term exploration, the robot anticipates the appearance and the location
of the arm by the acquired visuomotor information.

This paper is organized as follows. Section II describes
the related works on the body perception in neuroscience
and robotics. Section III describes the proposed framework
and details of component processes. Section IV describes
the experimental results with two humanoid robots; iCub and
James. Section V gives conclusions and outlines future tasks.

II. RELATED WORKS

Iriki et al. found in the monkey intraparietal cortex the
bimodal (somatosensory and visual) neurons, which seemed
to represent the image of the hand into which the tool was
incorporated as its extension [1] (Fig.2(a)). This group of the
neurons responds the both stimuli from the visual receptive
field and the somatosensory receptive field. After the tool
use the visual receptive field of these neurons is extended
perceptually, as the hand is extended by the tool physically.
More recently in [2], they trained the monkey to recognize
the image of their hand in a video monitor (Fig.2(b)), and
demonstrated that the visual receptive field of these bimodal
neurons was projected onto the video screen so as to code the
image of the hand as an extension of the self. According to
the experimental results, the coincidence of the movement
between the real hand and the video-image of the hand
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(a) (b)

Fig. 2. Body perception of monkeys. (a) Visual receptive field of the
bimodal neurons (left: before tool use, right: after tool use) [1][3]. The
monkey perceives a tool as an extended body part. (b) The experimental
setup of the video-guided manipulation training for a monkey. [2]. The
monkeys recognize the image of their hands in a video monitor as an
extension of the self.

seemed to be essential for the monkey to use the video-image
to guide their hand movements.

In robotics, the sensorimotor coordination is well studied
involving neuroscientific aspects and developmental psychol-
ogy; sensorimotor prediction (Wolpert et al. [4], Kawato et
al. [5]), mirror system (Metta et al. [6]), action-perception
link (Fitzpatrick et al. [7]), and imitation learning (Schaal et
al. [8], Calinon et al. [9]). However, the body detection was
often hand coded with predefined rules on body appearances
or body kinematics such as visual markers or the joint-
link structure. The kind of prior knowledge gives robustness
for the body perception, but imposes certain limits too.
For instance, a visual model of the hand and the fingers
enables the robot to manipulate an object precisely, but
once the robot starts to use the object as a tool for another
manipulation, it would be difficult for the robot to adapt
the body perception to the physically extended hand as the
monkeys do it dexterously (Fig.2).

Recently, Stoytchev [10] proposed an approach of video-
guided reaching to demonstrate similar tasks to what Iriki
et al. examined in [2]. The robot, which was supposed to
work on a vertical plane, coordinated its reaching action
with a self image projected on a video monitor under the
visual transformation. In the experimental setting, the robot
was able to identify an object with some different colour
markers. This simplification makes us neglect problems in
identification of the objects: different appearances of the
same object, and similar appearances of different objects.
The coincidence of visuomotor information is evaluated by
the temporal contingency between the motor command and
visual movement; however the time delay in these move-
ments (efferent-afferent delay) must be calibrated in advance,
which means that at least the experiment operator must define
what the robot hand is.

Hikita et al. [11] proposed a bimodal (visual and so-
matosensory) representation of the end effector based on
Hebbian learning, which simulated the experiments with
monkeys in [1]. The visuo-proprioceptive coincidence was
evaluated by the contingency between the visual location
and hand posture. The approach can be placed as a space-
based method compared to the time-based one by Stoytchev.
The visual saliency system based on [12] allowed general

object detection, although the experiment was not interfered
by neither visual disturbance nor sensorimotor noise, since
the approach was validated with a robot simulator.

Kemp et al. [13] approached the robot hand discovery
utilizing the mutual information between the arm location
in joint space and the visual location of the attractive object
on the image plane. Here, the mutual information measures
statistical dependency between them. The visually detected
objects are separated by colour-based off-line image cluster-
ing, then the image cluster with high dependency is assigned
as the self-image cluster. The proposed approach was vali-
dated with a humanoid robot; however the head movements
were not considered in the approach. Generally, the head
movement affects the motion based object perception, and
takes the arm out of sight.

There are other several methods which focus on temporal
dependency rather than spatial dependency [14] [15]. The
approach by Natale et al. [15] are based on the image
differentiation by a periodic (sinusoidal) hand movement, the
frequency of which is a robust cue to match the movement
of the hand and visually detected object.

Compared to the previous approaches described above,
the proposed approach can be characterized as a temporal-
coincidence based approach and more condition-tolerant
approach to the dynamic change of the camera configuration.
The proposed approach does not use prior knowledge for
the body definition such as body appearances, kinematics,
dynamics, or motor patterns. Instead of these assumptions,
the proposed approach only requires general mobility of the
body and cross-modal sensing of vision and proprioception
to find correlations. Moreover, we will show an enhancement
of body search and a benefit for body anticipation. The
enhancement in a search problem becomes a popular topic
in robotics [16] [17]. The anticipation for motor control is
also attracted in the context of internal models [4] [5] [18].

The acquired body images are fundamental memory to
identify the end-effector of the robot especially in the
learning of visually-guided manipulation [19]. Precise ma-
nipulation in a static work cell requires visual markers for
reliable hand-eye calibration [20], while we focus rather on
the adaptability for the manipulation in a dynamic situation,
where the body is supposed to be modified by a tool such
the case of the monkeys experiments. Modern techniques of
human motion analysis in [21] can be incorporated into the
cognitive mechanism of the own-body definition.

III. METHOD

The proposed own-body definition system is outlined in
Fig.3. The notation of the most important variables are listed
in Table I.

A. Vision

The visual processing is modularized as a set of cascaded
image filters, which function in parallel to allow real-time
processing. All modules are dually structured for two image
streams from the left and right eye cameras, but for the body
definition the system simply uses monocular images from
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Fig. 3. The own body definition system. The system is composed of the
modules; vision, proprioception, motor generation, visuomotor coordination,
and visuomotor memory. Each module functions in parallel.

TABLE I
NOTATION OF THE VALIABLES.

t time of the frame
X location in sight
Xs motor-salient point in sight
X p

s predicated body location in sight
Vs speed of the salient location
Ib motor-correlated image
I p
b predicted body image

qh head joint angles
qc

h motor command of head joint angles
qi

h motor intention of head joint angles
Vh speed of head joint angles
qa arm joint angles
qc

a motor command of arm joint angles
qi

a motor intention of arm joint angles
Va speed of arm joint angles

the left-eye camera. Fig.4 illustrates the visual processing
procedure. First, the motor-salient point is detected, then a
moving blob is extracted. The motor-salient point is traced
as a short-term sequence, then the profiles of the position
and the speed are given.

The motor-saliency module produces a gray scale image
Ig(X , t) at time t from the input colour image by averaging
the RGB components at each pixel of location X , then frame
subtraction is applied between Ig(X , t) and the previous frame
Ig(X , t −∆t). The operation is defined as follows:

I f (X , t) = |Ig(X , t)− Ig(X , t −∆t)|, (1)

where I f (X , t) denotes the intensity of the subtraction frame
at X and t. In the proposed system, the motor-salient point
is defined simply as the center of mass such that

Xs(t) = ∑
X

(X If (X , t))/∑
X

If (X , t), (2)
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Fig. 4. Visual processing. The motor-saliency module extracts the center
of a moving region. The blob perception module grabs a blob located at the
motor-salient point by the log-polar transformation.

when the mass ∑X If (X , t) is larger than a threshold. Oth-
erwise, the previous location Xs(t −∆t) is given as Xs(t) in
order to keep the same location against impulse-like noise.
The moving speed Vs is the norm of the velocity defined as:

Vs(t) = |Ẋs(t)|, (3)

where the upper dot denotes the temporal differential of the
variable. In the following formulation, we distinguish the
terms of velocity and speed. The speed indicates the norm
of the velocity.

A moving blob is extracted based on the motor-salient
point. The local region of the input image at the motor-salient
point is extracted, then a visual blob is segmented from
the region. A colour image I(x,y) presented in a Cartesian
coordinate system (x,y) is transformed into the log-polar
coordinate system (ξ ,θ) as:

ξ = ln
√

x2 + y2, (4)
θ = arctan(y/x), (5)

where the origin of the Cartesian coordinate system (x,y) is
in the center of the image, where a blob is assumed to be
located. The log-polar transformation allows us to segment
a blob with a curve as illustrated in (b) in Fig.4.

B. Proprioception

In order to realize a visuomotor intelligence, we need a
robot platform which has an arm and a head with an eye at
least. Fig.5 depicts the child-type humanoid robot used in the
following experiments [22][23]. The figure draws the partial
joint configuration of the body which we mainly used. In the
proposed approach we do not suppose prior knowledge of the
body structure such as kinematics and dynamics. Moreover,
the system is not aware neither the number of the joints nor
body appearances. We assume only that the system is able
to distinguish the joint group of the head and the arm.
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Fig. 5. The body structure of the robot platform iCub [22][23]. The eye,
head and left arm of the robot were used in the experiments.

Proprioceptive sensing in a biological system includes
many sensory modalities such as tactile, heat, pain, and force
sensing. Here, we only use the joint angle given from the
joint encoders. The groups of the head joint angles and the
arm joint angles are denoted as qh and qa, respectively. In
the following description, we also use qp indicating the either
joint group (p = a or h). The moving speed of the group of
joints are denoted as:

Vp(t) = |q̇p(t)|. (6)

C. Motor generation

The motor behaviour of the robot is produced by a
biased motor babbling [24]. The motor babbling, which
gives random movements of joints, is useful for the robot
to explore the learning domain without a structured motor
control. The learning domain, however, is huge especially
for high degree-of-freedom (DOF) systems such as full-body
humanoid robots. For instance, the arm is often located out
of sight, when the robot is randomly moving both the head
and arm.

The head posture was stationary in the related works as
discussed above, while we challenge the own-body definition
under natural conditions including head movements without
any visual markers. The basic idea to enhance the body
search is to bias the randomness of the motor babbling to
reduce the search domain.

The motor intention module randomly generates motor
commands from the normal distribution, the density function
of which is defined as:

Prob(qc
p) = N(qi

p,σ i
p), (7)

where the mean qi
p and the deviation σ i

k are given by the body
attraction module in the visuomotor coordination. The arm
attraction module gives an arm motor intention coordinated
with a head posture, then the lower motor module produces
a motor command, which functions to move its arm in sight.

D. Visuomotor coordination

The all sensing data from the eye, head and arm are
coordinated in the visuomotor modules. At every moment,
the correlation between the speed of a moving blob and the
arm proprioception is monitored. The visuomotor correlation
is defined as:

C(t) =
∑t

τ=t−Tc
V ′

s (τ)V ′
a(τ)√

∑t
τ=t−Tc

V ′
s (τ)2

√
∑t

τ=t−Tc
V ′

a(τ)2
, (8)

V ′
s (τ) = Vs(τ)− 1

Tc

t

∑
τ=t−Tc

Vs(τ), (9)

V ′
a(τ) = Va(τ)− 1

Tc

t

∑
τ=t−Tc

Va(τ), (10)

where Tc denotes the size of the sequence. V ′
s and V ′

a
denote the biased values of Vs and Va by subtracting the
average value of each sequence, respectively. C(t) satisfies
the formula on the upper and lower boundary;

−1 ≤C(t) ≤ 1. (11)

The visuomotor information described in Fig.3 are mem-
orized, when the visuomotor correlation exceeds a certain
threshold. Here, let us define the visuomotor memory as the
set of variables; {X

m j
s , I

m j
b ,q

m j
h ,V

m j
h ,q

m j
a ,V

m j
a } j=1,··· ,Nl . When

the capacity of the visuomotor memory reaches the limit Nl ,
the system forgets the oldest memory and memorizes the new
one. Exceptionally, when the head is moving, the visuomotor
information is neglected, since the visual motion is always
relative to the camera configuration.

E. Visuomotor memory

The visuomotor memory is useful to enhance the body
search by directing the motor exploration. Here, we introduce
a concept, denoted body attraction. The body attraction
is simply realized by recalling an arm position from the
acquired visuomotor memory. The robot refers the visuo-
motor memory and finds the closest head position to the
current motor command of the head position qc

h. Then, the
robot recalls the arm position coupled with this closest head
position in the memory, and moves the arm towards this
position. Since the visuomotor information were memorized
when the robot found the motor-correlated object (in most of
cases it is the own arm), this association leads the arm into
the view field. Note that this motor intention is originated
only from the results of sensorimotor exploration.

The motor intention of the arm position is formulated as
follows,

qi
a = qmk

a , (12)
k = argmin

j
dh j, (13)

dh j = |qc
h −q

m j
h |, (14)

where qi
a denotes the motor intention of the arm, dh j denotes

the distance between the motor command of the head posi-
tion and the jth head position in the visuomotor memory.
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Fig. 6. The snapshot of the body anticipation. (a) the anticipated own-
body image I p

b before a body movement. (b) the input image I after the
movement. (c) the anticipation procedure of an own-body image.

This motor intention for the arm is used to generate a motor
command as formulated in (7).

The visuomotor memory provides a cue to predict the
appearance and location of the body parts in sight. The
body posture (the couple of the head and arm posture in this
context) geometrically determines the arm location in sight of
the robot. However, the arm does not always appear in sight,
since the view angle is limited. Also, the arm appearance
changes depending on the posture. The visuomotor memory
is useful to reconstruct the appearance and location of the
own body as a frame of the view, denoted as the own-body
image. Moreover, by referring the motor commands, which
is the current goal of the body configuration, the visuomotor
memory enables the robot to anticipate the own-body image
in advance of the movement.

The predicted location of the motor-correlated object in
sight is given from the motor commands as follows:

X p
s = Xmk

s , (15)
k = argmin

j
d j, (16)

d j = |[qc
h,q

c
a]− [qm j

h ,q
m j
a ]|, (17)

where X p
s denotes the predicted location of the motor-

correlated object (which is the own body if the body defini-
tion is successful) in sight. The notation of [a,b] represents
the concatenated vector of vector a and b. The anticipated
own-body image, denoted as I p

b , is generated by projecting
the motor-correlated image Imk

b (the body part image in the
memory) on the blank frame at the predicted location X p

a .
Fig.6 shows an example of the body anticipation.

The visuomotor memory is also used for visual recognition
of own-body parts. Fig.7 illustrates a visually saliency and
attention system. The visual saliency in a retina can be
modeled as integrated optical difference detectors. Here, we
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Fig. 7. Visual attention system. The saliency module decomposes an image
into basic features as intensity, color, orientation, and motion. The attention
module selects an attracted location stochastically depending on the interest
of the high level module.
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Fig. 8. Visual recognition. (a) The visually attracted region is compared
with representatives of motor correlated images, then the own-body is visu-
ally recognized. (b) On-line image clustering. The clustering is performed
by a modified k-means [26] to allow on-line updating.

introduce an extended saliency model of [12], which newly
includes a motion channel [25]. A visual blob at the attention
point is compared with representative images of the motor-
correlated images in the visuomotor memory (Fig.8(a)). The
representative images are the nearest image of the centroid
given by a on-line image clustering. (Fig.8(b)). In the current
system, the flexibility of the image scale and rotation is not
considered in the recognition, but it can be solved in the
pattern matching or the image clustering.

IV. EXPERIMENT
We performed some experiments of the own-body defini-

tion with two humanoid robot platforms; iCub and James.
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TABLE II
EXPERIMENTAL CONDITIONS.

Identity Platform Major condition Minor conditions
Exp.1(a) iCub Body definition without head, with head
Exp.1(b) iCub Body definition interference
Exp.1(c) iCub Body modification hand wrapping
Exp.1(d) iCub Body modification grasping an object
Exp.2(a) iCub Body attraction {0,25,50,75,100}%
Exp.2(b) iCub Body anticipation -

Exp.3 James Body recognition -

(a) (b)

(c) (d)

Fig. 9. Experimental scenes in Exp.1. The images of (a)-(d) are the scene
of the full-joint movement, human interference, hand wrapping, and stick
grasping, respectively.

The contents are listed in Table II.

A. Basic condition

The purpose of the experiments in the basic condition is to
validate robustness of the own-body definition against head
movements, human interference, and body modification. In
the experiment denoted as Exp.1, the robot moved the left
arm and/or the head in the random manner by using full
joints (a). Then, an experimenter interfered the exploration
by presenting a moving object manually (b). Again, the robot
moved both the head and the arm as well, while the arm was
physically modified by a plastic glove (c) or a grasped object
(d). Fig.9 shows the experimental scenes.

Fig.10 shows the snapshots of the profiles during the
head and arm movements in Exp.1. The DOF of the head
and arm joints for the movements were set as three and
six, respectively. The numbers of DOF were the highest
DOF configuration. The desired head and arm position were
randomly given from the normal distribution of (7) with
the constant deviation σ i

h = σ i
a = 0.3. The frequency of the

head movement (20s) was five-times less than that of the
arm movement (4s). The visuomotor coordination module
neglected the motion saliency when the head was turning,
since the movement of a visually observed object was always
relative to the camera movement.

Table III summarizes the time to get the visuomotor
memory up to its capacity. The head movements let the
body definition slow. Actually, the movements let the arm
out of sight, frequently. Experimenter’s interference did not
affect the time, but reduced the rate of own-body images
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Fig. 10. Snapshots of the profiles during the head and arm movements in
Exp.1. All of four profiles plot the values at the same time frames.

TABLE III
OWN-BODY DEFINITION IN THE BASIC CONDITION.

Item Trial Capacity Average Deviation Own-body rate
Without head 5 100 351.1 138.1 98.2%

With head 5 100 635.2 155.1 96.2%
Interference 5 100 607.8 79.4 79.8%

in the momory. The own-body rate was dependent on the
experimenter’s moving manner in this case. Basically, the
experimenter was requested to move the object randomly
in the experiment. On the contrary, when the experimenter
mirrored the robot arm movements, the visuomotor correla-
tion was more influenced. That confusion is, however, the
reasonable, since the robot defines motor-correlated objects
as own-body parts.

Fig.11 shows a set of motor-correlated images acquired
in the exploration. The modified body part (wrapped hand)
and the extended body part (grasped stick) are successfully
defined as own-body parts. These results suggest that the
system has potential to the developmental perception of the
extended body in the similar manner of the primates [1][2].

B. Advanced condition

The purpose of the experiments in the advanced condition
is to exploit the acquired visuomotor memory for body
attraction and body anticipation.

In the experiment denoted as Exp.2(a), the body attraction
module was activated to attract the robot to move the arm
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Fig. 11. The motor-correlated images obtained during full-joints explo-
ration in Exp.1. The sets of three images of (a)-(d) are typically sampled in
the condition of Fig.9(a)-(d), respectively. Only in (b), the fault samples are
presented (objects presented by an experimenter). The bottom 10x10 images
are all images obtained during one full-joint exploration in the condition of
Fig.9(a).
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Fig. 12. The evolution of the visuomotor memory in Exp.2(a). The plots
correspond to each probability of body attraction (0%: no body attraction,
100%: complete body attraction).

into sight during visuomotor exploration. The body attraction
is statistically controlled by the rate to apply the narrow
(local) or wide (global) normal distribution to generate the
motor intention. Fig.12 plots the evolution of the visuomotor
memory against the body attraction rate. According to the
result, the middle levels of the probability (25% and 50%)
showed a tendency to enhance the body definition more.
The condition is considered to balance the global and local
search. In the future, sensorimotor exploration of the robot
should be designed not only for spacial exploration but also
pattern exploration of movements, as the infants develop
complex movements through an action and its outcome [27].

In the Exp.2(b), the robot anticipated the own-body image
from the visuomotor memory and motor commands. In
advance of the anticipation, the robot explored the joint space

Fig. 13. The snapshot of body anticipation in Exp.2(b). The top and bottom
images are the anticipated own-body image before the body movement, and
the observed image after the body movement (4.0s later), respectively.

Fig. 14. The humanoid robot James [28] was used for the own-body
recognition in Exp.3

in the same condition of Exp.1(a) with full-joint head-arm
movements, until it acquired 100 recodes of the visuomotor
memory. Fig.13 shows snapshots of the body anticipation.
The anticipation module gave approximate appearances and
locations of the own forearm, successfully. In the experiment,
we also got some failure anticipations. The anticipation
quality can be improved by a voluntary reconfirmation of
the obtained visuomotor memory. The robot can simply
reproduce the same configuration of the visuomotor memory
and check the results. The non-repeatable memory should be
filtered, then.

C. Another platform

The proposed body definition system is independent from
the body structure of a robot. The purpose of the Exp.3
is to experimentally prove it by using the other humanoid
robot, James [28]. James is a upper-body robot equipped
with binocular vision and other rich of sensors.

In the Exp.3, we performed the body recognition based
on the visual saliency and on-line image clustering. Each
channel of visual saliency are shown in Fig.15(a). Snapshots
of the body recognition are presented in Fig.15(b). As de-
tailed in [25], the motor-correlated objects (own-body parts)
and the non motor-correlated objects (other objects) were
successfully recognized. The recognition rate was 0.89 for
the body parts, and 0.93 for the other objects as shown
in Table .IV. The number of clusters was experimentally
given, but the optimum number can be determined by some
information criterion such as Bayesian Information Criterion
(BIC) [29].

V. CONCLUSION
This paper proposed a developmental approach of own-

body definition without specific prior knowledge on kine-
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Fig. 15. The snapshots of experimental scenes with James. (a) each chanel
of cisual saliency. (b) Visual recognition of the own body (marked by a white
circle) and the other object (marked by a gray circle).

TABLE IV
BODY RECOGNITION RATE

Item Average Deviation
Own-body parts 0.89 0.19

Other objects 0.93 0.27

matics, dynamics and body appearances. The visuomotor
correlation allows the robot to define its own body through
the sensorimotor exploration. The robustness of the body def-
inition against the body modification and human interference
was experimentally proved. Also the applications of the body
definition for the body attraction, body anticipation and body
recognition were discussed.

The current body definition system has potential to the
binocular perception, but it is not yet examined experimen-
tally. The depth sensing should be included to acquire the
three dimensional model of the own body, which is essential
for calibrating the environment by the own body. We are
also motivated to connect the proposed own-body definition
to the learning-based reaching [24] without visual markers.

Another aspect which we should encompass is the haptic
information such as tactile and force/torque sensing. In order
to distinguish extended body parts from inherent body parts,
the haptic information plays an important role. It enables the
robot to perceive the extension level of the body structure,
and make use of the extended body in a cognitive manner.
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