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Abstract— This paper presents a technique for the calibration
of multi-beam laser scanners. The technique is based on
an optimization process, which gives precise estimation of
calibration parameters starting from an initial estimate. The
optimization process is based on the comparison of scan data
with the ground truth environment. Detailed account of the
optimization process and suitability analysis of optimization
objective function is described, and results are provided to show
the efficacy of calibration technique.

I. INTRODUCTION

Multi-laser scanning systems are very interesting for appli-

cations in autonomous mobile robotic systems, because they

can provide 3D information about their environments in real-

time therefore and can efficiently be used for tasks such as

environment modeling, obstacle detection, and SLAM. One

of these systems is the Velodyne HDL-64E S2: it consists of

64 lasers located on a spinning head which can spin at a rate

of 5 to 15 Hz, and provides 3D data about its surroundings

at a rate of 1.33 million points per second. Another such

system is Ibeo LUX which scans its surroundings in four

parallel layers.

The performance of these scanners strongly depends on

their calibration. Indeed, precise 3D data from an environ-

ment can easily be processed to extract linear or planar

features, whereas extraction of these features can be difficult,

unreliable or impossible if the sensor is badly calibrated.

Similarly, imprecise calibration can result in inaccurate dig-

ital terrain maps, and thus erroneous interpretations of the

sensed terrain.

This paper provides a technique for the calibration of a

rotating multi-beam lidar. An optimization technique is em-

ployed to estimate the calibration parameters more precisely.

Starting from a coarse initial calibration, data acquired by

the scanner is compared to the ground truth environment

to precisely estimate calibration parameters. The paper is

organized as follows: section II discusses related work,

section III defines the various “ingredients” required by

a lidar calibration process, and section IV presents the

implementation of the proposed calibration technique on a

real multi-beam lidar system and also presents some results.

II. RELATED WORK

A lot of work has been done on the calibration of cameras,

multi-camera systems and omni-directional vision sensors.

E.g. [1] is a widely used tool for the calibration of intrinsic

and extrinsic calibration of cameras. Calibration techniques
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for multi-laser sensors, however, have not been investigated

to that extent. [2] provide a technique for extrinsic calibration

(i.e. estimation of the rotation and translation parameters

between the sensor frame and the robot body frame) of a

Sick lidar mounted on a mobile robot. Starting from a set

of inaccurate hand-measured extrinsic calibration parameters,

they present an optimization based calibration technique

which adjusts the calibration parameters by comparing scan

data and a ground-truth environment. Extensions of the

technique to incorporate multiple Sick laser scanners, and

a set of heterogeneous sensors are presented in [3] and [4].

In [5] a procedure for calibrating only the additive and

proportional distance correction factors of a multi-beam laser

scanner is described. [6] mention the calibration of distance

correction parameters for a multi-laser scanner by comparing

its distance readings to those from a Sick lidar but do

not provide any details on the calibration procedure. In

range imaging using time-of-flight cameras, similar “distance

correction” calibration parameters exist. [7] calibrate these

parameters by making a look-up table for the operational

range of device. [8] calibrate these parameters by fitting a B-

spline to the measurement errors made by camera at different

distances in the operational range.

So far a generic technique for intrinsic calibration of multi-

beam lidars has not been proposed to our knowledge. In this

paper, we present such a technique which is based on an

optimization process similar to the extrinsic calibration tech-

nique proposed in [4]. The lidar model we use is somewhat

similar to general imaging models, in which the camera is

not modelled as pin-hole central projection, but as a set of

3D lines without any single viewpoint constraint [9]. The

calibration process then becomes to estimate the parameters

of the supporting line associated to each laser beam.

III. APPROACH

A multi-beam lidar system is modelled as a set of rays, i.e.

straight lines. These rays define the position and orientation

of laser beams in a sensor-fixed coordinate frame. The

intrinsic calibration for such systems is the estimation of

parameters that define the position and orientation of each

of the laser beams. The principle underlying the calibration

technique proposed in this paper is an optimization process

performed to estimate the lidar calibration parameters so that

the 3D data acquired by lidar matches the ground truth.

Starting from a coarse measurement of calibration param-

eters for laser beams, we can convert the raw scan data

into a 3D point cloud. A calibration environment can be

designed and constructed to acquire lidar data for calibration.

The selection of a suitable calibration environment depends

on the system at hand and parameters to be calibrated,
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process, at each iteration a PCA based plane fitting is

performed to estimate the parameters of the plane that best

define the 3D points in the scan. The cost function C is

therefore chosen to be the sum of squared perpendicular-

distances of all points in the plane divided by the total

number of points forming the plane.

C = Σ(Di,Perp)
2/n (9)

where n is the total number of points in current scan of the

plane (wall).

Section IV-D compare the results obtained with and with-

out this plane fitting process.

3) Suitability analysis and optimization: As mentioned in

section III, the suitability of the cost function for optimiza-

tion depends on the cost function sensitivity to the variation

of the parameters to be estimated. As our chosen cost

function depends on the distances of x, y and z coordinates

of 3D data, the suitability of chosen cost function can be

ensured by finding the partial derivatives of Px, Py and Pz

with respect to each of the three calibration parameters to be

optimized, i.e. Dcorr, α and θ.

Using equations 4, 5 and 6, the partial derivatives with

respect to Dcorr are given as:

∂Px/∂Dcorr = cos θ sinβ (10)

∂Py/∂Dcorr = cos θ cos β (11)

∂Pz/∂Dcorr = sin θ (12)

From ∂Px/∂Dcorr it is clear that the conditions that make

the partial derivative equal to zero are θ = 90◦ and β = 0◦.

This makes intuitive sense as θ = 90◦ means that the laser is

pointing upwards and in such a situation it is impossible to

scan a plane (wall) which is parallel to the laser. Similarly,

as β defines the current orientation of a laser beam, β = 0◦

means that the laser is parallel to y−axis of lidar frame and

therefore any variation in Dcorr would not affect Px for the

point being viewed as β remains 0◦. In our case as the lidar

is constantly rotating, the value of β is constantly changing,

and moreover the values for θ for all lasers in the lidar are

much smaller than 90◦.

Similarly, the conditions that make ∂Py/∂Dcorr equal to

zero are θ = 90◦ and β = 90◦. As with the previous

case, the condition β = 90◦ is not a problem because

the lidar is constantly rotating as we acquire the data. The

condition that makes ∂Pz/∂Dcorr equal to zero is θ = 0◦.

This would mean that for lasers with zero pitch angle,

the z coordinates of data points will not play any role in

the optimization process. This does not pose any problem

because the optimization process is based on 3D data and not

only on the z coordinates of data. Moreover for the system at

hand, the pitch angle for any laser beam is not exactly zero.

This analysis leads us to the conclusion that our chosen cost

function is suitable to be used for the estimation of Dcorr

using optimization.

The partial derivatives with respect to θ are given by:

∂Px/∂θ = −D sinβ sin θ − Vo sinβ cos θ (13)

TABLE II

STANDARD DEVIATIONS (IN METERS) IN DEPTH OF PLANAR DATA

Default Calibration Recalibration

4m 0.0234 0.0215

6m 0.0326 0.0291

8m 0.0170 0.0116

10m 0.0168 0.0105

12m 0.0186 0.0119

14m 0.0187 0.0128

∂Py/∂θ = −D cos β sin θ − Vo cos β cos θ (14)

∂Pz/∂θ = −D cos θ − Vo sin θ (15)

The conditions which make ∂Px/∂θ and ∂Py/∂θ equal

to zero are β = 0◦ and β = 90◦ respectively. As with the

case for Dcorr, for the constantly rotating lidar, these partial

derivatives remain non-zero for the type of 3D datasets we

are using. Therefore our chosen cost function is suitable to

be used for the estimation of θ using optimization. Similarly

it can be shown that our cost function is also suitable for the

optimization of the third calibration parameter α.

The optimization process was implemented using Matlab

function fmincon [11]. The computational cost of optimiza-

tion process is not of a great concern because the process

is done offline and has to be done only once to calibrate

the device. Our optimization process took a few hours to

complete on a normal laptop machine.

D. Results

The optimization was performed starting from the default

calibration data provided by the manufacturer. One way

to quantitatively assess the improvement in the optimized

calibration parameters is to compare the standard deviations

in the depth of planar data for default and optimized calibra-

tion parameters. Table II shows the improvements of these

standard deviations in depth for a subset of planar data used

for optimization.

Fig. 7 presents an example of improved scan results using

re-estimated calibration parameters. At top, the figure shows

the scan of the rear of a vehicle computed using default

calibration data and at bottom it shows the same scan using

optimized calibration parameters.

It is important to validate the optimized calibration param-

eters for data which is not used in the optimization process.

Table III shows the improvement in standard deviations for

depth of planar data when the wall is scanned from the

distances of 16 and 18m, and these sets were not used in

the optimization process. In the last column, the table shows

the improvement in standard deviations in depths when the

optimization is not done using plane fitting, but by trying to

properly align the wall with x and y axes of lidar frame as

mentioned in section IV-C.2. We can see that the calibration

has improved but not as much as in the case of using plane

fitting. This is because of the fact that it is very hard to

precisely align the scanned plane, and thus the alignment

assumption is not valid in a strict sense.
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