

Abstract— One of the long term objectives of robotics and

artificial cognitive systems is that robots will increasingly be

capable of interacting in a cooperative and adaptive manner

with their human counterparts in open-ended tasks that can

change in real-time. In such situations, an important aspect of

the robot behavior will be the ability to acquire new knowledge

of the cooperative tasks by observing humans. At least two

significant challenges can be identified in this context. The first

challenge concerns development of methods to allow the

characterization of human actions such that robotic systems can

observe and learn new actions, and more complex behaviors

made up of those actions. The second challenge is associated

with the immense heterogeneity and diversity of robots and

their perceptual and motor systems. The associated question is

whether the identified methods for action perception can be

generalized across the different perceptual systems inherent to

distinct robot platforms. The current research addresses these

two challenges. We present results from a cooperative human-

robot interaction system that has been specifically developed for

portability between different humanoid platforms. Within this

architecture, the physical details of the perceptual system (e.g.

video camera vs IR video with reflecting markers) are

encapsulated at the lowest level. Actions are then automatically

characterized in terms of perceptual primitives related to

motion, contact and visibility. The resulting system is

demonstrated to perform robust object and action learning and

recognition on two distinct robotic platforms. Perhaps most

interestingly, we demonstrate that knowledge acquired about

action recognition with one robot can be directly imported and

successfully used on a second distinct robot platform for action

recognition. This will have interesting implications for the

accumulation of shared knowledge between distinct

heterogeneous robotic systems.

Manuscript received March 10, 2010. This work was fully supported by

European FP7 ICT project CHRIS).

Stephane Lallee, Tijn van Der Zant and Peter Ford Dominey are with the

Stem Cell & Brain Research Institute, INSERM U846, Bron, France.

(stephane.lallee@inserm.fr; robotijn@gmail.com;

peter.dominey@inserm.fr).

Severin Lemaignan is with LAAS, CNRS, Toulouse, France.

(severin.lemaignan@laas.fr) Alexander Lenz, Chris Melhuish and Sergey

Skachek are with BRL, Bristol, United Kingdoms. (alex.lenz@brl.ac.uk ;

Chris.Melhuish@brl.ac.uk; Sergey.Skachek@brl.ac.uk).

Lorenzo Natale is with IIT, Genoa, Italy. (lorenzo.natale@iit.it).

Felix Warneken is with Harvard University, Cambridge, USA

(warneken@wjh.harvard.edu)

I. INTRODUCTION

OOPERATION is a hallmark of human cognition. Early in

their development, human children begin to engage in

cooperative activities with other people. Critically, from

early on, children are able to cooperate in novel situations,

based upon social-cognitive capacities such as representing

other people's intentions, visual perspective-taking, and

imitation [1, 2]. The premise of our research is that similar

skills are required also for human-robot cooperation.

Specifically, in the CHRIS project
1
, we derive the

fundamental skills which enable young children to engage in

cooperative activities and implement these in an integrated

system capable of running on several robotic platforms to

study human-robot interactions. The current research

reports on this integrated system and resulting experiments

with iCub [3] and the BERT2 robot platforms.

The novelty of the current research is twofold: First, we

present an on-line learning method for recognition of simple

human action related to object manipulation. Some research

has already been done in the area of action learning and

recognition by robots [4-7], however our approach is based

on detection of simple perceptual primitives that can be

processed independently from the perceptual system used.

Second, we demonstrate that this platform-independent

architecture operates successfully on two very distinct

physical robot platforms, using highly distinct perceptual

systems. Finally we demonstrate that because of the

perceptual abstraction in the architecture, knowledge

acquired about recognizable actions on one robot can be

used to recognize actions (with a completely different

perceptual system) on a different robot.

II. CONTEXT: HUMAN / ROBOT COOPERATION

A. Cooperation requirements

Studies of human infants [2, 8, 9] show that recognizing

actions is a task that gradually develops over the second and

third year of life. From around 14-18 months of age, infants

begin to engage in novel cooperative tasks with adults, in

which they have to collaborate jointly to achieve a shared

1 www.chrisfp7.eu

Towards a Platform-Independent Cooperative Human-Robot

Interaction System: I. Perception

Stephane Lallée, Séverin Lemaignan, Alexander Lenz, Chris Melhuish, Lorenzo Natale, Sergey

Skachek, Tijn van Der Zant, Felix Warneken, Peter Ford Dominey

C

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4444

goal (such as one agent holding something in place so that

another agent can manipulate the object). It has been argued

that from this early age, infants are already able to represent

a shared plan of action (an action plan encompassing both

the child's and the partner's actions taken to bring about a

certain change in the world), and are able to reverse

complementary roles if necessary. In other terms, infants are

taking a 'bird's eye view' on the social situation, representing

not only their own actions, but both their own and the

partner's actions as part of a shared plan [10]. Such a shared

plan allows the child to demonstrate “role reversal” where

she can take on the role of either partner in a cooperative

activity. We have recently implemented this type of shared

planning in robotic systems which could observe actions,

attribute roles, and then use the resulting shared plan to

perform the cooperative task, taking the role of either one of

the two participants[11, 12]. This basic representational

capacity appears to be in place in human development very

early on. However, over development, children become

increasingly skilled in coordinating their actions with

different social partners. They start to cooperate

successfully with more competent adults early in the second

year of life, and gradually becoming able to cooperate also

with peers around 2 years of age [9]. Importantly,

cooperating in fairly simple novel situations does not require

extensive learning [2]. In more challenging tasks with

complementary actions that require a multi-step sequence

and a goal that is not transparent, direct instructions appears

to be necessary [13]. Thus, we have used spoken language

in human-robot cooperation in order to make the nature of

the tasks explicit, so that they can be used by the robot to

learn the structure of the task [14, 15] A crucial aspect of this

human cooperative behavior is the ability to observe and

understand new actions in real time, during the course of

observation of an ongoing cooperation. Children can be

exposed to novel physical devices and within a few trails of

observation, learn new actions involved in manipulating

these devices [1, 2].

B. Extracting Meaning from Perception

Robots will have to demonstrate similar learning

capabilities in order to face novel situations they will

encounter in the real world. Exhaustive knowledge about the

world cannot be provided a priori by the programmer, thus

the robots need an ability to learn. An important aspect

of human social life is our ability to learn from others

through observation and instruction [16], which is a faster

and more accurate way of acquiring knowledge about

complex entities than individual learning, such as trial-and-

error learning. Mandler [17] suggested that the infant begins

to construct meaning from the scene based on the extraction

of perceptual primitives. From simple representations such

as contact, support and attachment [18] the infant could

construct progressively more elaborate representations of

visuospatial meaning. In this context, the physical event

"collision" can be derived from the perceptual primitive

"contact". Kotovsky & Baillargeon [19] observed that at 6

months, infants demonstrate sensitivity to the parameters of

objects involved in a collision, and the resulting effect on the

collision, suggesting indeed that infants can represent contact

as an event predicate with agent and patient arguments.

Siskind [20] demonstrated that force dynamic primitives of

contact, support and attachment can be extracted from video

event sequences and used to recognize events including pick-

up, put-down, and stack based on their characterization in an

event logic. Related results have been achieved by Steels

and Baillie [21]. The use of these intermediate

representations renders the systems robust to variability in

motion and view parameters. We have used a related

approach to categorize movements including touch, push,

give, take and take-from in the context of link these action

representations to language [22]. In the current research, we

extend these ideas, so that arbitrary novel actions including

cover, uncover, take, put and touch can be learned in real-

time with a few examples each, based on invariant sequences

of primitive events specific to each action. We subsequently

demonstrate that using the same architecture, such actions

can be learned on a different robot platform using an entirely

different perceptual system. Finally, and perhaps most

interestingly, we demonstrate that knowledge of action

recognition learned on one of the robots transfers directly for

successful use on the other.

III. THE CHRIS ARCHITECTURE

In order to be platform-independent, a cognitive architecture

should abstract away from platform-specific representations

at the lowest level possible. An overview of our architecture

in this context is presented in Figure1.

4445

Figure 1: Overview of the Software Architecture. Each block is a stand

alone software module that execute a certain function. The interface

between the platform specific software and the generic architecture is the

Egosphere, which allow abstraction from low level perception. Arrows

represent the flow of information (data, commands), which are transported

over the network via YARP. All the left part is robot independent and been

tested on the iCub and BERT robots.

Robot specific components, for the 3D-perception and Motor

command levels, illustrated on the right, are isolated from

the rest of the system at the lowest level.

A. Scene Perception

1) EgoSphere

The first layer of abstraction between the sensory

perception systems, the higher level cognitive architecture

and motor control elements is formed by the EgoSphere.

Unlike the sensory ego-sphere (SES) by Peters [23] which

implements short term memory, associations, direction of

attention in addition to localization, our simpler

implementation solely acts as a fast, dynamic, asynchronous

storage of object positions and orientations. The object

positions are stored in spherical coordinates (radius, azimuth

and elevation) and the object orientation is stored as

rotations of the object reference frame about the three axes

(x,y,z) of a right-handed Cartesian world-frame system. The

origin of the world frame can be chosen arbitrarily and, for

our experimental work, we located it at the centre of the

robot’s base-frame. Other stored object properties are a

visibility flag and the objectID. The objectID is a unique

identifier of an object which acts as a shared key across

several databases (described in more detail in B below). The

robot-specific 3D perception system adds objects to the

EgoSphere when they are first perceived, and maintains

position, orientation or visibility of these objects over time.

Modules (e.g. Primitive Detection in Fig 1) requiring spatial

information about objects in the scene can query the

EgoSphere. No assumptions are made about the nature of an

object and any further information (e.g. object name, object

type) will have to be queried from the Knowledge Base using

the objectID. This architecture makes the EgoSphere

particularly useful for storing multi-modal information.

The EgoSphere is implemented in C++ as a client-server

system using the YARP infrastructure. Software modules

requiring access to the EgoSphere include a client class

which provides methods like addObject(.), setObject(.),

getObject(.) or getNumberOfObjects(.), etc. Clearly, at the

current state, the EgoSphere is merely a convenient

abstraction layer. With increasing complexity of human-

robot interaction tasks during the course of our research, we

plan to add further complexity (human focus of attention,

confidence, timeliness etc.) whilst preserving modularity.

2) Primitive Detection

The robot should be able to recognize actions performed

by other agents in order to learn, to cooperate or for safety

reasons. A few systems are performing action learning and

recognition [4-7, 24, 25], however none of them is

completely platform independent. Since our system is taking

inputs from the Egosphere, it allows applying learning and

recognition algorithm that are not at all related to a specific

robot. Moreover, our algorithm is using a novel approach :

we have previously demonstrated [22] that actions involving

change of possession could be described in term of

perceptual primitives such as contact. Here we extend the

primitives to include motion and visibility. Thus an action

such as “Larry takes the ball” can be characterized in terms

of a sequence of perceptual primitives:

• Motion: Larry’s hand starts to move

• Contact: There is a physical contact between

Larry’s hand and the ball

• Motion: Both Larry’s hand and the ball start to

move together and then they both stop.

We refer to these low level events as Perceptual Primitives.

Dominey & Boucher [22] demonstrated that a variety of

actions could be recognized with the single primitive

contact(x,y). Here we extend this approach by including in

addition the primitives visible(x) and moving(x). These

primitives and their corresponding arguments and truth

values are computed in the Primitive Detection module,

which polls the EgoSphere for changes in position and

visibility. Contact is recognized by a minimum distance

threshold which is determined empirically. Likewise motion

is detected when the position of an object changes over an

empirically determined threshold. Visibility is directly

available from the EgoSphere.

3) Action Recognition

Thus, when a physical action occurs, values encoding

object positions in the EgoSphere change accordingly.

Primitive Detection transforms this position information into

sequences of perceptual primitives. Action Recognition

reads this stream of perceptual primitives and groups the

elements into candidate actions. Based on empirical

measures we determined that primitives which are separated

by less than one sec. belong to a common action. A

4446

primitive sequence for an action may last several seconds,

but no successive primitives are separated by more than 1

sec. This limitation on fast successive actions is considered

in the discussion section. When an action is performed and

processed, its primitive sequence is thus segmented by the

Action Recognition module, which tries to recognize it. The

Action Recognition module generates and manipulates the

Action Definitions database of primitive sequences as

follows. It tries to match the current sequence by an

exhaustive search through the database. If the sequence is

not recognized, the Action Recognition module triggers the

Spoken Language Interaction to ask the user for a

description of the action, providing the action name, agent

and object of the action. It then associates this description

with the recorded sequence for future recognition. If the

sequence is recognized, the Spoken Language Interface

extracts the action and arguments and reports. The system

thus provides object independent action recognition (i.e. if it

has learned “Larry takes the ball”, it is able to recognize

“Robert takes the coffee-cup”). The module also detects and

stores within an action definition the initial state of the

objects concerned by the action, and the consequences of

this action on the world (i.e. if Larry covers the ball with a

box, then the ball will not be visible anymore) which will

allow creation of new inference rules within the ORO

module of the Knowledge Base, described below.

B. Knowledge Base

Through interaction with the user and the physical world,

the system acquires new knowledge, and it is also initialized

with certain background knowledge.

1) Object Properties Database

The OPDB is the common namespace manager for objects

that can be perceived by the system. It contains physical

parameters of objects, including their perceptual signature as

defined by the EgoSphere. Each object that is known to the

system (that can be perceived and represented in the

EgoSphere) has a unique identifier (the objectID) which

serves as an index into the OPDB and the Knowledge Base

in general.

2) The Open Robot Ontology

ORO (the "OpenRobot Ontology" server) is the semantic

layer of the system. It has been designed to integrate easily in

different robotic architectures by ensuring a limited set of

architecture requirements. ORO is built around a socket-

based server that stores, manages, processes and exposes

knowledge. ORO is portable (written in Java), and can be

easily extended with plug-ins, making it suitable to new

applications. In the frame of the CHRIS project, a YARP

bridge has been added, thus exposing the ORO RPC methods

in a network-transparent way. ORO relies internally on the

OWL ontologies dialect to store knowledge as RDF triples.

It uses the open-source Jena
2
 RDF graph library for storage

2 http://jena.sourceforge.net

and manipulation of statements and the equally open-source

Pellet
3
 first order logic reasoner to classify/apply rules and

compute inferences on the knowledge base.

Figure 2: Specific Robotic Platforms. A. Vision processing using

Spikenet™ with the video image from the iCubLyon01 robot, pictured in

B. C. The Vicon™ configuration for visual perception with the Bert

Robot, pictured in D.

Besides simply storing and reasoning about knowledge,

ORO offers several useful features for human-robot

interaction: events registration (e.g. "Tell me when any kind

of tableware appears on the table."), categorization

capabilities, independent cognitive models for each agent the

robot knows and different profiles of memory (short-term,

episodic, long-term). The server loads an initial ontology at

startup, the so-called OpenRobots Common-Sense Ontology.

This initial ontology contains a set of concepts (over 400 in

the last version), relationships between concepts and rules

that defines the cultural background of the robot, i.e. the

concepts the robot knows a priori. This common-sense

knowledge is very focused on the requirement of our

scenarios, namely, human-robot interaction with some well-

known everyday objects (cups, cans, etc.). It contains as well

broader concepts like agents, objects, location, etc. The

common-sense ontology relies heavily on the de-facto

standard OpenCyc upper-ontology for the naming of

concepts, thus ensuring a good compatibility with other

knowledge sources (including Internet-based ones, like

WordNet
4
 or DBPedia

5
). The ontology then dynamically

evolves as the robot acquires new facts: these are provided

either from the EgoSphere via the primitive detection

module, or via spoken language interaction with human.

3) Action Definitions

Actions that have been learned are stored in the Action

Definitions Database. Actions are defined in terms of three

3 http//clarkparsia.com/pellet
4 http://wordnet.princeton.edu
5 http://dbpedia.or

4447

types of information. The Enabling State defines the state of

the objects involved in the action before the action takes

place. The Primitive Sequence is the time ordered set of

primitive events that make up the dynamic component of the

action. Finally, the Resulting State is the (potentially) new

state of affairs after the action is completed. The action

recognition capability described above relies primarily on

the Primitive Sequence for action recognition.

C. Spoken Language Interaction

The spoken language interaction is provided by the

CSLU Toolkit [26] Rapid Application Development (RAD)

state-based dialog system which combines state-of-the-art

speech synthesis (Festival) and recognition (Sphinx-II

recognizer) in a GUI programming environment. Our system

is thus state based, with the user indicating the nature of the

current task (including whether he wants interact in the

context of object recognition, action recognition or action

sequence recognition tasks). In each of these subdomains,

the user can then indicate that he is ready to show the robot a

new example (object, action or action sequence) and the

robot will attempt to recognize or learn what is shown. RAD

scripts are in done in TCL which allows communication of

speech data to other modules through YARP.

D. YARP

Software modules in the architecture are interconnected

using YARP [27], an open source library written to support

software development in robotics. In brief YARP provides

an intercommunication layer that allows processes running

on different machines to exchange data. Data travels through

named connection points called ports. Communication is

platform and transport independent: processes are not aware

of the details of the underlying operating system or protocol

and can be relocated at will across the available machines on

the network. More importantly, since connections are

established at runtime it is easy to dynamically modify how

data travels across processes, add new modules or remove

existing ones. Interface between modules is specified in

terms of YARP ports (i.e. port names) and the type of data

these ports receive or send (respectively for input or output

ports). This modular approach allows minimizing the

dependency between algorithm and the underlying

hardware/robot; different hardware devices become

interchangeable as long as they export the same interface.

Finally, YARP is written in C++, so it is normally used as a

library in C++ code. However, any application that has a

TCP/IP interface can talk to YARP modules using a standard

data format. Within the CHRIS project this turned out to be

of fundamental importance as it allowed to “glue” together

different applications (e.g. the RAD toolkit, the ORO server

or the VICON system) into a single integrated, working

system.

IV. INTEGRATION PLATFORMS

The CHRIS Software Architecture has been successfully

tested on two different platforms illustrated in Figure 2.

A. Platform iCubLyon01

1) Robot Platform

The iCub [3] is an open-source robotic platform shaped as

three and a half year-old child (about 104cm tall), with 53

degrees-of-freedom (DOF) distributed on the head, arms,

hands and legs. The current work was performed on the

iCubLyon01 at the INSERM laboratory in Lyon, France.

The DOF are distributed over the full body: 6 for the head, 3

for the waist, 6 in each leg and 7 for each arm. The iCub has

been specifically designed to study manipulation, for this

reason the number of DOF of the hands has been maximized

with respect to the constraint of the small size. The hands of

the iCub have five fingers and 19 joints. All the code and

documentation is provided open source by the RobotCub

Consortium, together with the hardware documentation and

CAD drawings. The robot hardware is based on high-

performance electric motors controlled by a DSP-based

custom electronics. From the sensory point of view the robot

is equipped with cameras, microphones, gyroscope, position

sensors in all joints, force/torque sensors in each limb.

2) 3D Spatial-Temporal Object Perception

The iCubLyon01 platform employs vision based

perception operating on the image streams from the robot’s

stereo cameras. Objects are recognized based on detection of

predefined object templates using the commercial system

Spikenet [28]. It uses a spiking neural network technology to

provide fast recognition of objects in an image. By doing this

with the two stereo cameras of the robot, we can estimate the

Cartesian coordinates of the objects and feed the EgoSphere.

To do so, a simple wrapper around the Spikenet API is used

for retrieving the camera images, processing them and

broadcasting the results over the network via YARP.

Another module is then used to read this data, filter the noise

and update the EgoSphere appropriately. Once in the

EgoSphere, the spatial-temporal object information is

platform-independent.

B. Platform BERT2 BRL

1) Robot Platform

BERT2 (Bristol-Elumotion-Robot-Torso-2) is an upper-

body humanoid robot designed, and currently still under

construction, at Bristol Robotics Laboratory in close co-

operation with their mechanical engineering partner

Elumotion
6
. The torso comprises four joints (hip rotation,

hip flexion, neck rotation and neck flexion). Each arm is

equipped with 7 DOF. The wrist provides a mounting

interface for a sophisticated humanoid hand or a simple

gripper. Each of these 18 joints is actuated by a brushless

DC motor via a Harmonic Drive (TM) gear box. One of the

6 www.elumotion.com

4448

main motivations that guided the design of BERT2 was the

suitability to interact with humans safely and naturally using

Expressive Face and Gaze Tracking. One important non-

verbal communication channel we have focused on is facial

expression with a particular emphasis on gaze, as used in

human-human interaction [29].

2) 3D Spatial-Temporal Object Perception

The BERT2 platform uses the VICON motion capture

system (with 8 stationary IR cameras) and light reflective

markers arranged into unique patterns, to distinguish

between scene objects and to detect their position and

orientation in 3D space. This provides reliable and robust

360 degree scene perception. The human interacting with the

robot also wears a garment equipped with markers, thus

body positions and postures are also available to the robot.

There are several layers of abstraction in BERT2 VICON

perception. At the lowest level there is VICON hardware and

software together with VICON object and actor model

templates, which store information about the marker

topology of the objects to be captured. The VICON software

broadcasts this captured data on the network, using TCP/IP.

This data is picked up by the module “ViconLink”, which is

an easily reconfigurable data bridge between the VICON

software and the YARP framework. The next layer of

abstraction is the “Object Provider” module. Its main

purpose is to update the EgoSphere with the most recent

object positions and to filter the noise in the VICON

data. Again, once in the EgoSphere, the spatial-temporal

object information is platform-independent.

V. EXPERIMENTS

Diverse experiments have been performed in a distributed

manner on the two platforms. The first goal of these

experiments is to show the portability of the full cognitive

system between multiple robots, more than giving precise

benchmarks of the skills provided by the system. The

experiments reported on here are those which were run on

the iCub and BERT2 platforms using the identical CHRIS

architecture (see accompanying video).

A. Object learning

The goal of the experiment is to allow the user to teach the

system the name and properties of new objects. In these

experiments, two sets of objects have been pre-specified

respectively for each of the two 3D perception systems. This

corresponds to visual templates for Spikenet on the iCub,

and reflective marker topologies for VICON on BERT2.

Initially the objects can thus be recognized and tracked, but

they have no associated semantics. In the experiment, the

human moves an object to indicate the focus to the robot,

which then asks for the name and the type of the object.

Learning the object’s type (i.e. “cup”) links its semantics to

the other concepts the robot already knows, including initial

commonsense knowledge from ORO. When an object

moves, the platform specific perception systems identify and

accurately localize the object. The respective object

perception module then updates the EgoSphere in real time.

At this point we are entering the platform-independent

CHRIS architecture. The Primitive Detection module

regularly polls the EgoSphere for visibility and object

coordinates, and sends extracted primitives to other

interested modules. In this case, it sends to ORO a

notification when an object starts or stops moving. In

parallel, the Spoken Language Interaction system manages

the verbal human-robot interaction. It queries ORO to know

which objects are currently moving and if the names of these

objects are known. If they are unknown then it asks to the

human for more information as described in the dialog

below.

• [Robot] Initializing... about 5 sec ...What's next?

• [Human] moves an object

• [Robot] does not know the object What is it called?

• [Human] coffee cup

• [Robot] Did you say coffee cup?

• [Human] yes

• [Robot] Ok. Now I know. What kind of object is coffee

cup?

• [Human] a cup

• [Robot] Did you say cup?

• [Human] yes

• [Robot] So coffee cup is a cup. What's next ?

During this interaction, two new statements are added to

the ORO database. The first associates the objectID for the

recognized object with the label “coffee cup”. The second

associates this objectID with the type “cup” which allows the

system to exploit inheritance of knowledge about cups from

the preloaded ontology. The robot is then able to use this

additional knowledge in order to reason and describe

objects. The next time a human shows the coffee cup, the

robot will say “this is a coffee cup”. In addition, we could

ask to the robot “could you show me a cup?” to have the

robot to point to the coffee cup or to a tea cup, exploiting the

type information. This naming experiment was successfully

completed for multiple objects on the iCub and BERT2

platforms.

B. Action learning

As described above, an important skill in cooperation is

the robot’s ability to understand its partner’s actions, or the

actions of two humans cooperating while the robot learns by

observing. In the “watch action” mode, the robot tries to

recognize and describe the actions it sees. It can then store

the recognized actions in a plan that can be executed later, or

it can ask for more information if the observed action is not

known or uncertain. Regarding the flow of information

through the system, it is the same as in the object naming

experiment but it now includes the Action Recognition

module. Under control of the Spoken Language Interface,

Action Recognition receives primitive events from Primitive

4449

Detection. It compares the segmented primitive event

sequences with known actions in the Action Database, and

provides in real time actions that are recognized or a special

event if an action has been segmented but not recognized.

These recognitions are then processed by Spoken Language

Interaction which manages the situation either by announcing

the name and arguments of the recognized action, or

prompting the user to describe the action and its arguments,

as illustrated in this dialog excerpt.

• [Robot] Initializing... about 5 sec ...What's next?

• [Human] Watch my actions

• [Robot] Ok. Show me something

• [Human] puts a coffee cup on the table

• [Robot] What happened?

• [Human] John puts the coffee cup

• [Robot] Ok. Show me something

• [Human] removes the coffee cup from the table

• [Robot] What happened?

• [Human] John takes the coffee cup

• [Robot] Ok. Show me something

• [Human] put a book on the table

• [Robot] I saw John puts the book

At this point the robot is able to recognize the two simple

actions put and take independently of the object targeted by

the action. In this scenario a single demonstration was

sufficient. In practice the robot may need to see the same

action several times before being able to recognize it. Lallee

et al [30] preformed extensive testing of this system on the

iCubLyon01 platform. In over 100 action presentations,

with the actions cover, uncover, put, take and touch, on

average the system required less than three examples to

correctly learn a given action so that it could subsequently be

recognized without error. The crucial experiment here

involved performing the same action learning tests on the

BERT platform, where visual perception based on pattern

matching with Spikenet would be replaced by reflective

marker tracking provided by VICON. We tested BERT with

the actions put, take, and touch. These actions were

successfully learned, and generalized to new objects. This

indicates that by abstracting 3D spatial-temporal information

in the EgoSphere, the CHRIS architecture is indeed

platform-independent. Our final experiment replies to the

question “can knowledge about the spatial-temporal

characteristics of an action learned on one platform be used

for action recognition on another?”

C. Knowledge transmission between Robots

Following an interaction session with humans, the robot

Knowledge Base acquires new knowledge (of object and

action definitions) through learning. This acquired

knowledge is stored prior to system shutdown and reloaded

at subsequent system startup, thus allowing progressive

accumulation of experience over extended time. In the

current experiment, we took the Action Recognition database

that was generated while actions were being learned on

BERT, and loaded it at startup on the iCubLyon01. We then

tested the Action Recognition capability, by performing put

and take actions. In a set of 20 trials (10 each for put and

take) we observed an overall recognition accuracy of 85%.

The errors were due to noise in the vision system which

produces false indications of motion (see discussion).

Importantly, the iCub was able to recognize actions that had

been learned on BERT, thus exploiting the experience of a

different robot.

VI. DISCUSSION

We present an architecture that exploits the idea of

abstracting the cognitive architecture from the robot specific

body and sensors. It should be noted that the cognitive

function of the robot can still be considered embodied as the

architecture acquires all its information from interaction

between the robot and the world, via the low level

abstraction of the EgoSphere. Thanks to this abstraction, we

were able to provide to different robots the same high level

capabilities for perception and reasoning, and to share

knowledge acquired via different sensors.

A. Limitations and future development:

The work described here emphasizes abstraction at the

sensory level (and does not address motor control), by

requiring a common format for spatial input to the system

from diverse sensors. A parallel approach is to be taken at

the motor command level (Motor Command Interface, Fig

1). This is based on the definition of a set of actions

including give, take, put, point and their arguments. Their

initial and final states are defined in a platform independent

manner, but the specific joint-level implementation is

specified in the context of the corresponding robot platforms.

This will provide a capability consistent with that described

by Demiris & Johnson [31] where action execution and

performance can mutually benefit from shared

representations. Action Recognition provides real-time

formation and recognition of sequential patterns of primitive

events (motion, visibility and contact) specific to different

actions. It is thus sensitive to noise in the 3D perception

sensors. We are currently rendering this approach more

robust. This includes the use of a probabilistic approach for

matching the segmented primitive event sequences with the

learned actions, optimization of spatio-temporal filtering to

reduce false motion from visual jitter, and inclusion of the

initial-to-final state transitions as additional components in

definition of an action. Likewise, in the current version,

successive actions (e.g. taking an object, then putting it at a

new location) should be separated by at least one second, so

that the system can automatically distinguish and segment

the perceptual primitive sequences. This is consistent with

our current constraint that when demonstrating action, users

show actions one after another, and wait to see if the robot

recognizes, before proceeding. Future work will address

4450

more fluent action sequences in the context of learning from

demonstration [32].The speech that we have used here is

relatively primitive and sometimes ungrammatical. We have

previously explored the more extensive possibilities of

relating the argument structure of grammatical sentences to

the argument structure of actions in terms of execution [15,

33, 34]. We are now extending these approaches to action

observation and description with the use of more appropriate

grammar.

B. Conclusions

While robotic platforms are becoming increasingly

complex, the development of cognitive systems can be

advanced by the development of more standard ways to

access the sensory-motor layer. Our system independent

architecture contributes to the deployment of cognitive

abilities on diverse robot platforms that can interface with

the abstraction layer defined by the EgoSphere and the motor

command interface. We believe that the continued

development of increasingly well defined and standard

interfaces between robot platforms and cognitive system can

accelerate the development of robot intelligence, and we are

taking a first step in that direction. In doing so we have also

taking the first steps towards the idea of having different

learning machines (the robots individuals) updating and

sharing a common global knowledge base, thus leveraging

experience from multiple sources [21]. Further work will

investigate methods to enhance this ability and to allow robot

platforms distributed over the world to take advantage of it.

VII. ACKNOWLEDGMENT

This research was supported by the European Commission

under the Robotics and Cognitive Systems, ICT Project

CHRIS (FP7-215805).

VIII. REFERENCES

[1] Tomasello, M., et al., Understanding and sharing intentions: The

origins of cultural cognition. Behavioral and Brain Sciences, 2005. 28(05):

p. 675-691.

[2] Warneken, F., F. Chen, and M. Tomasello, Cooperative activities in

young children and chimpanzees. Child Development, 2006. 77(3): p. 640-

663.

[3] Metta, G., et al. The iCub humanoid robot: an open platform for

research in embodied cognition. in PerMIS: Performance Metrics for

Intelligent Systems Workshop. 2008. Washington DC, USA.

[4] Yamato, J., J. Ohya, and K. Ishii. Recognizing human action in time-

sequential images using hidden Markov model. in IEEE Proc. Computer

Vision and Pattern Recognition. 1992.

[5] Johnson, M. and Y. Demiris, Perceptual perspective taking and action

recognition. International Journal of Advanced Robotic Systems, 2005.

2(4): p. 301-308.

[6] Bobick, A. and Y. Ivanov. Action recognition using probabilistic

parsing. in IEEE Proc. Computer Vision and Pattern Recognition. 1998.

[7] Demiris, Y. and B. Khadhouri, Hierarchical attentive multiple models

for execution and recognition of actions. Robotics and Autonomous

Systems, 2006. 54(5): p. 361-369.

[8] Warneken, F. and M. Tomasello, Helping and cooperation at 14 months

of age. Infancy, 2007. 11(3): p. 271-294.

[9] Brownell, C., G. Ramani, and S. Zerwas, Becoming a social partner

with peers: Cooperation and social understanding in one-and two-year-

olds. Child Development, 2006. 77(4): p. 803-821.

[10] Carpenter, M., M. Tomasello, and T. Striano, Role reversal imitation

and language in typically developing infants and children with autism.

Infancy, 2005. 8(3): p. 253-278.

[11] Dominey, P. and F. Warneken, The basis of shared intentions in

human and robot cognition. New Ideas in Psychology, 2009: p. (in press).

[12] Lallée, S., F. Warneken, and P. Dominey. Learning to collaborate by

observation. in Epirob. 2009. Venice.

[13] Ashley, J. and M. Tomasello, Cooperative problem-solving and

teaching in preschoolers. Social Development, 1998. 7(2): p. 143-163.

[14] Dominey, P., et al. Anticipation and initiative in human-humanoid

interaction. in International Conference on Humanoid Robotics. 2008.

[15] Dominey, P., A. Mallet, and E. Yoshida. Real-time cooperative

behavior acquisition by a humanoid apprentice. in International

Conference on Humanoid Robotics. 2007. Pittsburg, Pennsylvania.

[16] Tomasello, M. and A. Whiten, The cultural origins of human

cognition. 1999: Harvard University Press Cambridge, MA.

[17] Mandler, J., ed. Preverbal representation and language. Language

and space. 1996, MIT Press. 365–384.

[18] Talmy, L., Force dynamics in language and cognition. Cognitive

science, 1988. 12(1): p. 49-100.

[19] Kotovsky, L. and R. Baillargeon, The development of calibration-

based reasoning about collision events in young infants. Cognition, 1998.

67(3): p. 311-351.

[20] Siskind, J., Grounding the lexical semantics of verbs in visual

perception using force dynamics and event logic. Journal of Artificial

Intelligence Research, 2001. 15(1): p. 31-90.

[21] Steels, L. and J. Baillie, Shared grounding of event descriptions by

autonomous robots. Robotics and Autonomous Systems, 2003. 43(2-3): p.

163-173.

[22] Dominey, P. and J. Boucher, Learning to talk about events from

narrated video in a construction grammar framework. Artificial

Intelligence, 2005. 167(1-2): p. 31-61.

[23] Peters, I.R.A., K.A. Hambuchen, and R.E. Bodenheimer, The sensory

ego-sphere: a mediating interface between sensors and cognition. Auton.

Robots, 2009. 26(1): p. 1-19.

[24] Kaiser, M. and R. Dillmann. Building elementary robot skills from

human demonstration. in Proceedings of the International Conference on

Robotics and Automation. 1996.

[25] Nicolescu, M. and M. Mataric. Natural methods for robot task

learning: Instructive demonstrations, generalization and practice. in

Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent Systems. 2003.

Malbourne: ACM.

[26] Sutton, S., et al. Universal speech tools: The CSLU toolkit. in Fifth

International Conference on Spoken Language Processing. 1998.

[27] Fitzpatrick, P., G. Metta, and L. Natale, Towards Long-Lived Robot

Genes. Robotics and Autonomous Systems, 2007. 56(1): p. 29-45.

[28] Thorpe, S., et al., SpikeNet: Real-time visual processing with one

spike per neuron. Neurocomputing, 2004. 58: p. 857-864.

[29] Senju, A. and G. Csibra, Gaze following in human infants depends

on communicative signals. Current Biology, 2008. 18(9): p. 668-671.

[30] Lallée, S., et al., Linking language with embodied teleological

representations of action for humanoid cognition. Frontiers in Neurobotics

(submited), 2010.

[31] Demiris, Y. and M. Johnson, Distributed, predictive perception of

actions: a biologically inspired robotics architecture for imitation and

learning. Connection Science, 2003. 15(4): p. 231-243.

[32] Argall, B., et al., A survey of robot learning from demonstration.

Robotics and Autonomous Systems, 2009. 57(5): p. 469-483.

[33] Dominey, P., A. Mallet, and E. Yoshida. Progress in programming

the hrp-2 humanoid using spoken language. in IEEE International

Conference on Robotics and Automation. 2007.

[34] Dominey, P., A. Mallet, and E. Yoshida, Real-Time spoken-language

programming for cooperative interaction with a humanoid apprentice. Intl

J. Humanoids Robotics, 2009. 6(2): p. 147-171.

4451

