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Abstract— This paper describes the mathematical modeling
and the propulsive characteristics of a novel robot driven by
Archimedean screw mechanisms, named Screw Drive Rover.
For secure locomotion on soft soil, the proposed rover would
become one of the good solutions because of its robustness
to slipping and getting stuck in the soil. Furthermore, the
rover is expected to move in various directions by using the
dual screw units. However, the interaction between such screw
unit and the surrounding soil is quite complicated and remains
undefined. So, this paper attempts to model the tractive effort
of the rover on the soil. The mathematical modeling is newly
developed based upon terramechanics, addressing soil-vehicle
interactive mechanics. Finally, the validity of the proposed
model is demonstrated by simulation analyses.

I. INTRODUCTION

Robotic exploration by mobile rovers has received atten-

tion worldwide toward the achievement of progressive space

missions. Recently, the Mars Exploration Rovers (MERs)

operated by NASA have performed impressive exploration

activities on Mars. The MERs employ six wheels for trav-

eling over the martian surface, and until now these rovers

have acquired scientific findings for more than 6 years.

Meanwhile, the Spirit rover, which is one of the two MERs,

has been mired in a martian version of quicksand since May

2009 [1]. Since then, mission engineers have investigated

how the Spirit rover might extricate itself from the sand trap.

However, on January 2010, it was announced NASA eventu-

ally turned off its extrication. This determinately indicates a

limitation of wheeled locomotion on soft soil such as lunar

regolith. Therefore, advanced gears or improved wheels must

be newly developed to cope with such a difficult terrain.

The authors have proposed a mobile robot driven by an

Archimedean screw mechanism, specialized for traveling on

soft soil. This screw mechanism is used as a drilling device

to remove subsoils and penetrate deep into the ground. In

accordance with this, the rover is expected to be robust to

slipping and getting stuck in the soil since the mechanism

can forge ahead even if it is buried in the soil. In addition,

inclined screw blades lead to movement in various directions.

Compared to a track, its structural simplicity has a decided

advantage in unmanned rovers.
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Such a spiral structure has been attractive to humans

since ancient times [2]. In particular, the Archimedean screw

mechanism is well known as a screw-pump for transferring

water [3]. On the other hand, it has been also applied to land

and amphibious vehicles since around the 19th century [4].

The vehicles provide high trafficability in a difficult surface

consisting of snow, ice, mud, marsh or sand. So far, a small

number of experimental studies on the screw mechanism or

the vehicle have been reported [5]–[7]. Dugoff et al. [6]

especially examined the characteristics between translatory

traction and slip of a single screw rotor by varying screw

geometry, load and velocity. But its applicable scope would

be confined to straight movement, and also a study on a

soil-screw interaction is lacking. Consequently, the vehicles’

synthetic trafficability over the soil is less well understood.

For this reason, a new challenge of comprehending the

soil-screw interaction comes for a practical application of

the screw mechanism. Likewise, there have been several

robots using a spiral, for instance, an in vivo robot for

laparoscopy [8], a robotic endoscope [9] or a swimming

micro-machine [10]. In vivo and underwater robots move by

contact with viscoelastic biological tissue and incompressible

viscous fluid, respectively. Although these are equipped with

the spiral mechanisms similar to the screw for locomotion,

their targeted environments are quite different from the soil.

Understandably, their interactive models essentially differ

from the proposed rover’s one as well. Hence, individualistic

modeling is practically required for each application.

This paper focuses on the derivation of the novel soil-

screw interaction model. As the first step, this paper ad-

dresses the interaction model based upon conventional ter-

ramechanics studies [11], [12]. In this paper, unlike the

conventional wheel or track models, three-dimensional screw

helical motion is newly considered. Then, characteristics of

the developed model are also elaborated by simulations.

II. SCREW DRIVE ROVER SYSTEM

A. System Configuration and Ideal Mobility

The author has proposed and developed a novel rover

using the Archimedean screw units, named Screw Drive

Rover. The rover is composed of a main body, hinge legs,

and sinistral and dextral screw units. As for the screw unit,

helical screw blades are attached along cylindrical shafts.

The screw blades set to be wound N-times around the shafts.

Further, the rover can improve its attitude stability by driving

the hinge legs in synchronization. In principle, the screw

units can propel the rover in soil. Consequently, the rover is

robustness to slipping and getting stuck. Employing the two
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Fig. 1 Schematic of Screw Drive Rover

screw units also enables the rover to maneuver on soil.

To discuss the mobility performance of the rover, the

authors have first analyzed the ideal kinematic model [13].

The model is defined by just skin friction acting on the screw

blades and the cylindrical shafts. According to the model

analysis, the modeled rover achieves various locomotion

trajectories by using the two screw units. Of particular note

is that such diverse maneuverability has been demonstrated

in the real screw vehicles. Meanwhile, given that the rover

travels by only the skin frictions, the ideal moving paths

traced by the rover are not consistent with experimental ones.

Rather, a propulsive force in normal direction to the friction

on the screw blades is more suitable for the maneuver. This

can be also estimated from rut recovery on the surface.

Therefore, modeling a soil-screw interaction is required to

examine the propulsive characteristics of the rover.

B. Review of Preliminary Traveling Tests on Sand

Prior to the detailed theoretical discussion, labptaroty tests

have been conducted on the Screw Drive Rover prototype to

grasp its practical trafficability. Schematic of the rover is

shown in Fig. 1. The screw slope angles are designed to be

16 degrees (N=4). The total system weights 6.4 kilograms

without circuits and batteries, and the dimension is illustrated

in Fig. 1(a). Two motors are separately built in the screw

units respectively, and a motor inside the body is carried to

drive the hinge legs. Typical maneuvers by the traveling tests

are shown in Fig. 2. From these results, it is confirmed the

proposed rover is able to realize multi-directional locomotion

by the two screw units.

Fig. 2 Empirical maneuvers of the prototype

C. Challenge and Motivation

Because the ideal model does not include the interaction,

the development of the model with the soil mechanics would

appear as a challenge. In this paper, the modeling of the soil-

screw interactive mechanics is conducted based on terrame-

chanics contributions [11], [12]. Then, the simulated tractive

performances of the Screw Drive Rover are analytically

discussed. Particularly, the locomotion model would become

a nonholonomic system, and therefore, the modeling is of

considerable significance for the achievement of desired

movement.

III. MODELING OF SOIL-SCREW INTERACTION

A. Preliminary

The motion states of the Screw Drive Rover are preliminar-

ily defined. Absolute coordinate system ΣO{X,Y,Z} is set as

illustrated in Fig. 3. The modeling assumes a family of soil-

screw moving together as one body. Further to this, the screw

model technically depends on its winding direction but sub-

sequent definitions and formulas can be essentially regarded

as common expressions. Therefore, unified expressions are

described for each screw unit unless stated otherwise.

B. Screw Geometric Definitions

First, the screw pitch and the slope angle are defined as p

and η, respectively. These values are constant and represented

at the midpoint between the cylinder surface and the screw

blade edge. Here, p and η satisfy the following relation.

p = π (r + r1) tan η (1)

where r1 is the screw cylinder radius, r2 is the screw blade’s

height and r is also defined as r = r1 + r2. Here, the screw

length b is defined as b = N · p.

The screw blade surface area, dA, at micro region dθ from

the screw winding angle θ, can be approximated as follows.

dA(θ) = π (r2 − r2
1) · dθ (2)

The locomotion is basically governed by forces on dA.
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Fig. 3 Kinematics model of the screw unit

C. Slip in Motion

The screw fixed coordinates ΣS {x, y, z} is first set to be the

right-handed coordinate system with the x and y axis in the

longitudinal and vertical directions of the screw unit. Fig. 3

shows the kinematic model of the screw unit. ΣS is defined

as the rotating frame to ΣO, which rotates around Z axis by

δ. Basically, robotic locomotion on soil is accompanied by

slip due to soil compaction and failure. The slip in x axis,

sx, is defined as follows [6], [12].

sx =























pω/2π−vx

pω/2π
if |pω/2π| ≥ |vx|

pω/2π−vx

vx
otherwise

(3)

where ω is the screw angular velocity, vx is the velocity

component in x direction, 0 ≤ sx ≤ 1 under a driving state

and −1 ≤ sx ≤ 0 under a braking state. This paper employs

sx to evaluate the kinematic state.

D. Direction of Locomotion

Given the velocity vector v in ΣS , the angle between v and

the x axis can be defined as slip angle α [15]. By the velocity

components vx and vy in ΣS , α is expressed as follows.

α = tan−1
(

vy/vx

)

(4)

Likewise, vx and vy can be also written by

vx =
pω (1 − sx)

2π
, vy =

pω (1 − sx)

2π
tanα (5)

E. Mathematical Formulations of Contact Stresses

1) Normal Stress: The relationship between normal stress

σ and sinkage h is one of the significant subjects in terrame-

chanics. Note that the traditional terramechanics equations

discussed below are semi-empirical models based on reacted

soil behavior. The normal stress distribution of soil beneath

a rolling circular object, such as a rigid wheel or the screw

unit, is defined as follows [11], [12].

σ(θ) =















σmΘ
n
1

if θm ≤ θ ≤ θ f

σmΘ
n
2

otherwise
(6)

b

r R ω

h

2r1

2r

θ
θ’r

θr θf

θ = 0 σ

τ

Fig. 4 Soil-screw interaction

and also,

Θ1(θ) = cos θ − cos θ f (7)

Θ2(θ) = cos

[

θ f −
θ − θ′r

θm − θ′r

(

θ f − θm
)

]

− cos θ f (8)

σm =

(

kc/b + kφ
)

Rn (9)

where θ is the screw angle (θ′r ≤ θ ≤ θ f ), θ
′
r (≤ 0) is

the effective exit angle, θ f (≥ 0) is the entry angle, θm is

the specific wheel angle at which the maximized normal

stress occurs, b is the screw’s longitudinal length, n is

sinkage exponent, and kc and kφ are pressure-sinkage moduli

regarding cohesion and internal friction, respectively. Let R

be the elliptic distance as illustrated in Fig. 4, and will be

defined later on. In addition, relational angle expressions can

be given by the following equation [12], [14].

θ f = cos−1 (1 − h/r) (10)

θm = (c1 + c2sx) θ f (11)

where c1 and c2 are coefficients depending on the soil-screw

interaction.

The conventional study in terramechanics is basically

premised on
∣

∣

∣θr
∣

∣

∣ ≤
∣

∣

∣θ f

∣

∣

∣ for the expression of σ beneath a rigid

wheel. In the case of the screw unit, however,
∣

∣

∣θ f

∣

∣

∣ ≤
∣

∣

∣θr
∣

∣

∣ has

been observed through the traveling tests by the authors. This

implies the reaction force from discharging soil is too small,

and therefore, the stress distribution satisfying
∣

∣

∣θ f

∣

∣

∣ ≤
∣

∣

∣θr
∣

∣

∣ is

obtained. Therefore, this paper assumes
∣

∣

∣θ f

∣

∣

∣ ≤
∣

∣

∣θr
∣

∣

∣ by means

of a transformation of θr to θ′r. θ
′
r achieving

∣

∣

∣θ′r

∣

∣

∣ ≤
∣

∣

∣θ f

∣

∣

∣ is

given as follows.

θ′r = −c3θ f (12)

where c3 (≤ 1) is a positive angle coefficient.

The screw unit provides a elliptic cross section for dis-

cussing the normal and the shear stresses with angle θ as

illustrated in Fig. 4. In wheels, while the soil is sheared in

elliptic trajectory when a wheeled vehicle steers, the common

formula of the normal stress is applicable [15]. Hence, this

paper also employs the unified normal stress distribution (6).

2) Shear Stress: The shear stress τ of soft soil is formu-

lated as follows [17].

τ(θ) = τmax ·
(

1 − exp− j/K
)

(13)

τmax(θ) = c + σ tan φ (14)
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Fig. 5 Elliptic trajectory of soil shearing

where τmax is shear strength, φ is soil internal friction angle,

c is soil cohesion, j is soil displacement and K is shear

deformation modulus.

3) Shear Displacement of Soil: Unlike the traditional

approaches, this paper takes into account three-dimensional

soil transportation. In general, the soil between the screw

blade is regarded as one body with the screw blade. From

this point of view, it can be assumed that the soil shear

stress occurs along the outermost radius of the screw blade.

Consequently, the expression of the screw’s helical trajectory

is needed to model the soil thrust of τ. This paper provides

the screw motion trajectory in ΣO, T (X, Y, Z), by the

following expression.

T =





















r cos θ sin δ + VXt + X0

r cos θ cos δ + VY t + Y0

r sin θ + Z0





















T

(15)

and also,














VX = vx cos δ + vy sin δ

VY = −vx sin δ + vy cos δ
(16)

Then, the trajectory of the soil shearing is defined by

angle γ (= π/2 − η) as illustrated in Fig. 5. This trajectory

PE (XE , YE , ZE) basically traces an ellipse. In the screw

fixed elliptic coordinates ΣE{XE ,YE ,ZE}, PE can be derived

by β or θ (= β − 3π/2).

PE =





















r
cos γ

cos β

r sin β

0





















T

=





















−r
cos γ

sin θ

r cos θ

0





















T

(17)

The tangential equation at a certain point (xa, −ya) on PE

is also represented as follows.

xa

r2 sec2 γ
· XE +

ya

r2
· YE = 1 (18)

where xa and ya are positive values, and the sinkage is

assumed to be less than r. Substituting (17) into (18), the

above equation can be eventually simplified as follows.

ya = −
cos γ

tan β
· xa +

r cos γ

sin β
(19)

Accordingly, the inclination angle of the tangent, ξ, can be

written as follows.

ξ = tan−1 (− cos γ · cot β) = tan−1 (cos γ · tan θ) (20)

Furthermore, the ellipse radius R is formulated as a

function of θ by

R(θ) = r

√

cos2 θ + sin2 θ · sec2 γ (21)

Thus, j can be ultimately defined as follows.

j(θ) =

∮

L

v j dt (22)

and also,

L = T + PO (23)

PO =





















−r sin θ · sin (δ + γ)

−r sin θ · cos (δ + γ)

−r sec γ · cos θ





















T

(24)

where L is the trajectory of the displaced soil in ΣO and v j

is the relative soil displacement velocity along L. Moreover,

PO gives a transformation from PE , transforming their

coordinates ΣE → ΣO. In light of (5), the time derivative

of L is given as follows.

d

dt
L =

d

dt
(T + PO)

=























p(1−sx)

2π
− r cos θ sin γ

p(1−sx)

2π
tanα − r (sin θ + cos θ cos γ)

r cos θ + r
cos γ

sin θ























T

· ω

=

(

Lv jx
Lv jy

Lv jz

)

· ω (25)

where δ and δ̇ are assumed to be zero.

Therefore, (22) can be finally expressed as follows.

j(θ) =

∮

L

v j · dt =

∫ θ f

θ

√

L2
v jx
+L2

v jy
+L2

v jz
dθ (26)

4) Stationary State of Dynamic Sinkage: Yamakawa et al.

[18] has investigated the dynamic sinkage of a wheel, and

concluded that the sinkage reaches a stationary state under

constant slip. In [19], similar slip-sinkage characteristics have

been also reported with experimental results. On the basis of

these literatures, it is estimated that the stationary sinkage is

proportional to the slip. The proportionality factor depends

on both the wheel and the soil. Hence, this paper assumes

the simplified relationship as follows.

h = h0 + c4sx (27)

where h0 is static sinkage before driving, c4 is a positive

coefficient. This enables as to simulate the relativity of the

slip and the sinkage.
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Fig. 6 Effective distance of soil shearing

5) Effective Factor of Soil Shearing Distance: The ef-

fective distance of the soil shearing, ds, is geometrically

constrained by η and p as illustrated in Fig. 6(a). To evaluate

the distance, the effective factor fs is given as follows.

fs =
p

r1

−
π (r + r1) (tan η + cot η)

2r1

(28)

Thus, ds is maximized with the positive fs. Contrary to this,

when fs is negative, ds is confined to the inter-screw area.

The positive fs obviously appears at 45deg ≤ η ≤ 90deg.

Consequently, ds can be introduced as follows.

ds =























π(r+r1) tan η

2 sin η
if fs ≥ 0

π(r+r1) tan η

2 cos η
otherwise

(29)

Fig. 6(b) depicts the characteristics of ds pertaining to η.

According to this, ds is strongly governed by η.

IV. SYNTHETIC LOCOMOTION MODEL

A. Integrated Tractive Efforts

In accordance with the developed model, this section intro-

duces the tractive efforts as synthetic models. The integrated

tractive effort in x direction of the Screw Drive Rover is

defined as Fx and is calculated as follows.

Fx =

∑

sgn (ω) F cos η (30)

F =

∫∫

(τ cos ξ − σ sin ξ) dA dθ (31)

where
∑

denotes the summation of the screw units. Let the

integral region be determined based on ds. Here, because the

tractive efforts are evaluated by whole integration, (31) can

be modified as follows.

F = b · R sin η

∫ θ f

θ′r

(τ cos ξ − σ sin ξ) dθ (32)
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circular and elliptic surfaces along angles
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Fig. 8 Integrated angle components for tractive effort of
stresses on circular and elliptic surfaces along angles

Likewise, that in y direction, Fy, is computed by

Fy =

∑

sgn (ω) F sin η (33)

where the body rotation δ is assumed to be ignored in

primary analysis, giving δ = δ̇ = 0.

B. Emphasis of Stresses Acting on Elliptic Surface

In the proposed model, τ acts as τ cos ξ and σ as

−σ sin ξ for tractive efforts in x direction. On the con-

trary, τ acts as τ cos θ and σ as −σ sin θ for a wheel.

The active angle component of each stress for the trac-

tive effort is plotted in Fig. 7. These results indicate

the elliptic surface has an advantage over the circular

one with smaller η. Further, Fig. 8 depicts the ideal in-

tegrated angle components,
∫ θ

0
(tan φ cos θ − sin θ) dθ and

∫ ξ

0
(tan φ cos ξ − sin ξ) dξ. Here, the integrating components

assume the available maximum shear stress of cohesionless

soil in (13), which is τ = σ tan φ. The simulated plots

indicate the elliptic surface works better.

V. SIMULATION ANALYSIS

A. Fundamental Parameter Conditions

Through the simulations, the tractive effort Fx is calcu-

lated when Screw Driver Rover travels in a straight line.

This provides δ=0 and α=0 as kinematic constraints. By

reference to the experiments by Dugoff et al. [6], sx is

similarly set to be a variable parameter. With respect to

the kinematic and geometric conditions, the nominal pa-

rameters are set: N=4, η=5∼30deg, r1=0.035m, r2=0.015m,
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Rover model with varying parameters

h=0.01∼0.04m (h0=0.01m), ω=± π
2
rad/s. Likewise, accord-

ing to the experimental data targeting the sampled lu-

nar soil [20] and the previous works [16], each soil pa-

rameter is set: K=0.018m, c=0.17kPa, φ=35deg, c1=0.4,

c2=0.15, c3=0.2∼0.8, c4=0.01∼0.03, n=1.0, kc=1379N/mn+1

and kφ=814.4kN/mn+2.

B. Result and Discussion

Fig. 9 plots the simulation results performed by the

proposed model. These results show the predicted tractive

effort Fx with the slip sx. According to these, it is confirmed

Fx increases with an increase in sx in most situations. This

typical tendency was observed in the past experiments [6],

and therefore, this confirms the validity of the model. Fig.

9(a) shows the tendency that an increase of the exit angle

θ′r introduces larger Fx. Although this indicates an increase

of contact surface is significant, c3 is unlikely to have a

significant impact on Fx, compared to η. Moreover, Fig. 9(b)

depicts the tendency that the sinkage h exerts an effect on

Fx. Better understanding of the dynamic sinkage is needed

in the future work. On the whole, the ratio of the sinkage and

the radius h/r becomes a key factor in the light of Fig. 8. An

appropriate control of h/r is the most important technique for

the enhancement of mobility performance of the Screw Drive

Rover on the soft soil. So that the rover always generates

positive tractive efforts, the design of η also becomes another

important factor.

VI. CONCLUSIONS

This paper presents the novel robot system using the

Archimedean screw mechanism and its new mathematical

model for traveling on soil. The modeling is developed based

on terramechanics with the screw geometry. In particular,

the soil shearing ellipse or trajectory is formulated as three-

dimensional motion. Such an attempt will contribute the

locomotion control, and even understanding the soil behav-

ior. In this paper the traction-generating mechanism of the

screw unit is explained with the soil shear. Likewise, the

parametric analysis of the model enables one to improve

the mechanical design. As for future works, experimental

validation is required by the prototype. Some feedback from

experimental results to the model should be also conducted

to control the rover based on the model. In addition to these,

the skin frictions visibly occur on the screw surface. That

is, both the frictions and the developed model are actually

needed to be combined for precise control. The fusion is the

next important stage in this study.
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