
  

  

Abstract—This paper deals with the dynamics and motion 
control of a spherical robot designed for reconnaissance and 
unstructured hostile environment exploration. The robot in this 
paper has three DOFs and two inputs, of which the nature is a 
nonlinear and underactuated system with nonholonomic 
dynamic constraints. The improved construction of two 
pendulums offers novel motion principle of spherical robot, 
which is moving simultaneously actuated by both eccentric 
moment and inertial moment generated by the two pendulums. 
Meanwhile the mobility is enhanced when the robot behaves 
dynamically. The emphasis is placed on the linear motion and 
turning in place motion control. The dynamic model of linear 
motion is formulated on the basis of Lagrange equation, and a 
smooth trajectory planning method is proposed for linear 
motion. A feedback controller is constructed to ensure the 
accurate trajectory planning. Turning in place motion is an 
indispensable element of omni directional locomotion which 
can enhance the mobility of spherical robots. The dynamic 
model of turning in place motion is derived on the theory of 
moment of momentum, and a stick-slip principle is analyzed. 
The two motion control methods are validated by both 
simulations and prototype experiments.  

I. INTRODUCTION 
raditionally, mobile robot is considered to be wheeled 
robot or legged robot. The wheeled robot features great 
mobility on relatively flat terrains, and the legged robot 

has potentially greater mobility on tough terrain [1]. In 
recent years, spherical robot, a new type of mobile robot, has 
attracted wide attention of researchers. Compared with 
wheeled or legged robots, besides great mobility on various 
terrains, spherical robot has the following advantages: (1) 
moving without roll-over problem, the stability can be 
restored by itself, the attitude is easy to recover after 
collision or falling down from the height; (2) the spherical 
robots can potentially move omnidirectionally with high 
d8exterity, such as turning in place; (3) entire system is 
accommodated inside the ball-shaped shell, all devices are 

                                                           
Manuscript received Mar. 10, 2010. This work was supported in part by 

High Technology Research Development Program of China 
(No.2005AA4202302) and the Program for Changjiang Scholars and 
Innovative Research Team in University (IRT0423).  

Bo Zhao is with the State Key Laboratory of Robotics and System, 
Harbin Institute of Technology. Harbin, 150001 China (corresponding 
author to provide phone: 13674681656; fax: 0451-86402217; e-mail: 
hitzhaobo@gmail.com).  

Mantian Li is with the State Key Laboratory of Robotics and System, 
Harbin Institute of Technology. Harbin, 150001 China (e-mail: 
limt@hit.edu.cn). 

Haitao Yu is with the State Key Laboratory of Robotics and System, 
Harbin Institute of Technology. Harbin, 150001 China (e-mail: 
yukings1984@163.com).  

 

protected by the outer shell [2]. So spherical robot can be 
used in hostile environments, such as rescue in disaster and 
military reconnaissance, especially planetary exploration. 
According to the differences of actuator, the representative 
spherical robots are grouped into six types: rotor type, car 
type, mobile masses type, gyroscope type, memory alloy 
type and pendulum type; each type has merits and demerits 
respectively [3]. The basic motion principle of the six types 
can be summarized as two kinds of motion principle; one is 
generating friction force by driving the device which is 
contact with the inner surface of the shell, such as rotor type 
and car type; the other is continuously changing the position 
of center of gravity of the robot by controlling the drive unit, 
such as mobile masses type, gyroscope type, memory alloy 
type and pendulum type. The former is applied in the early 
spherical robots; the latter is widely utilized by recent 
spherical robots, especially the pendulum type which is 
employed by most spherical robots. The “roball” spherical 
robot developed by Francois Michaud, the “BHQ” 
developed by ZhanQiang and the “GroundBot” developed 
by Mattias Seeman are all based on pendulum type [4]–[6]. 
The pendulum which is driven by two motors can rotate 
about the horizontal axis and the vertical axis, so the 
eccentric moment and inertia moment are generated, by 
which the robot can roll linearly or steer. The drawback of 
pendulum driven spherical robot is that the energy input of 
the motor for vertical rotation of pendulum is utilized only 
for steering, which is not an effective utilization of power 
supply. The researches on spherical robot in recent years 
mainly focus on trajectory planning and motion control 
[7]–[10], rather than motion principle and mechanism design. 
However, the linear motion and turning in place motion have 
not been proposed as the individual motion in previous 
researches on trajectory planning and motion control.  

This paper deals with the dynamics and motion control of 
a spherical robot based on novel improved two pendulums 
type which engages novel motion principle. The drive 
mechanism of the robot in this paper differs from the 
previous designs. The linear motion control and turning in 
place motion control are studied respectively as two separate 
motions. The design details of the robot are described in Sec. 
II along with the motion principle. Section III provides 
linear motion control of the robot. The dynamic equation of 
the linear motion is formulated on constrained Lagrange 
method and principle of virtual work. Based on the 
dynamics, a smooth trajectory planning control method is 
proposed. A feedback controller is constructed for the 
accurate trajectory planning. The effectiveness of the 
method is validated by simulation and prototype experiment. 
Section IV provides the turning in place motion control. The 
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dynamic equation is derived on the theory of moment of 
momentum. A stick-slip principle is interpreted in detail. 
The control method is verified by simulation, and the results 
of prototype experiment validate the effectiveness of the 
control method.  

II. SYSTEM DESCRIPTION 

A. Mechanical Structure 
The mechanical structure of the robot is shown in Fig. 1, 

which is mainly composed of two motors, two pendulums, 
springs, linear bearings, two guides and the outer shell.  

 
Fig. 1.  Mechanical structure of the robot 

The outer shell is ellipsoid, whose diameter of major axis 
is 176 mm, and the minor axis 146 mm. While in irregular 
motion, such as passing over bumps, the attitude of the robot 
is easy to be observed. Meanwhile, the pitch angle is 
restricted to a certain range by the ellipsoid shell, which 
ensures the robot can tolerate side slopes without rolling 
over.  

A novel two pendulums type is adopted. The robot is 
driven by two pendulums placed diametrically opposite on 
the major axis of the ellipsoid shell, which are actuated by 
two direct current (DC) servomotors. The two pendulums 
can be only rotated about the major axis, which could 
change the position of the center of gravity of the robot and 
meanwhile afford the inertia force. This configuration brings 
a novel motion principle of spherical robot. The robot is 
motivated by eccentric moment, inertia force and inertia 
moment simultaneously. The total weight of the masses is 
700 gram which accounts for 42.9% of the total mass of 
robot. Compared with the traditional pendulum type, the 
improved type can afford more eccentric moment and inertia 
force which make the robot has featured high speed, the 
ability of slope climbing and obstacle overcoming. The drive 
mechanism of the robot is composed of two motors and two 
pendulums which are connected to the linear guide by linear 
bearings whose two ends are pressed by springs. This elastic 
connection can buffer the impact when the robot falls down 
from the high or is in collision. And in the future works, the 
masses will be controlled to resonate with the springs in 
order to let the robot jump while in trap.   

B. Motion Principle 
As shown in Fig. 1, the spindle is along the x axis. The 

two pendulums can only rotate about the spindle to a tilt 

angle θ, which results in the displacement of the center of 
gravity of the robot. The robot could only roll about the x 
axis under the action of the eccentric moment. Meanwhile 
the motor should keep rotating to maintain the angle θ for 
the continuous rotation about x axis, and the inertia forces 
are simultaneously generated by the acceleration of the 
pendulums, which are paralleled to yoz plane. The inertia 
forces could be decomposed into two orthogonal forces 
along y and z axes and one couple about x axis. Projected 
onto the yoz plane, the inertia forces along the y and z axes 
can afford inertia moment about the z and y axes 
respectively, so the robot could roll about the z and y axes. 
The inertia moment about the z axis is sufficient to activate 
the robot turning in place on relatively smooth ground. 
Because of static equilibrium of the moment about y axis 
and the restriction from the shape of outer shell, the robot 
can only roll about the y axis in a certain angle. The energy 
input is predominantly utilized for reacting against the 
friction force in slow or stable motion, and the inertia 
moment is significant with respect to eccentric moment in 
dynamically unstable motion.  

C. Control system 

 
Fig. 2.  Control system diagram of the robot 

The two classes control system is designed because the 
robot belongs to a nonholonomic and under-actuated system. 
Fig. 2 is the control system diagram of the robot, which is 
composed of sensors, communication module, control 
module and actuators. The module of sensor consists of 
encoders of the servomotors, angular rate sensors, angular 
acceleration sensors and directional gyro, which are all 
micro electromechanical systems (MEMS) devices. An 
embedded control system is designed for attitude computing 
and motion planning. The operator can not directly control 
the pendulums to activate the robot, because the 
point-contact between outer shell and ground and small error 
in motions of the two pendulums may cause the unexpected 
motion of the robot. So the instructions for motion of robot 
sent by a remote controller should be “move straight” or 
“turn right for 20 degree”. The data of encoders, angular rate 
sensor and directional gyro are processed by attitude 
computing algorithms to get the current attitude of robot. 
The instructions for motors are computed by motion 
planning algorithms and then sent to actuators.  

III. LINEAR MOTION CONTROL 

A. Dynamic model of linear motion 
In linear motion, the robot can be projected onto side view, 

which is modeled as a pendulum inside a rigid sphere 
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unrelated to the ellipsoid shell as shown in Fig. 3. The 
dynamics of the robot is derived under the following 
assumptions: (i) there is no slip between the shell and floor. 
(ii) the two pendulums rotate synchronously without angle 
difference. 

 
Fig. 3.  Planar simplified model of linear motion 

As shown in Fig. 3, the coordinate y0oz0 is considered to 
be reference coordinates fixed to the ground, and the 
coordinate yoz is fixed to the robot. The two pendulums are 
rotated by motors to a θ angle to change the position of 
center of the sphere. Additionally the inertia forces in yoz 
plane perpendicular to the pendulums are generated. The 
sphere rolls about the x axis driven by the eccentric moment 
and inertia moment from the two pendulums, so the center of 
the sphere moves straightly along the y0 axis. The 
locomotion should be maintained by the continuous rotation 
of the two pendulums. The Lagrange equations are used to 
derive the dynamic equations of linear motion. The angle 
between the pendulums and vertical is referred as the tilt 
angle θ. The angle the sphere rotates through with respect to 
the reference coordinates is the body angle α. So the angle 
the motor shafts rotates through is θ+α. The tilt angle θ and 
distance of the center of the sphere y are considered to be the 
generalized coordinates in Lagrange equations, and the 
torque of the motors τ is the generalized force.  

The kinetic energy of the sphere except for pendulums 
respect to ground can be expressed as  

2 2
1

1 1
2 2

T My Jα= +              (1) 

where M is the mass of the sphere, 2J MR= is the moment 
of inertia of the sphere, R is the sphere radius, y Rα= is 
the forward speed of the center of the sphere.  

The kinetic energy of the pendulums can be expressed as 
2 2

2
1 1( sin ) ( cos )
2 2

T m y r m rθ θ θ θ= + +      (2) 

where m is the mass of the two pendulums, r is the radius of 
the pendulums.  

With respect to the center of the ball considered to be the 
point of zero potential, the potential energy of the system is 

cosV mgr θ= −                (3) 
The Lagrange function can be express as 

1 2L T T V= + −                 (4) 
According to Lagrange equations  

( ) j
j j

d L L Q
dt q q

∂ ∂− =
∂ ∂

              (5) 

The dynamics of the linear motion can be written as 
2

2

( 2 ) cos sin

cos sin

m M y mr mr
R

myr mr mgr

τθ θ θ θ

θ θ θ τ

⎧ + + − =⎪
⎨
⎪ + + =⎩

    (6) 

This dynamic function is not integrable, but provides the 
basis for trajectory planning that can make the system 
controllable from an initial configuration to a desired 
configuration in practical application.  

B. Smooth trajectory planning of linear motion 
The smooth trajectory planning from an initial 

configuration to an expected final configuration is essential 
to the robot, which can enhance the performance of linear 
motion. The dynamic function given by (6) can be 
rearranged as 

2 2

( , , )

sin sin ( cos )
( 2 ) cos

y f

mgr mr R mr mr R
m M R mr

θ θ θ
θ θ θ θ θ

θ

=

+ + −=
+ −

   (7) 

The coefficients of the terms related to θ in (7) are 
constant terms. This indicates that in linear motion, in order 
to keep a desired uniform speed ( 0y = ) of the robot, the 
pendulums should be maintained on the vertical position 
( 0θ = , 0θ = , sin 0θ = ). The nonzero tilt angle of the 
pendulums may activate the robot to accelerate. It is also 
implied that the desired velocity of the robot in linear motion 
can be obtained by given the proper tilt angle, that is, the 
position of the robot is controllable.  

The whole process of linear motion from initial static 
configuration to final static configuration is divided to three 
stages, which are starting stage, uniform motion stage and 
stopping stage. The corresponding curve of velocity y  
should fit to the ladder diagram. From the starting stage to 
uniform motion stage, the velocity y accelerates from zero to 
a desired uniform velocity dy , so the pendulums should be 
rotated to the desired angle θd first, then lean back to the 
vertical position (Fig. 4(a)).  With the realization of these 
features of the system of linear motion, inspired by [11] and 
[12], a smooth trajectory for tilt angle of the pendulums 
based on normal distribution function is proposed by (8):  

2 2
1 1 2 2( ) ( )

1 2( ) s st t t tt e eμ μθ θ θ− − − −= +          (8) 
where θ1 and θ2 are the amplitudes of the normal distribution 
function, ts1 and ts2 are the time the tilt angle reaches the 
peak, μ1 and μ2 are the constant scalars. The constant scalars 
μ1 and μ2 determine the width of the normal distribution 
function. Regulation of these parameters can change the 
state of the robot in linear motion.  

Numerically solved by MATLAB, the curve of tilt angle 
of pendulums is shown in Fig. 4(a). The robot is controlled 
from the initial static configuration to the final static 
configuration through the smooth trajectory. Fig. 4(b) is the 
velocity and displacement of the sphere under the action of 
the pendulums. The accelerating state, uniform speed motion 
stage and decelerating stage are described clearly.  
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(a) Tilt angle of pendulums   (b) Velocity and displacement of sphere 

Fig. 4.  Smooth trajectory planning for linear motion 

C. Feedback controller for linear motion 

 
Fig. 5.  Feedback controller for linear motion 

The smooth trajectory planning method is theoretically 
proposed. Actually, the unexpected noise from floor 
condition, uncertain friction between sphere and floor and 
mechanical error may disturb the state of the robot. A 
feedback controller is designed to ensure the accurate 
trajectory planning for the system. The diagram of the 
controller is shown in Fig. 5. The desired tilt angle θd is 
regulated by function (8). The controller feeds back the 
practical tilt angle θ and outputs the torque τ of the motor 
shafts actuated on the pendulums. A nonlinear friction 
compensation model is added to adjust the torque. The 
friction model is composed of viscous damping friction term 
and impact force term which are related to the velocity of the 
sphere and displacement of the sphere respectively.  

 
Fig. 6.  Tilt angle  

       
(a) Displacement of the sphere       (b) Velocity of the sphere 

Fig. 7.  Angle of the sphere in simulation 

The controller is verified by simulation. Given the value 
of the parameters, θ1 =1, θ2 =-1, μ1 =μ2 =0.8, ts1 =4, ts2 =16, 

the simulation time is 20s, the planned tilt angle θ tracks the 
desired angle θd. as shown in Fig. 6. The solid curve is the 
tilt angle in simulation and the dashed line is the desired 
angle.  

The effect of the feedback controller can be found in Fig. 
7. The displacement and velocity of the robot output from 
the controller in simulation are shown in Fig. 7(a) and Fig. 
7(b) respectively. The feedback controller is capable to 
control the robot to move linearly in the expected motion 
under the disturbance from the floor.  

D. Prototype experiment of linear motion 

 
Fig. 8.  Linear motion experiment 

The linear motion experiment is done in the indoor 
environment in order to minimize the disturbance from the 
floor. The smooth trajectory planning was implemented on 
the prototype. The two pendulums are controlled to rotate 
synchronically to ensure the linear route. As shown in Fig. 8, 
the robot moves from the initial static configuration to the 
final static configuration by the tilt of the pendulums. The 
tilt angle of the pendulums is calculated by integrating the 
angular velocity of the sphere and data measured by 
encoders of the motors. The curve of tilt angle is plotted in 
Fig. 9. It can be concluded that the practical curve of tilt 
angle coincides with the smooth trajectory planning in 
theory.  

 
Fig. 9.  Tilt angle in experiment 

The displacement and velocity of the robot in experiment 
are shown in Fig. 10. The velocity of the sphere in Fig. 10(b) 
is measured by the angular rate sensor, and the data of 
displacement is obtained by integration of the data of 
velocity. The noise on the curves may come from the 
sensitivity of the angular rate sensor and the condition of the 
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floor. It can be concluded that the motion state of the sphere 
coincides with the smooth trajectory planning.  

         
(a) Displacement of the sphere           (b) Velocity of the sphere 

Fig. 10.  Angle of the sphere in experiment 

IV. TURNING IN PLACE CONTROL  
Some spherical robots have featured turning in place 

motion, which can enhance the mobility and tolerance of 
hostile environment. This motion exists in the spherical 
robots which belong to statically stable system, such as rotor 
type, car type and pendulum type. The turning in place 
motion has not been proposed separately as a definite motion 
in previous study, which should not be neglected as one of 
motion characteristics of spherical robots.  

A. Dynamics of turning in place motion 

 
Fig. 11.  Model of turning in place 

The model of turning in place motion is shown in Fig. 11. 
The major axis is simplified as a rod fixed to the sphere. The 
two pendulums can only rotate about the x axis on the 
endpoints of the rod O1 and O2. When the two pendulums 
rotate synchronously to opposite direction, the eccentric 
moment about the x and y axes and the inertia force along 
the z axis are in equilibrium. The force condition of turning 
in place motion is given by  
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         (9) 

It can be concluded that the sphere is actuated only by the 
inertia moment about z axis generated by the inertia forces 
along y axis, so the sphere can only roll about z axis in 
theory, which is turning in place.  

The motions of the sphere and two pendulums can not be 
projected to one plane, so the dynamics of turning in place 
motion is derived on the theorem of moment of momentum. 
The motion of one pendulum can be decomposed to one 
rotation about the rod in vertical plane yoz and one rotation 

about the z axis in horizontal plane xoy. So the velocity of 
one pendulum can be written as  

r

d

V r
V r

θ
ϕ

⎧ =⎪
⎨ ′=⎪⎩

                   (10) 

where Vr is the linear velocity of pendulum about x axis,  
Vd is the linear velocity about z axis, θ is the rotation angle 
of the pendulums about the rod, φ is the rotation angle of the 
robot about z axis, and 2 2 sinr d r θ′ = +  is the rotation 
radius about z axis.  

The projection of the two velocities in (10) in the 
orthogonal plane can be expressed as  

cos cosV r rθ θ α ϕ⊥ ′= −              (11) 
where α is the acute angle between the rod and the line 
connecting the two cancroids of the pendulums on top view.  

The moment of momentum of the system is given by  

2 ( cos cos )
cosZ

dL mr r Jθ θ α ϕ ϕ
α

′= − −        (12) 

According to the theorem of moment of momentum, the 
equivalent friction moment can be calculated by  

2 ( cos cos )
cosf

d dM mr r J
dt

θ θ α ϕ ϕ
α

⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

    (13) 

The dynamics of turning in place motion is given by  
2

2
0

2 cos 2
cos f

tdmdr m J M dtθ θ ϕ ϕ
α

− − = ∫       (14) 

where 
2 2

2
2 1 sincos cos (tan ( ))

d d
r

d
θα −

= .  

The coupling trigonometric item is simplified by 

 2 1 sincos tan ( ) cos 2r k b
d

θ θ−⎛ ⎞ ≈ +⎜ ⎟
⎝ ⎠

        (15) 

The fitting coefficient k and b are determined by the 
structure parameters r and d.  

So the dynamic function can be simplified as  
2

0

22 cos
( cos 2 ) f

tmdmdr J M dt
k b

θ θ ϕ ϕ
θ

− − =
+ ∫       (16) 

The relationship between φ, θ and Mf is given by  
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where P and Q are the constant terms once the k and b are 
determined, P=J+2bmd2, Q=2kmd2.  

The dynamic equation (17) can not be solved by analytical 
method, but is essential for verifying the effectiveness of the 
stick-slip control method.  

B. Stick-slip control of turning in place motion 

 
Fig. 12.  Stick stage model 
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The stick-slip control method is proposed for turning in 
place motion, which can be divided into stick stage and slip 
stage. In initial state, the sphere is static, and the pendulums 
are in vertical position with no power supplement. Fig. 12 is 
the stick stage model of turning in place motion. The two 
pendulums are rotated in a same angular velocity but 
opposite direction. The inertia moment generated by inertial 
force of the acceleration of pendulums at the time t0+ is 
insufficient to activate the sphere, that is, the sphere is kept 
static by the static friction moment. The angle θ increases to 
a certain value slowly with time t until the time t1.  

 
Fig. 13.  Slip stage model 

The slip stage is shown in Fig. 13. The pendulums are 
rotated to angle θ of opposite direction at the time t1. In slip 
stage, the pendulums are controlled back to the vertical 
position rapidly in a short interval. The sphere is actuated to 
turn in place by the inertia moment generated by inertia 
force of large acceleration of pendulums, that is, the friction 
moment is weak compared with inertia moment in slip stage. 
When the pendulums return back to vertical position at the 
time t2, the power supplement to motors is off. Then the 
sphere will stop when the kinetic energy is exhausted by the 
friction moment. The two stages constitute one step of the 
turning in place motion.  

C. Simulation of stick-slip control 
Considered the complexity of the dynamics of turning in 

place motion, relationship between the parameters is solved 
by simulation. The system parameters of robot in simulation 
given in TABLE I are experimentally determined.  

TABLE I 
PARAMETERS OF TURNING IN PLACE IN SIMULATION 

Symbol Quantity Value 

M mass of the sphere 0.95 kg 

m 
mass of one 
pendulum 0.35 kg 

J moment of inertia of 
the sphere 0.0029 kgm2 

r radius of pendulums 0.038 m 
d half length of the rod 0.045 m 
k fitting coefficient -0.3082 
b fitting coefficient 1.3082 

  The friction model in simulation is given by 
( ) , 0

, 0
v

f
static

D sign
M

M
ϕ ϕ ϕ

ϕ
≠⎧

= ⎨ =⎩
          (18) 

where Mstatic is the static friction moment, Dv is the viscous 
damping coefficient. The value is tested by experiment on 
flat indoor floor, Mstatic=0.01424Nm, Dv=0.057Nms/rad.  

The tilt angle θ is controlled by  

1cos( ) (1 )
( )

1cos( ) (1 )

m
m

v v

m
f m

v v

t stick
K K

t
K t slip

K K

θ ω θ
θ

θ ω θ

⎧− + −⎪⎪= ⎨
⎪ + −
⎪⎩

     (19) 

where θm is the maximum value of tilt angle, ω is the 
harmonic frequency, Kv is the angular velocity coefficient 
which dominates the angular velocity of pendulums,  Kf  is 
the frequency coefficient which can change the time 
proportion of slip stage in one step to regulate the value of 
inertial force. The value of parameters in (19) are given, 

m / 3θ π= ， / 0.8ω π= ，Kv=2，Kf=4.  
Fig. 14 is the results of the simulation. The solid line and 

dashed line are experimental results and desired values 
respectively. The time of one step of stick-slip process is 1s. 
In simulation, the noise from uncertain factors is added to 
the model. The equivalent friction moment is sufficient in 
simulation to keep the robot static in stick stage. The tilt 
angle displacement of one pendulum is shown in Fig. 14(a). 
The two pendulums are controlled to rotate periodically to 
an opposite direction. The slowly rising curve of tilt angle is 
the stick stage, the robot is static, and so the corresponding 
body turning angle is zero. The suddenly falling curve is the 
slip stage, the robot turns about the vertical axis to a certain 
angle by the inertia moment generated by the acceleration of 
the pendulums as shown in Fig. 14(b).  

      
(a) Tilt angle displacement      (b) Displacement of sphere 

Fig. 14.  Simulation of turning in place motion 

D. Prototype experiment of turning in place motion 

 
Fig. 15.  Experiment of turning in place motion 

The stick-slip principle is verified in experiment of 
turning in place motion. The two pendulums are controlled 
to the opposite direction. The robot can only rotate about 
vertical axis without rolling in theory, so the tilt angle is the 
angle the motor shafts rotate through. As shown in Fig. 15, 
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the robot can continuously turn in place by the repeated 
input of the two stages of stick-slip principle. The robot can 
orient to the desired direction through the regulation of the 
amplitude of the tilt angle of the two pendulums.  

 
Fig. 16.  Angular velocity of the robot 

The angular velocity of the robot about vertical axis is 
shown in Fig. 16. The curve is like sawtooth wave. In the 
first stick stage, the angular velocity is negative because in 
initial stage, the instantaneous momentum conservation 
occurs between the sphere and the pendulums, the turning 
angle and the inertia moment of pendulums are to the 
opposite direction. It can be found that in experiment, the 
turning angle of the sphere is not zero in stick stage. The 
reason is that the friction moment is insufficient to stop the 
robot immediately.  

V. CONCLUSION 
A spherical robot of new drive mechanism is studied in 

this paper. The linear motion and turning in place motion 
control of a two pendulums driven spherical robot are 
studied in this paper. The emphasis of linear motion control 
is placed on the movement to a desired configuration. The 
relationship between dynamic parameters is found based on 
the dynamic equation. The smooth trajectory planning 
method for linear motion based on normal distribution 
function is proposed. A feedback controller is constructed 
for the accurate trajectory planning. The tilt angle and sphere 
displacement in simulation and experiment represent 
accordance with the expectation. The robot can be controlled 
to move from an initial static configuration to a final static 
configuration through the adjustment of parameter. To 
enhance the mobility of the robot, a stick-slip control 
method is proposed for turning in place motion. The 
dynamics deduced on the theory of moment of momentum 
provides the basis for validating the principle. The two 
stages of one step are interpreted in detail. The principle is 
verified by simulation. In prototype experiment, the robot 
can continuously turn in place to a desired angle.  
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