
  

  

Abstract— One of the long term objectives of robotics and  

artificial cognitive systems is that robots will increasingly be 

capable of  interacting in a cooperative and adaptive manner 

with their human counterparts in open-ended tasks that can 

change in real-time.  In such situations, an important aspect of 

the robot behavior will be the ability to acquire new knowledge 

of the cooperative tasks by observing humans.  At least two 

significant challenges can be identified in this context.  The first 

challenge concerns development of methods to allow the 

characterization of human actions such that robotic systems can 

observe and learn new actions, and more complex behaviors 

made up of those actions.  The second challenge is associated 

with the immense heterogeneity and diversity of robots and 

their perceptual and motor systems.  The associated question is 

whether the identified methods for action perception can be 

generalized across the different perceptual systems inherent to 

distinct robot platforms.  The current research addresses these 

two challenges.  We present results from a cooperative human-

robot interaction system that has been specifically developed for 

portability between different humanoid platforms.  Within this 

architecture, the physical details of the perceptual system (e.g. 

video camera vs IR video with reflecting markers) are 

encapsulated at the lowest level.  Actions are then automatically 

characterized in terms of perceptual primitives related to 

motion, contact and visibility.  The resulting system is 

demonstrated to perform robust object and action learning and 

recognition on two distinct robotic platforms.  Perhaps most 

interestingly, we demonstrate that knowledge acquired about 

action recognition with one robot can be directly imported and 

successfully used on a second distinct robot platform for action 

recognition.  This will have interesting implications for the 

accumulation of shared knowledge between distinct 

heterogeneous robotic systems. 
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I. INTRODUCTION 

OOPERATION is a hallmark of human cognition.  Early in 

their development, human children begin to engage in 

cooperative activities with other people. Critically, from 

early on, children are able to cooperate in novel situations, 

based upon social-cognitive capacities such as representing 

other people's intentions, visual perspective-taking, and 

imitation [1, 2]. The premise of our research is that similar 

skills are required also for human-robot cooperation. 

Specifically, in the CHRIS project
1
, we derive the 

fundamental skills which enable young children to engage in 

cooperative activities and implement these in an integrated 

system capable of running on several robotic platforms to 

study human-robot interactions. The current research 

reports on this integrated system and resulting experiments 

with iCub [3] and the BERT2 robot platforms.  

The novelty of the current research is twofold:  First, we 

present an on-line learning method for recognition of simple 

human action related to object manipulation. Some research 

has already been done in the area of action learning and 

recognition by robots [4-7], however our approach is based 

on detection of simple perceptual primitives that can be 

processed independently from the perceptual system used.  

Second, we demonstrate that this platform-independent 

architecture operates successfully on two very distinct 

physical robot platforms, using highly distinct perceptual 

systems.  Finally we demonstrate that because of the 

perceptual abstraction in the architecture, knowledge 

acquired about recognizable actions on one robot can be 

used to recognize actions (with a completely different 

perceptual system) on a different robot.  

II. CONTEXT: HUMAN / ROBOT COOPERATION 

A. Cooperation requirements 

Studies of human infants [2, 8, 9] show that recognizing 

actions is a task that gradually develops over the second and 

third year of life. From around 14-18 months of age, infants 

begin to engage in novel cooperative tasks with adults, in 

which they have to collaborate jointly to achieve a shared 
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goal (such as one agent holding something in place so that 

another agent can manipulate the object). It has been argued 

that from this early age, infants are already able to represent 

a shared plan of action (an action plan encompassing both 

the child's and the partner's actions taken to bring about a 

certain change in the world), and are able to reverse 

complementary roles if necessary. In other terms, infants are 

taking a 'bird's eye view' on the social situation, representing 

not only their own actions, but both their own and the 

partner's actions as part of a shared plan [10].  Such a shared 

plan allows the child to demonstrate “role reversal” where 

she can take on the role of either partner in a cooperative 

activity.  We have recently implemented this type of shared 

planning in robotic systems which could observe actions, 

attribute roles, and then use the resulting shared plan to 

perform the cooperative task, taking the role of either one of 

the two participants[11, 12]. This basic representational 

capacity appears to be in place in human development very 

early on. However, over development, children become 

increasingly skilled in coordinating their actions with 

different social partners.  They start to cooperate 

successfully with more competent adults early in the second 

year of life, and gradually becoming able to cooperate also 

with peers around 2 years of age [9]. Importantly, 

cooperating in fairly simple novel situations does not require 

extensive learning [2]. In more challenging tasks with 

complementary actions that require a multi-step sequence 

and a goal that is not transparent, direct instructions appears 

to be necessary [13].  Thus, we have used spoken language 

in human-robot cooperation in order to make the nature of 

the tasks explicit, so that they can be used by the robot to 

learn the structure of the task [14, 15] A crucial aspect of this 

human cooperative behavior is the ability to observe and 

understand new actions in real time, during the course of 

observation of an ongoing cooperation.  Children can be 

exposed to novel physical devices and within a few trails of 

observation, learn new actions involved in manipulating 

these devices [1, 2]. 

B. Extracting Meaning from Perception 

Robots will have to demonstrate similar learning 

capabilities in order to face novel situations they will 

encounter in the real world. Exhaustive knowledge about the 

world cannot be provided a priori by the programmer, thus 

the robots need an ability to learn. An important aspect 

of human social life is our ability to learn from others 

through observation and instruction [16], which is a faster 

and more accurate way of acquiring knowledge about 

complex entities than individual learning, such as trial-and-

error learning.  Mandler [17] suggested that the infant begins 

to construct meaning from the scene based on the extraction 

of perceptual primitives.  From simple representations such 

as contact, support and attachment [18] the infant could 

construct progressively more elaborate representations of 

visuospatial meaning.  In this context, the physical event 

"collision" can be derived from the perceptual primitive 

"contact".  Kotovsky & Baillargeon [19] observed that at 6 

months, infants demonstrate sensitivity to the parameters of 

objects involved in a collision, and the resulting effect on the 

collision, suggesting indeed that infants can represent contact 

as an event predicate with agent and patient arguments.  

Siskind  [20] demonstrated that force dynamic primitives of 

contact, support and attachment can be extracted from video 

event sequences and used to recognize events including pick-

up, put-down, and stack based on their characterization in an 

event logic.  Related results have been achieved by Steels 

and Baillie [21].  The use of these intermediate 

representations renders the systems robust to variability in 

motion and view parameters.  We have used a related 

approach to categorize movements including touch, push, 

give, take and take-from in the context of link these action 

representations to language [22]. In the current research, we 

extend these ideas, so that arbitrary novel actions including 

cover, uncover, take, put and touch can be learned in real-

time with a few examples each, based on invariant sequences 

of primitive events specific to each action.  We subsequently 

demonstrate that using the same architecture, such actions 

can be learned on a different robot platform using an entirely 

different perceptual system. Finally, and perhaps most 

interestingly, we demonstrate that knowledge of action 

recognition learned on one of the robots transfers directly for 

successful use on the other.    

III. THE CHRIS ARCHITECTURE 

In order to be platform-independent, a cognitive architecture 

should abstract away from platform-specific representations 

at the lowest level possible.  An overview of our architecture 

in this context is presented in Figure1.   
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Figure 1: Overview of the Software Architecture. Each block is a stand 

alone software module that execute a certain function. The interface 

between the platform specific software and the generic architecture is the 

Egosphere, which allow abstraction from low level perception. Arrows 

represent the flow of information (data, commands), which are transported  

over the network via YARP. All the left part is robot independent and been 

tested on the iCub and BERT robots. 

 

Robot specific components, for the 3D-perception and Motor 

command levels, illustrated on the right, are isolated from 

the rest of the system at the lowest level.   

A. Scene Perception 

1) EgoSphere 

The first layer of abstraction between the sensory 

perception systems, the higher level cognitive architecture 

and motor control elements is formed by the EgoSphere. 

Unlike the sensory ego-sphere (SES) by Peters [23] which 

implements short term memory, associations, direction of 

attention in addition to localization, our simpler 

implementation solely acts as a fast, dynamic, asynchronous 

storage of object positions and orientations. The object 

positions are stored in spherical coordinates (radius, azimuth 

and elevation) and the object orientation is stored as 

rotations of the object reference frame about the three axes 

(x,y,z) of a right-handed Cartesian world-frame system. The 

origin of the world frame can be chosen arbitrarily and, for 

our experimental work, we located it at the centre of the 

robot’s base-frame. Other stored object properties are a 

visibility flag and the objectID. The objectID is a unique 

identifier of an object which acts as a shared key across 

several databases (described in more detail in B below). The 

robot-specific 3D perception system adds objects to the 

EgoSphere when they are first perceived, and maintains 

position, orientation or visibility of these objects over time. 

Modules (e.g. Primitive Detection in Fig 1) requiring spatial 

information about objects in the scene can query the 

EgoSphere. No assumptions are made about the nature of an 

object and any further information (e.g. object name, object 

type) will have to be queried from the Knowledge Base using 

the objectID. This architecture makes the EgoSphere 

particularly useful for storing multi-modal information.  

The EgoSphere is implemented in C++ as a client-server 

system using the YARP infrastructure. Software modules 

requiring access to the EgoSphere include a client class 

which provides methods like addObject(.), setObject(.), 

getObject(.) or getNumberOfObjects(.), etc. Clearly, at the 

current state, the EgoSphere is merely a convenient 

abstraction layer. With increasing complexity of human-

robot interaction tasks during the course of our research, we 

plan to add further complexity (human focus of attention, 

confidence, timeliness etc.) whilst preserving modularity. 

2) Primitive Detection  

The robot should be able to recognize actions performed 

by other agents in order to learn, to cooperate or for safety 

reasons. A few systems are performing action learning and 

recognition [4-7, 24, 25], however none of them is 

completely platform independent. Since our system is taking 

inputs from the Egosphere, it allows applying learning and 

recognition algorithm that are not at all related to a specific 

robot. Moreover, our algorithm is using a novel approach : 

we have previously demonstrated [22] that actions involving 

change of possession could be described in term of 

perceptual primitives such as contact. Here we extend the 

primitives to include motion and visibility. Thus an action 

such as “Larry takes the ball” can be characterized in terms 

of a sequence of perceptual primitives: 

• Motion: Larry’s hand starts to move 

• Contact: There is a physical contact between 

Larry’s hand and the ball 

• Motion: Both Larry’s hand and the ball start to 

move together and then they both stop. 

We refer to these low level events as Perceptual Primitives.  

Dominey & Boucher [22] demonstrated that a variety of 

actions could be recognized with the single primitive 

contact(x,y).  Here we extend this approach by including in 

addition the primitives visible(x) and moving(x).  These 

primitives and their corresponding arguments and truth 

values are computed in the Primitive Detection module, 

which polls the EgoSphere for changes in position and 

visibility.  Contact is recognized by a minimum distance 

threshold which is determined empirically.  Likewise motion 

is detected when the position of an object changes over an 

empirically determined threshold.  Visibility is directly 

available from the EgoSphere. 

3) Action Recognition 

Thus, when a physical action occurs, values encoding 

object positions in the EgoSphere change accordingly. 

Primitive Detection transforms this position information into 

sequences of perceptual primitives.  Action Recognition 

reads this stream of perceptual primitives and groups the 

elements into candidate actions.  Based on empirical 

measures we determined that primitives which are separated 

by less than one sec. belong to a common action.  A 
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primitive sequence for an action may last several seconds, 

but no successive primitives are separated by more than 1 

sec.  This limitation on fast successive actions is considered 

in the discussion section. When an action is performed and 

processed, its primitive sequence is thus segmented by the 

Action Recognition module, which tries to recognize it.  The 

Action Recognition module generates and manipulates the 

Action Definitions database of primitive sequences as 

follows.  It tries to match the current sequence by an 

exhaustive search through the database. If the sequence is 

not recognized, the Action Recognition module triggers the 

Spoken Language Interaction to ask the user for a 

description of the action, providing the action name, agent 

and object of the action. It then associates this description 

with the recorded sequence for future recognition.  If the 

sequence is recognized, the Spoken Language Interface 

extracts the action and arguments and reports.  The system 

thus provides object independent action recognition (i.e. if it 

has learned “Larry takes the ball”, it is able to recognize 

“Robert takes the coffee-cup”). The module also detects and 

stores within an action definition the initial state of the 

objects concerned by the action, and the consequences of 

this action on the world (i.e. if Larry covers the ball with a 

box, then the ball will not be visible anymore) which will 

allow creation of new inference rules within the ORO 

module of the Knowledge Base, described below. 

B. Knowledge Base 

Through interaction with the user and the physical world, 

the system acquires new knowledge, and it is also initialized 

with certain background knowledge.  

1) Object Properties Database 

The OPDB is the common namespace manager for objects 

that can be perceived by the system.  It contains physical 

parameters of objects, including their perceptual signature as 

defined by the EgoSphere.  Each object that is known to the 

system (that can be perceived and represented in the 

EgoSphere) has a unique identifier (the objectID) which 

serves as an index into the OPDB and the Knowledge Base 

in general. 

2) The Open Robot Ontology 

ORO (the "OpenRobot Ontology" server) is the semantic 

layer of the system. It has been designed to integrate easily in 

different robotic architectures by ensuring a limited set of 

architecture requirements. ORO is built around a socket-

based server that stores, manages, processes and exposes 

knowledge. ORO is portable (written in Java), and can be 

easily extended with plug-ins, making it suitable to new 

applications. In the frame of the CHRIS project, a YARP 

bridge has been added, thus exposing the ORO RPC methods 

in a network-transparent way. ORO relies internally on the 

OWL ontologies dialect to store knowledge as RDF triples. 

It uses the open-source Jena
2
 RDF graph library for storage 

 
2 http://jena.sourceforge.net 

and manipulation of statements and the equally open-source 

Pellet
3
 first order logic reasoner to classify/apply rules and 

compute inferences on the knowledge base.  

 

 
Figure 2: Specific Robotic Platforms.  A.  Vision processing using 

Spikenet™ with the video image from the iCubLyon01 robot, pictured in 

B.  C.  The Vicon™ configuration for visual perception with the Bert 

Robot, pictured in D.   

 

Besides simply storing and reasoning about knowledge, 

ORO offers several useful features for human-robot 

interaction: events registration (e.g. "Tell me when any kind 

of tableware appears on the table."), categorization 

capabilities, independent cognitive models for each agent the 

robot knows and different profiles of memory (short-term, 

episodic, long-term). The server loads an initial ontology at 

startup, the so-called OpenRobots Common-Sense Ontology. 

This initial ontology contains a set of concepts (over 400 in 

the last version), relationships between concepts and rules 

that defines the cultural background of the robot, i.e. the 

concepts the robot knows a priori. This common-sense 

knowledge is very focused on the requirement of our 

scenarios, namely, human-robot interaction with some well-

known everyday objects (cups, cans, etc.). It contains as well 

broader concepts like agents, objects, location, etc. The 

common-sense ontology relies heavily on the de-facto 

standard OpenCyc upper-ontology for the naming of 

concepts, thus ensuring a good compatibility with other 

knowledge sources (including Internet-based ones, like 

WordNet
4
 or DBPedia

5
). The ontology then dynamically 

evolves as the robot acquires new facts: these are provided 

either from the EgoSphere via the primitive detection 

module, or via spoken language interaction with human. 

3) Action Definitions 

Actions that have been learned are stored in the Action 

Definitions Database.  Actions are defined in terms of three 

 
3 http//clarkparsia.com/pellet 
4 http://wordnet.princeton.edu 
5 http://dbpedia.or 
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types of information.  The Enabling State defines the state of 

the objects involved in the action before the action takes 

place.  The Primitive Sequence is the time ordered set of 

primitive events that make up the dynamic component of the 

action.  Finally, the Resulting State is the (potentially) new 

state of affairs after the action is completed.  The action 

recognition capability described above relies primarily on 

the Primitive Sequence for action recognition. 

C. Spoken Language Interaction 

The spoken language interaction is provided by the 

CSLU Toolkit [26] Rapid Application Development (RAD) 

state-based dialog system which combines state-of-the-art 

speech synthesis (Festival) and recognition (Sphinx-II 

recognizer) in a GUI programming environment.  Our system 

is thus state based, with the user indicating the nature of the 

current task (including whether he wants interact in the 

context of object recognition, action recognition or action 

sequence recognition tasks).  In each of these subdomains, 

the user can then indicate that he is ready to show the robot a 

new example (object, action or action sequence) and the 

robot will attempt to recognize or learn what is shown.  RAD 

scripts are in done in TCL which allows communication of 

speech data to other modules through YARP. 

D. YARP 

Software modules in the architecture are interconnected 

using YARP [27], an open source library written to support 

software development in robotics. In brief YARP provides 

an intercommunication layer that allows processes running 

on different machines to exchange data. Data travels through 

named connection points called ports.  Communication is 

platform and transport independent: processes are not aware 

of the details of the underlying operating system or protocol 

and can be relocated at will across the available machines on 

the network. More importantly, since connections are 

established at runtime it is easy to dynamically modify how 

data travels across processes, add new modules or remove 

existing ones. Interface between modules is specified in 

terms of YARP ports (i.e. port names) and the type of data 

these ports receive or send (respectively for input or output 

ports).  This modular approach allows minimizing the 

dependency between algorithm and the underlying 

hardware/robot; different hardware devices become 

interchangeable as long as they export the same interface.  

Finally, YARP is written in C++, so it is normally used as a 

library in C++ code. However, any application that has a 

TCP/IP interface can talk to YARP modules using a standard 

data format. Within the CHRIS project this turned out to be 

of fundamental importance as it allowed to “glue” together 

different applications (e.g. the RAD toolkit, the ORO server 

or the VICON system) into a single integrated, working 

system. 

IV. INTEGRATION PLATFORMS 

The CHRIS Software Architecture has been successfully 

tested on two different platforms illustrated in Figure 2. 

A. Platform iCubLyon01 

1) Robot Platform 

The iCub [3] is an open-source robotic platform shaped as 

three and a half year-old child (about 104cm tall), with 53 

degrees-of-freedom (DOF) distributed on the head, arms, 

hands and legs. The current work was performed on the 

iCubLyon01 at the INSERM laboratory in Lyon, France.  

The DOF are distributed over the full body: 6 for the head, 3 

for the waist, 6 in each leg and 7 for each arm. The iCub has 

been specifically designed to study manipulation, for this 

reason the number of DOF of the hands has been maximized 

with respect to the constraint of the small size. The hands of 

the iCub have five fingers and 19 joints. All the code and 

documentation is provided open source by the RobotCub 

Consortium, together with the hardware documentation and 

CAD drawings. The robot hardware is based on high-

performance electric motors controlled by a DSP-based 

custom electronics. From the sensory point of view the robot 

is equipped with cameras, microphones, gyroscope, position 

sensors in all joints, force/torque sensors in each limb. 

2) 3D Spatial-Temporal Object Perception 

The iCubLyon01 platform employs vision based 

perception operating on the image streams from the robot’s 

stereo cameras. Objects are recognized based on detection of  

predefined object templates using the commercial system 

Spikenet [28]. It uses a spiking neural network technology to 

provide fast recognition of objects in an image. By doing this 

with the two stereo cameras of the robot, we can estimate the 

Cartesian coordinates of the objects and feed the EgoSphere. 

To do so, a simple wrapper around the Spikenet API is used 

for retrieving the camera images, processing them and 

broadcasting the results over the network via YARP. 

Another module is then used to read this data, filter the noise 

and update the EgoSphere appropriately.  Once in the 

EgoSphere, the spatial-temporal object information is 

platform-independent. 

B. Platform BERT2 BRL 

1) Robot Platform 

BERT2 (Bristol-Elumotion-Robot-Torso-2) is an upper-

body humanoid robot designed, and currently still under 

construction, at Bristol Robotics Laboratory in close co-

operation with their mechanical engineering partner 

Elumotion
6
. The torso comprises four joints (hip rotation, 

hip flexion, neck rotation and neck flexion). Each arm is 

equipped with 7 DOF. The wrist provides a mounting 

interface for a sophisticated humanoid hand or a simple 

gripper. Each of these 18 joints is actuated by a brushless 

DC motor via a Harmonic Drive (TM) gear box. One of the 

 
6 www.elumotion.com 
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main motivations that guided the design of BERT2 was the 

suitability to interact with humans safely and naturally using 

Expressive Face and Gaze Tracking. One important non-

verbal communication channel we have focused on is facial 

expression with a particular emphasis on gaze, as used in 

human-human interaction [29].  

2) 3D Spatial-Temporal Object Perception  

The BERT2 platform uses the VICON motion capture 

system (with 8 stationary IR cameras) and light reflective 

markers arranged into unique patterns, to distinguish 

between scene objects and to detect their position and 

orientation in 3D space. This provides reliable and robust 

360 degree scene perception. The human interacting with the 

robot also wears a garment equipped with markers, thus 

body positions and postures are also available to the robot. 

There are several layers of abstraction in BERT2 VICON 

perception. At the lowest level there is VICON hardware and 

software together with VICON object and actor model 

templates, which store information about the marker 

topology of the objects to be captured. The VICON software 

broadcasts this captured data on the network, using TCP/IP. 

This data is picked up by the module “ViconLink”, which is 

an easily reconfigurable data bridge between the VICON 

software and the YARP framework. The next layer of 

abstraction is the “Object Provider” module. Its main 

purpose is to update the EgoSphere with the most recent 

object positions and to filter the noise in the VICON 

data. Again, once in the EgoSphere, the spatial-temporal 

object information is platform-independent. 

V. EXPERIMENTS 

Diverse experiments have been performed in a distributed 

manner on the two platforms. The first goal of these 

experiments is to show the portability of the full cognitive 

system between multiple robots, more than giving precise 

benchmarks of the skills provided by the system. The 

experiments reported on here are those which were run on 

the iCub and BERT2 platforms using the identical CHRIS 

architecture (see accompanying video). 

A. Object learning 

The goal of the experiment is to allow the user to teach the 

system the name and properties of new objects.  In these 

experiments, two sets of objects have been pre-specified 

respectively for each of the two 3D perception systems.  This 

corresponds to visual templates for Spikenet on the iCub, 

and reflective marker topologies for VICON on BERT2.  

Initially the objects can thus be recognized and tracked, but 

they have no associated semantics. In the experiment, the 

human moves an object to indicate the focus to the robot, 

which then asks for the name and the type of the object. 

Learning the object’s type (i.e. “cup”) links its semantics to 

the other concepts the robot already knows, including initial 

commonsense knowledge from ORO. When an object 

moves, the platform specific perception systems identify and 

accurately localize the object. The respective object 

perception module then updates the EgoSphere in real time.  

At this point we are entering the platform-independent 

CHRIS architecture. The Primitive Detection module 

regularly polls the EgoSphere for visibility and object 

coordinates, and sends extracted primitives to other 

interested modules. In this case, it sends to ORO a 

notification when an object starts or stops moving. In 

parallel, the Spoken Language Interaction system manages 

the verbal human-robot interaction. It queries ORO to know 

which objects are currently moving and if the names of these 

objects are known. If they are unknown then it asks to the 

human for more information as described in the dialog 

below.   

• [Robot] Initializing... about 5 sec ...What's next? 

• [Human] moves an object 

• [Robot] does not know the object What is it called? 

• [Human] coffee cup 

• [Robot] Did you say coffee cup? 

• [Human] yes 

• [Robot] Ok. Now I know. What kind of object is coffee 

cup? 

• [Human] a cup 

• [Robot] Did you say cup? 

• [Human] yes 

• [Robot] So coffee cup is a cup. What's next ? 

During this interaction, two new statements are added to 

the ORO database.  The first associates the objectID for the 

recognized object with the label “coffee cup”.  The second 

associates this objectID with the type “cup” which allows the 

system to exploit inheritance of knowledge about cups from 

the preloaded ontology. The robot is then able to use this 

additional knowledge in order to reason and describe 

objects. The next time a human shows the coffee cup, the 

robot will say “this is a coffee cup”. In addition, we could 

ask to the robot “could you show me a cup?” to have the 

robot to point to the coffee cup or to a tea cup, exploiting the 

type information.  This naming experiment was successfully 

completed for multiple objects on the iCub and BERT2 

platforms. 

B. Action learning 

As described above, an important skill in cooperation is 

the robot’s ability to understand its partner’s actions, or the 

actions of two humans cooperating while the robot learns by 

observing.  In the “watch action” mode, the robot tries to 

recognize and describe the actions it sees. It can then store 

the recognized actions in a plan that can be executed later, or 

it can ask for more information if the observed action is not 

known or uncertain. Regarding the flow of information 

through the system, it is the same as in the object naming 

experiment but it now includes the Action Recognition 

module. Under control of the Spoken Language Interface, 

Action Recognition receives primitive events from Primitive 
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Detection.  It compares the segmented primitive event 

sequences with known actions in the Action Database, and 

provides in real time actions that are recognized or a special 

event if an action has been segmented but not recognized. 

These recognitions are then processed by Spoken Language 

Interaction which manages the situation either by announcing 

the name and arguments of the recognized action, or 

prompting the user to describe the action and its arguments, 

as illustrated in this dialog excerpt.  

• [Robot] Initializing... about 5 sec ...What's next? 

• [Human] Watch my actions 

• [Robot] Ok. Show me something 

• [Human] puts a coffee cup on the table 

• [Robot] What happened? 

• [Human] John puts the coffee cup 

• [Robot] Ok. Show me something 

• [Human] removes the coffee cup from the table 

• [Robot] What happened? 

• [Human] John takes the coffee cup 

• [Robot] Ok. Show me something 

• [Human] put a book on the table 

• [Robot] I saw John puts the book 

At this point the robot is able to recognize the two simple 

actions put and take independently of the object targeted by 

the action. In this scenario a single demonstration was 

sufficient.  In practice the robot may need to see the same 

action several times before being able to recognize it. Lallee 

et al [30] preformed extensive testing of this system on the 

iCubLyon01 platform.  In over 100 action presentations, 

with the actions cover, uncover, put, take and touch, on 

average the system required less than three examples to 

correctly learn a given action so that it could subsequently be 

recognized without error. The crucial experiment here 

involved performing the same action learning tests on the 

BERT platform, where visual perception based on pattern 

matching with Spikenet would be replaced by reflective 

marker tracking provided by VICON.  We tested BERT with 

the actions put, take, and touch.  These actions were 

successfully learned, and generalized to new objects.  This 

indicates that by abstracting 3D spatial-temporal information 

in the EgoSphere, the CHRIS architecture is indeed 

platform-independent. Our final experiment replies to the 

question “can knowledge about the spatial-temporal 

characteristics of an action learned on one platform be used 

for action recognition on another?” 

C. Knowledge transmission between Robots 

Following an interaction session with humans, the robot 

Knowledge Base acquires new knowledge (of object and 

action definitions) through learning. This acquired 

knowledge is stored prior to system shutdown and reloaded 

at subsequent system startup, thus allowing progressive 

accumulation of experience over extended time. In the 

current experiment, we took the Action Recognition database 

that was generated while actions were being learned on 

BERT, and loaded it at startup on the iCubLyon01.  We then 

tested the Action Recognition capability, by performing put 

and take actions.  In a set of 20 trials (10 each for put and 

take) we observed an overall recognition accuracy of 85%.  

The errors were due to noise in the vision system which 

produces false indications of motion (see discussion).  

Importantly, the iCub was able to recognize actions that had 

been learned on BERT, thus exploiting the experience of a 

different robot. 

VI. DISCUSSION 

We present an architecture that exploits the idea of 

abstracting the cognitive architecture from the robot specific 

body and sensors. It should be noted that the cognitive 

function of the robot can still be considered embodied as the 

architecture acquires all its information from interaction 

between the robot and the world, via the low level 

abstraction of the EgoSphere. Thanks to this abstraction, we 

were able to provide to different robots the same high level 

capabilities for perception and reasoning, and to share 

knowledge acquired via different sensors. 

A. Limitations and future development: 

The work described here emphasizes abstraction at the 

sensory level (and does not address motor control), by 

requiring a common format for spatial input to the system 

from diverse sensors. A parallel approach is to be taken at 

the motor command level (Motor Command Interface, Fig 

1).  This is based on the definition of a set of actions 

including give, take, put, point and their arguments.  Their 

initial and final states are defined in a platform independent 

manner, but the specific joint-level implementation is 

specified in the context of the corresponding robot platforms. 

This will provide a capability consistent with that described 

by Demiris & Johnson [31] where action execution and 

performance can mutually benefit from shared 

representations. Action Recognition provides real-time 

formation and recognition of sequential patterns of primitive 

events (motion, visibility and contact) specific to different 

actions.  It is thus sensitive to noise in the 3D perception 

sensors. We are currently rendering this approach more 

robust.  This includes the use of a probabilistic approach for 

matching the segmented primitive event sequences with the 

learned actions, optimization of spatio-temporal filtering to 

reduce false motion from visual jitter, and inclusion of the 

initial-to-final state transitions as additional components in 

definition of an action.  Likewise, in the current version, 

successive actions (e.g. taking an object, then putting it at a 

new location) should be separated by at least one second, so 

that the system can automatically distinguish and segment 

the perceptual primitive sequences. This is consistent with 

our current constraint that when demonstrating action, users 

show actions one after another, and wait to see if the robot 

recognizes, before proceeding.  Future work will address 
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more fluent action sequences in the context of learning from 

demonstration [32].The speech that we have used here is 

relatively primitive and sometimes ungrammatical.  We have 

previously explored the more extensive possibilities of 

relating the argument structure of grammatical sentences to 

the argument structure of actions in terms of execution [15, 

33, 34].  We are now extending these approaches to action 

observation and description with the use of more appropriate 

grammar. 

B. Conclusions 

While robotic platforms are becoming increasingly 

complex, the development of cognitive systems can be 

advanced by the development of more standard ways to 

access the sensory-motor layer. Our system independent 

architecture contributes to the deployment of cognitive 

abilities on diverse robot platforms that can interface with 

the abstraction layer defined by the EgoSphere and the motor 

command interface. We believe that the continued 

development of increasingly well defined and standard 

interfaces between robot platforms and cognitive system can 

accelerate the development of robot intelligence, and we are 

taking a first step in that direction. In doing so we have also 

taking the first steps towards the idea of having different 

learning machines (the robots individuals) updating and 

sharing a common global knowledge base, thus leveraging 

experience from multiple sources [21]. Further work will 

investigate methods to enhance this ability and to allow robot 

platforms distributed over the world to take advantage of it. 
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