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Abstract—This paper presents a novel encoding method
for scene change detection and appearance-based topological
localization framework. The relation computation over convex
hull points is used to compare the similarity between the scenes.
It relies on the relative ordering of the feature strength, not
directly on the feature vectors. We first deal with multiple
convex hulls over the detected features and then compile statis-
tics for coding on the hull points through a vector magnitude
comparison. Finally, the hull points are formed by binary
codes. The codes are suitable for scene change detection and
visual place recognition by statistical analysis. The experimental
results show the coding method is robust under the varying
environment.

I. INTRODUCTION
The localization and place recognition have become im-

portant issues for mobile robot applications in recent years.
They are mainly used for robot navigation in the indoor
environment. Some research trends include using image
based technique instead of traditional range sensors, to solve
the problems.
In this paper, we consider the problem of detecting scene

change events using an omnidirectional camera mounted on
a mobile robot. The events are then employed to construct
a topological map for recognizing the nodes of the visual
places in some other time. In order to let the mobile robot
have the ability of autonomous navigation and learn to
recognize the environment, the robot must be able to label
the areas of an environment automatically. We suggest to
use the scene change events to perform this task. The scene
change events are typically defined as the video paragraphs
segmented from a consecutive video sequence in multimedia
community [7]. When such tasks are applied to robotic ap-
plications, a topological map is commonly used to efficiently
represent each scene change location [9].
To establish an appearance based topological map, we

design a binary code transform for scene representation
called “Hull Census Transform” (HCT). The method is used
to handle the scene change conditions, and also takes the
varying environment into account while the illumination or
small objects change at the same place. This is helpful for
further topological map building and visual place recog-
nition, especially for the catadioptric vision sensors. The
proposed technique is fast and robust under illumination
change. It enables the mobile robot to recognize scenes based

on the image appearance and automatically add nodes into
the existing topological map.
For example, if there are two image features, one lies on

the corner of a window, the other lies on the corner of a door.
The illumination is changed from cloudy to night, and the
two features can still be detected in the same location. In this
example, the values of each image feature vector is changed
in the two weather conditions, thus this will affect the feature
matching. However, we compile the two features to two HCT
bits by calculating the relative vector length between them.
The HCT code is not changed with two different weather
conditions. The advantage of HCT is that it can tolerate a
variation of feature vectors under varying environment.
In this work, we make the following contributions:
1) We propose a novel HCT descriptor for scene represen-
tation, which is in average about 10− 30 bit codes for
an image frame (one hull case). It contains sparse data
with respect to image features or images themselves
for visual place representation.

2) The scene change detection problem for topological
map building is tackled efficiently using the proposed
HCT descriptor.

3) The proposed visual place recognition is robust under
the varying environment, in particularly for the omni-
directional vision system.

For clear explanation, we define the place recognition
problem for a mobile robot as follows:

• a video sequence for place descriptors and topological
nodelists construction,

• the other sequences of the same places with different
paths for recognition.

This work will test the place recognition based on the HCT
encoding approach.

II. RELATED WORK

In mobile robotics, topological maps provide a concise
description of the environment for navigation. Angeli et
al. [2] represented each topological node using the bag of
visual words paradigm. Booij et al. [3] suggested that the
robot could robustly navigate on the topological map through
epipolar constraint and they employed image edges and SIFT
features [10] as topological nodes. Daniele et al. [5] proposed
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a weighted graph to indicate the similarity metric related
to image features. Their node representation also used the
image features, and such graph was represented as their
topological map.
For visual place recognition, Hemant et al. [15] employed

a stochastic model of image perturbations in order to decide
whether the image of a place was a location near a place
with previously captured images. Pronobis et al. [1] adopted
a high dimensional histogram to represent the visual scene
and employed SVM to classify the visual places. The other
highly related approaches is the context-based place recog-
nition [16].
A similar topic but with different goal is the visual

loop-close detection. The researchers employed the similar
techniques as the visual place recognition to perform the
repeated scenes detection. Chanop et al. [14] used a high
resolution omnidirectional camera to build a feature-based
topological visual map and then used the SIFT descrip-
tor to detect previously observed scenes. Mark et al. [4]
proposed a bag-of-words based loop-close detection. They
used a probabilistic model to represent each scene, and the
model was also used to calculate whether the current scene
was similar to previously observed scenes. Viverk et al.
[11] proposed a metric-based topological map and detected
loop-close for outdoor scenes. In contrast to the previous
approaches, our scene representation method is a code-based
topological map. In the proposed technique, the location is
not only a concise description, but also robust under the
varying environment.
Our approach relies on the local feature transforms based

on non-parametric measures that are able to tolerate the
varying environment. The non-parametric measure “census
transform” is first proposed by Ramin et al. [18], which was
used to deal with the dense matching problem for disparity
map construction. Recently, the researchers have also used it
for visual place categorization [17] and face recognition [13].
In contrast to the previous census transforms, our approach
is a sparse feature-based census transform and only process
the convex hull points extracted from the image features.
The omnidirectional camera system has been used increas-

ingly in robotic applications due to its capability of capturing
the rich information (e.g. full 360◦ field of view) and low
cost. In this work, we adopt only the omnidirectional cam-
era for evaluating the encoding based scene representation
and its capability in visual place recognition. Due to the
omnidirectional imaging geometry, the image content of the
border region does not vary as rapidly as the nearby region.
Thus, it is able to provide the stable features1 to build the
binary codes and achieve acceptable scene change detection
performance.

III. VISUAL TOPOLOGICAL LOCALIZATION SYSTEM
We describe the original formulation of the hull census

transform, and then introduce our application of this frame-
work for scene representation and visual place recognition.
1The definition of the stable feature is that a group of image features

which can be detected and stayed in video frames for a period of times.

A. Descriptor of Hull Census Transform

This section discusses the HCT coding method. Let X i be
the total features in the ith image frame of an omnidirectional
video sequence. Suppose Y i

1
is a set of features which forms

the convex hull of X i, then the features points in Y i
1 are

located close to the border of the omnidirectional image.
The rest features X i − Y i

1
are then used to derive the

second convex hull Y i
2 . We repeat this procedure to construct

multiple convex hulls from the set X i such that

X i =

n⋃
l=1

Y i
l (1)

where n is the number of constructed convex hulls.
In order to explain how to build a binary code of a layer

of the multiple convex hulls, we represent the feature points
of a given convex hull as Y i

l,p, where p is the index of feature
points and l is one of the total n layers of the multiple convex
hulls.
Suppose the set of δil feature points is a small set of the

image features and the points lie on the lth layer convex hull
of the ith image frame. The set can be denoted as

Y i
l =

δi
l⋃

p=1

Y i
l,p , Y i

l,p ∈ Y i
l (2)

Suppose an image feature is represented by a vector, e.g.
the vector dimension of SURF might be 64 or 128 [6]. If the
magnitude of the vector of a feature point, ‖ Y i

l,p ‖, is less
than its consecutive neighbor2, then the bit code Bi

l,p of this
feature point is set as 0 and otherwise is set as 1. That is,

Bi
l,p =

{
0, if ‖Y i

l,p‖ < ‖Y i
l,p−1

‖

1, otherwise (3)

The proposed hull census transform relies on the relative
ordering of connected feature points on the convex hull. The
HCT code in a layer l is given by

hctil =

δi
l⋃

p=1

Bi
l,p

where the code length may vary for different layer of convex
hulls. The complete scene descriptor for an image frame i

with multiple hulls is as follows:

HCT i =

n⋃
l=1

hctil (4)

An example of 2-layer HCT descriptor for an omnidirectional
image is shown in Fig. 1.

2This comparison can be processed by clockwise or counterclockwise of
the points which lie on a convex hull. In other words, the HCT scene coding
is also a cyclic coding with no specific starting point.
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Fig. 1. An example of constructing a two-layer hull census transform. The
black circles indicate the detected image features in the omnidirectional
image. The connected line segments are then used to generate a layer of
convex hull. In this example we consider only the image features forming
two convex hulls. For each layer, we count the magnitude from each of the
feature vectors and compare it with its neighbor feature. Finally, we form
a two-layered HCT descriptor through Eq. (4).

B. Scene Change Detection

In this system, we use the HCT to detect scene change
events and also generate the topological nodelists. To acquire
suitable images for the robot vision system, we suggest that
the robot should move at a normal speed (e.g. at a speed of
roughly 0.3m/s), and then the video sequences are used in
this system.
To detect the scene change events, the first step is to

compute the rank transform of the HCT codes in two
consecutive image frames. A rank transform in a layer of
the HCT �(hctil) is to count the number of bits “1”, which
is defined as,

�(hctil) =

δi
l∑

p=1

Bi
l,p , for ‖ Y i

l,p ‖≥‖ Y i
l,p−1

‖ (5)

We then check the HCT codes by the next two statistic
formulations as follows based on the rank transform of the
HCT codes. The second step is the “Cost value Ω(x, y)”,
modified from “Two-sample pooled t-test” [8] to compare
the HCT codes of two consecutive image frames, i and i−1.

Let

∅i =

n∏
l=1

�(hctil)

δil
(6)

and

Ω(i, i− 1) =
√
∅i

2 −∅i−1
2 (7)

where ∅i ∈ [0, 1] is a normalized rank sum value of HCT
bits.
The last step is to calculate the “Score Ψ(x, y)” of the

HCT code. The score value is converted to the format of an
HCT from binary code to decimal value [17] in its ranking
number of bits. Two HCT codes are then given as follows:

Ψ(i, i− 1) =

n∏
l=1

| �(hctil)2 −�(hcti−1

l )2 | (8)

Φ(i, i− 1) =
Ψ(i, i− 1)

Σn
l=1

(2δ
i

l + 2δ
i−1

l )
(9)

If Ω and Φ exceed some pre-defined ratios then there is a
scene change between images i− 1 and i,

Scene change : =

{
Ω(i, i− 1) ≥ η1
Φ(i, i− 1) ≥ η2

(10)

In our experiment the two thresholds η1 and η2 are given by
0.75 and 0.25, respectively. Finally, we collect the calculated
information (Eqs. (5) – (9)) to form the nodelists which
located at the scene change locations and use Eq. (10) to
build the topological map.
The HCT codes must be rotated in cyclic order to find

the minimum Hamming distance before comparing the HCT
codes. This said, when the robot rotates at a fixed position
without forward/backward motion, the HCT codes also rotate
with the robot self-rotation in the omnidirectional images.
Thus, the minimum Hamming distance makes the HCT code
unchanged. This makes the HCT preserve high similarities
in the rotation omnidirectional images.

C. HCT Matching Scheme
The scenario for scene change detection and place recog-

nition is that the robot navigates and captures the sequences
with different trajectories possibly under varying illumination
conditions. One of the image sequences is used to build a
series of HCT codes by detecting the scene change signals for
the topological map and form the nodelists. The rest video
sequences with different paths are used to recognize each
image frame by counting the highest similarity node which
belongs to the nodelists.
For scene recognition, it should be noted that the number

of total bits is not the same between the currently detected
HCT code and the nodelists. The following equation is used
to match two HCT codes and only the highest score node in
the nodelists is selected to represent the scene,

argmax
j

{Ψ〈i, j〉 , for Ω(i, i− 1) ≤ η1} (11)
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where i is the detected HCT codes in the current omnidi-
rectional image and j is an HCT code from the constructed
scene change nodelists.
For a moving robot in an environment, the scene recogni-

tion procedure is as follows:
1) Rotate each of the HCT codes to find the minimum
Hamming distance between the current node and the
node from the nodelists.

2) Find the highest similar node using Eq. (11) by calcu-
lating the score with Eq. (8) to recognize the current
scene.

IV. EXPERIMENT AND PERFORMANCE EVALUATION
We have implemented the non-parametric local transforms,

and explored their behavior based on the image features
through multiple convex hulls. The proposed HCT is coded
based on the image features, yet it can tolerate the environ-
ment change. All results are processed in omnidirectional
video sequences. We also provide the analysis of HCT
similarity and SURF feature matching under three different
weather conditions.

A. Dataset
The COLD dataset [12] is adopted to evaluate our ap-

proach. Three different robot platforms with two hetero-
geneous cameras (catadioptric and perspective) are used to
gather the image data under varying conditions and times in
different environments. The videos are also captured under
human motions, and different weather conditions (e.g. cloudy
and night). The dataset is useful for testing the visual place
recognition algorithms because the 3 different environments
have similar rooms such as print rooms, one-person offices,
etc.

B. Scene Change Detection and Topological Framework
The SURF feature extraction technique [6] is used in

this work and the proposed HCT is compiled based on the
extracted image features. The scene change detection is done
with the HCT ranking and score described in Section III-B.
In this work, the topological nodelists construction rule is

as follows: A video sequence from the COLD dataset of a
robot is used to detect the scene change places and assign
private labels. The unchanged places are assigned a label as
the surrounding node. If a signal of the scene change event
is rising, the color label will change in the topological map
and automatically add a node to the topological nodelists.
Fig. 3(a) shows the scene change detection ability using 1459
image video frames in the cloudy weather path-1 of the
COLD-freiburg robot. The topological map is constructed
with no refinement strategy, Fig. 5 shows the 12 detected
scene change nodes plotted with a big color dot. The average
recognition rate is about 66.7%. Due to the environment
structure and the corresponding walls of the captured om-
nidirectional images between the places are quite similar in
the dataset (e.g. the printer room, two-person office and the
corridor), we think the recognition rate is acceptable for some
mobile robot applications.

TABLE I
THE DATA CAPACITY FOR CONSTRUCTING THE 12 TOPOLOGICAL

NODES. THE COMPARISON OF THE IMAGES (SIZE 512× 384), SURF
FEATURES WITH 128-DIMENSION VECTOR AND HCT CODES.

Methods capacity
Images for 12 nodes 6912kB

SURF features for 12 nodes 240kB
HCT (2 layer) for 12 nodes 1kB

HCT (2 layer) for total 1459 frames 130kB

The data capacity is also an important issue for long-
term working of a mobile robot in an environment. Due
to the high sparse coding method of the proposed HCT,
we show the comparative results between the HCT, image
features and images themselves in Table I. In the toleration
testing of different weather conditions, we list a table (see
Table II) to compare the similarity and feature matching
between three different omnidirectional images captured at
the close locations in the cloudy, sunny weather and at night,
respectively.
In Table II, row (a) lists 3 weather conditions and their

images are shown in Fig. 2. Rows (e) and (l) are the sub-
item of weather conditions for showing the image feature
matching, execution time, etc. Row (c) is the total detected
SURF features of each image. Row (f) shows the feature
matching between different weathers, for example, “16”
means there are 16 features matched between cloudy and
sunny images, and so on. Row (m) is the similarity calculated
by the proposed method, which shows the high similarity
between the three weather conditions.

C. Scene Recognition
The recognition rule in this work is as follows: When

the topological nodelists are built, the rest videos of the
same robot with different paths are used to recognize the
highest similarity node from each image frame. The visual
place recognition does not need any refinement stages. Each
omnidirectional image frame is considered as a visual place
and given a label with the highest similar node in the
nodelists. The average recognition rates are shown in Fig.
4 and the recognized areas of the robot paths in different
weather conditions with color labels are plotted in Fig. 3(b)
- 3(d).

V. CONCLUSION AND FUTURE WORK

This paper presents an approach for topological visual
place recognition based on a modification of census trans-
form. Our method, with repeatedly generating the convex
hull from the image features and computing the relative
magnitude between image features over the convex hull, has
shown promising results on the COLD datasets.
We have evaluated the performance of the topological

place recognition by using an omnidirectional camera. The
major limitation of the HCT is the moving speed of the robot
and the frame rate of the camera. If the frame rate is too slow
(e.g. 2 – 3 fps ) or the robot moves too fast, such as 1 m/s,
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(a) Cloudy. (b) Sunny. (c) Night.

Fig. 2. The three images are captured under different weathers at close positions. In this test case, the analysis result is shown in Table II.

TABLE II
THE PERFORMANCE EVALUATION OF HCT FOR CHANGING WEATHER. THE HCT OFFERS HIGH SIMILARITY USING IMAGE FEATURES.

Weather (a) Cloudy Sunny Night
Image size (b) 512 × 384 512 × 384 512 × 384
SURF features (c) 317 397 289
Extraction time (d) 600.1ms 614.4ms 637.2ms

(e) Sunny Night Cloudy Night Cloudy Sunny
Matching number (f) 16 14 16 6 14 6
Matching time (g) 133.3ms 100.5ms 133.3ms 128.7ms 100.5ms 128.7ms
HCT codes (h) 0110000011010110100010 01101010110110010110 10101001110100011011
Total HCT bits (i) 22 20 20

∅( j) 0.272157 0.846578 0.412924
� (k) 0.41 0.55 0.55
(l) Sunny Night Cloudy Night Cloudy Sunny

Similarity (m) Ω:96.2%,Φ:43% Ω:99.7%,Φ:86% Ω:96.2%,Φ:43% Ω:95.9%,Φ:56.7% Ω:99.7%,Φ:86% Ω:95.9%,Φ:56.7%
HCT build time (n) 13.2ms 4.0ms 9.3ms
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(a) The topological map with 12 nodelists constructed by the scene change
event using the proposed method. The path-1 sequence contains 1459
video frames in cloudy weather of the COLD-freiburg robot. The different
colors indicate the different visual places and the bigger nodes are the
detected scene change positions.
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(b) The cloudy test path-2 of the same robot for scene recognition. The
robot navigates on slightly different trajectories in the same environment
some other time. The average recognition rate is 67.32% with 1121
correctly recognized frames for the total 1655 video frames.

1

1

2

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9

9

Printarea

C
orridor

K
itchen

Large
office

2-person
office

1

2-person
office

2

1-person
office

B
ath

room

Stairs
area

W
indow

s

Startpoint

(c) The sunny test path-1 for scene recognition. The robot navigates on
different trajectories in same environment but another weather. The average
recognition rate is 68.67% with 1098 correctly recognized frames for the
total 1599 video frames.
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(d) The night test path-1 for scene recognition. The average recognition
rate is 64.45% with 1126 correctly recognized frames for the total 1747
video frames.

Fig. 3. The map is downloaded from the COLD dataset [12] with the odometry trajectory. The odometry information is used only for showing the robot
movement. It is not used in the place recognition tasks. The colored paths indicate different areas of the environment regions which are detected by the
HCT. Both of the scene change detection and recognition are tested with no refinement strategies.
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Fig. 4. The average recognition results of the topological localization
system. The topological nodelists are constructed by cloudy path-1.

each frame will be considered as a signal of scene change.
The HCT can also operate with the image features extracted
from the perspective camera. However, it is not suitable for
visual place recognition. In this work, we chose the SURF
as the image features because it is faster than SIFT features
for video sequences. Furthermore, the HCT coding method
depends on the image features, but is not limited to the high
quality image features. In other words, the consistency of
video images is more important than the quality of the video
sequences.
We are also interested in testing how many layers of

HCT are enough for the topological localization framework.
In our testing, 2 − 3 hulls are suitable for the topological
nodelists construction using the COLD dataset. If we use
more than 3 layers, the average hit score and cost value does
not usually increase. For further applications, the multiple
HCT descriptor can also be applied for solving the scene
categorization problem, which will be investigated in the
future research.
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