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Abstract— Direct photometric visual servoing has proved to
be an efficient approach for robot positioning. Instead of using
classical geometric features such as points, straight lines, pose
or an homography, as it is usually done, information provided
by all pixels in the image are considered. In the past mainly
luminance information has been considered. In this paper,
considering that most of the useful information in an image
is located in its high frequency areas (that are contours), we
have consider various possible combinations of global visual
feature based on luminance and gradient. Experimental results
are presented to show the behavior of such features.

I. OVERVIEW

Visual servoing consists in using data provided by a vision

sensor for controlling the motions of a robot [1]. Classically,

to achieve a visual servoing task, a set of visual features has

to be selected from the image allowing to control the desired

degrees of freedom. For year these features have mainly been

geometric features such as points, straight lines, pose [1].

Robust extraction and real-time spatio-temporal tracking of

visual cues is then usually one of the keys to success of a

visual servoing task.

More global information can be considered such as 2D

motion model [2]–[5]. Nevertheless, such approaches require

a complex image processing step. Removing the entire

matching process is only possible when closely tie the image

to the control. Considering the whole image as a feature has

previously been studied [6]–[10]. In [9], the visual features

are directly the image luminance. The control is then achieve

by minimizing the error between the current and the desired

image. The key point of this approach relies on the analytic

computation of the interaction matrix that links the time

variation of the luminance to the camera motions. In [6],

[7] an eigenspace decomposition is performed to reduce the

dimensionality of image data. The control is then performed

in the eigenspace and not directly with the image intensity.

In that case the interaction matrix related to the eigenspace

is not computed analytically but learned during an off-line

step. In [10], visual servoing uses directly the information

(as defined by Shannon) contained in the image. A metric

derived from information theory (mutual information) is used

as a visual feature for visual servoing us to build the control

law. [8] also consider the pixels intensity. This approach

is based on the use of kernel methods that lead to a high

decoupled control law but only four degrees of freedom are

considered.
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In visual servoing, a control law is designed so that

visual features s reach a desired value s
∗, leading to a

correct realization of the task. The control principle is thus

to regulate to zero the error vector e = s − s
∗. To build

the control law, the knowledge of the interaction matrix Ls

is usually required. For eye-in-hand systems and a static

environment, this matrix links the time variation of s to the

camera instantaneous velocity v

ṡ = Ls v (1)

with v = (v,ω) where v is the linear camera velocity and

ω its angular velocity. Considering direct visual servoing

scheme, the difficulty is to find a visual feature s that is

computed on the whole image and for which the interaction

matrix can be analytically computed.

The contribution of this paper are the definition of a new

visual feature s(r) (where r is the camera pose): the norm

of the image gradient, the interaction matrix that links the

variation of norm of the gradient to camera motion, and an

experimental analysis of the behavior of the system using

various way to integrate gradient information in the control

laws.

The next section, Section II, recalls the basic way to

achieve a direct photometric visual servoing process. The

definition of visual feature as introduced in [9] is considered.

Section III presents the new visual features proposed in this

paper based on the norm of the image gradient. Control laws

are presented in Section IV along with various choices for the

visual feature that consider luminance, gradient or various

combinations of these two features. Section V shows the

behavior of these various control laws with results obtained

on a six degrees of freedom robot.

II. LUMINANCE AS A VISUAL FEATURE

The visual features considered in this paper are the lumi-

nance I of each point of the image. In fact we have

s(r) = I(r) = (I1•, I2•, · · · , IN•) (2)

where Ik• is nothing but the k-th line of the image. I(r) is

then a vector of size N ×M where N ×M is the size of the

image. As mentioned in the previous Section, any control

law requires an estimation of the interaction matrix. In our

case, as already stated, we are looking for the interaction

matrix related to the luminance of a pixel in the image. It is

fully described in [9] and is recalled now.

The basic hypothesis assumes the temporal constancy of

the brightness for a physical point between two successive

images. This hypothesis leads to the so-called optical flow

constraint equation (OFCE) that links the temporal variation
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of the luminance I to the image motion at a given pixel x

[11].

More precisely, assuming that the point has a displacement

dx in the time interval dt, the previous hypothesis leads to

I(x + dx, t + dt) = I(x, t). (3)

Written under a differential form, a first order Taylor series

expansion of this equation about x gives

∇I⊤ẋ + İ = 0 (4)

with İ = ∂I/∂t. It becomes then straightforward to compute

the interaction matrix LI related to I by plugging the

interaction matrix Lx related to x into (4). We obtain

İ = −∇I⊤Lxv. (5)

Finally, if we introduce the interaction matrices Lx and Ly

related to the coordinates x and y of x, such as:

ẋ =
(

−1/Z 0 x/Z xy −(1 + x2) y
)

v (6)

that we can rewrite ẋ = Lxv and

ẏ =
(

0 −1/Z y/Z 1 + y2 −xy −x
)

v (7)

that we rewrite ẏ = Lyv and we obtain

LI = − (∇IxLx + ∇IyLy) (8)

where ∇Ix and ∇Iy are the components along x and y of the

spatial image gradient ∇I . Note that it is actually the only

image processing step necessary to implement the presented

method.

III. NORM OF THE GRADIENT AS A VISUAL FEATURE

Although the luminance is a very rich information, it can

be considered as unstable when large and non-affine lighting

variation occurred. Therefore, rather than considering the

luminance we propose here to use the norm of the image

gradient as a feature. Like the luminance we have a global

feature. The resulting visual servoing scheme will still then

not require any matching nor tracking step. Here again, the

main difficulty, is to derive the interaction matrix related to

this new visual feature.

The square of the norm of the gradient in a point x =
(x, y) is given by:

‖ ∇I(x, y) ‖2= ∇I2
x(x, y) + ∇I2

y (x, y). (9)

This measure is classically used to determine regions of rapid

intensity changes. This usually corresponds to edge in the

image.

Considering the square of the norm of the image gradient

(see Fig. 1) as a visual feature, vector s(r) is given by:

s(r) =‖ ∇I(r) ‖2= ∇I2
x(r) + ∇I2

y (r) (10)

where ‖ ∇I(r) ‖2 is the square of the norm of the image

gradient.

As in Section II we therefore need to compute the interac-

tion matrix related to the norm of the gradient. This matrix

Fig. 1. An image (a) I(r) and (b) the norm of its gradient ‖ ∇I(r) ‖2

LG relies the variation of the norm of the image gradient to

the camera velocity. We have

LG =
∂s

∂x
Lx +

∂s

∂y
Ly (11)

with
∂s

∂x
= 2

(

∂2I

∂x2

∂I

∂x
+

∂2I

∂x∂y

∂I

∂y

)

(12)

and
∂s

∂y
= 2

(

∂2I

∂x∂y

∂I

∂x
+

∂2I

∂y2

∂I

∂y

)

. (13)

After some rewriting, we finally get:

LG = 2

[(

∇Ix

∂∇Ix

∂x
+ ∇Iy

∂∇Iy

∂x

)

Lx

+

(

∇Ix

∂∇Ix

∂y
+ ∇Iy

∂∇Iy

∂y

)

Ly

]

. (14)

IV. CONTROL LAW AND CHOICE OF VISUAL FEATURE

A. Control law as an optimization problem

To derive the control, we choose to consider visual servo-

ing as an optimization problem [12]. The goal is to minimize

the following cost function

C(r) = (s(r) − s(r∗))
⊤

(s(r) − s(r∗)) (15)

where r describes the current pose of the camera with respect

to the object (it is an element of R
3 ×SO(3)) and where r

∗

is the desired pose. In that case, a step of the minimization

scheme can be written as follows

rk+1 = rk ⊕ vd (rk) (16)

where “⊕” is the operator that updates the pose rk and

which is “implemented” through the robot controller and

d (rk) a direction of descent. In that case, the following

velocity control law can be derived considering that λk is

small enough

v = λkd (rk) (17)

λk is often chosen as a constant value. In the remainder of

the paper we will omit the subscript k for the sake of clarity.

When rk lies in a neighborhood of r
∗, s(r) can be

linearized around s(rk) and plugged into (15). Then, after

having zeroed its gradient, we obtain

d (r) = −
(

Ls
⊤
Ls

)−1

∇C (r) (18)
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that becomes:

v = −λL
+
s (s(r) − s(r∗)) . (19)

This is the control law usually used in visual servoing [1].

In our case we consider a Levenberg-Maquardt like ap-

proach. This method considers the following direction

d(r) = − (G + µ diag(G))
−1

∇C(r) (20)

where G is usually chosen as ∇2C(r) or more simply as

Ls
⊤
Ls leading in that last case to

v = −λ (H + µ diag(H))
−1

L
⊤

s (s(r) − s(r∗)) (21)

with H = Ls
⊤
Ls. The parameter µ makes possible to switch

from a steepest descent like approach to a Gauss-Newton

one [9]. For all the experiments reported in the next section,

the following value has been used: µ = 0.01.

B. Choice of the visual features

In this paper, for comparison issue, we will consider

various visual features:

1) Luminance: Considering direct photometric visual ser-

voing the basic choice is to consider the luminance as the

visual feature. In that case, and denoting I(r) the image

(represented here by a vector), we have s = I(r). This

corresponds to the visual feature presented in Section II and

used in [9]. In this case the control law is given by:

v = −λ (HI + µ diag(HI))
−1

L
⊤

I (I(r) − I(r∗)) (22)

with HI = LI
⊤
LI

2) Weighted luminance: The basic way to introduce the

square of the norm of the gradient is to weight, the luminance

with a scalar α, α ∈ [0, 1] which will be high when the norm

of the gradient is large (ie, where there is useful information)

and which decreases when gradient magnitude decreases (ie,

in area with no significant information). Let us denote ‖
∇Imax ‖2 the maximum of the norm of the gradient over

all the pixels of the image. The coefficient α(x, y) for pixel

(x, y) is then given by

α(x, y) =
‖ ∇I(x, y) ‖2

‖ ∇Imax ‖2

In that case, the visual feature is given by s = DI(r)
where D is a diagonal matrix that contains the weights

α associated to each pixel. Formally, when computing the

interaction matrix related to s we should consider that D is

modified when the camera is moving. Nevertheless we will

consider here that it is a constant. The control law here may

be consider as an iterative reweighted least square (IRLS) as

presented in [13].

3) Norm of the image gradient: The other solution to

build a control law based on gradient information is to

directly consider a vector of visual feature build using the

square of the norm of the gradient. In that case we have

s =‖ ∇I(r) ‖2 which corresponds to the visual feature

presented in Section III.

The control law is then given by:

v = −λ (HG + µ diag(HG))
−1

L
⊤

Ge (23)

with

e = ‖ ∇I(r) ‖2 − ‖ ∇I(r∗) ‖2

and with HG = LG
⊤
LG and LG given by equation (14).

4) Luminance and norm of the gradient: Finally, one can

consider both luminance and norm of the gradient within

the same visual feature vector. In that case s = (I(r), ‖
∇I(r) ‖2)⊤ that stack the two former visual features. The

goal is here to take advantage of both luminance and gradient

information.

V. EXPERIMENTAL RESULTS

In all the experiments reported here, the camera is

mounted on a 6 degrees of freedom gantry robot. Control

law is computed on a Core 2 Duo 3Gz PC. The image

processing time (Gaussian filter and the 6 gradient images)

along with the interaction matrix computation required 60ms

(for 320×240 images). Let us emphasize the fact that for all

these experiments, the six degrees of freedom of our robot

are controlled.

A. Comparison of the various visual features

For the first experiment a planar object has been used

(see Fig. 2). The initial error pose was ∆rinit = (3 cm, -

18cm, 8cm, 17◦, 2◦, -9◦). The desired pose was so that the

object and CCD planes are parallel. The interaction matrix

has been computed at each iteration but assuming that all

the depths are constant and equal to Z∗ = 80 cm, which is

a coarse approximation. We conduct a full set of experiment

with all the visual feature presented in Section IV-B. In each

case we report the evolution of the value C(r) of the cost

function (see equation (15)), the camera velocity v = (v,ω)
in meter/s and radian/s and the positioning error (between r

and r
∗) in meter and radian.

We assume in this section that the temporal luminance

constancy hypothesis is valid, i.e. we use the interaction

matrix given in (8). In order to make this assumption as

valid as possible, a diffuse lighting as been used. Moreover,

the lighting is also motionless wrt the scene being observed.

In the first experiment we consider luminance as the visual

feature s(r) = I(r). Fig. 2a and 2b show the initial and

desired image. Fig. 2c and 2d show the error images at the

beginning and at the end of the positioning task. These later

images can be seen as the error vector I(r) − I(r∗) used in

the control law. In that case, as expected, the robot converges

toward the correct pose (see Fig. 3) with a huge precision

(see Table I third row).

In a second experiment, we consider the square of the

norm of the gradient as visual feature s(r) =‖ ∇I(r) ‖2.

Fig. 4a and 4b show the scene viewed from the initial and

desired pose. Fig. 4c and 4d shows the norm of the gradient

images at the beginning and at the end of the positioning

task. This can be seen as the current (resp. desired) visual

feature s (resp. s
∗).

Image 4e shows the error in the luminance space (not

used in the control law) whereas Image 4f shows the error

between the two image gradient. Both images are acquired

from the initial pose. This later image can be seen as the
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a b

c d

Fig. 2. Luminance as a visual feature [9] (a) Scene viewed from the
initial pose (b) scene viewed from the desired pose r∗ (c) initial error
(I(r) − I(r∗)) (d) final error.
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Fig. 3. Luminance as a visual feature [9] (a) Cost function I(r)− I(r∗),
(b-c) Camera velocities (m/s or rad/s), (d) Translational part of ∆r (m), (e)
Rotational part of ∆r (rad.)

error vector ‖ ∇I(r) ‖2 − ‖ ∇I(r∗) ‖2 used in the control

law. The last row show similar error images but for the

final pose reached by the robot. Let us note that image

gradient and image gradient difference are normalized for

visualization issue which artificially emphasizes noise when

gradient difference is very small (as can be seen on Fig. 4i).

When considering the norm of the gradient, although

the robot behavior (3D trajectory and velocity profile) are

different (see Fig. 3 vs Fig. 5), the camera reaches its desired

pose with a similar accuracy (see Table I, 4th row). In both

cases, the precision accuracy is less than 0.2mm in translation

and less than 0.02 degree in rotation. Let us note that is

very difficult to reach so low positioning errors when using

geometric visual features as it is usually done.

a b

c d

e f

h i

Fig. 4. Square of the norm of the gradient as a visual feature (a) Scene
viewed from the initial pose (b) scene viewed from the desired pose r∗

(c) initial visual feature s(r) =‖ ∇I(r) ‖2 (d) desired visual feature s∗ =
∇2I(r∗) (e) initial error in the intensity space (I(r)−I(r∗) and (f) error on
the square of the norm of the gradient used in the control law (‖ ∇I(r) ‖2

− ‖ ∇I(r∗) ‖2) (g) final error in the intensity space and (h) final error
on the square of the norm of the gradient used in the control law (error is
normalized)

approach ∆tx ∆ty ∆tz ∆Rx ∆Ry ∆Rz

initial error -30.58 -180.22 82.98 -17.92 1.32 -9.5

Luminance 0 -0.16 -0.02 -0.01 -0.01 0

Gradient 0.2 -0.11 -0.04 -0.01 0 0.02

Lum. & gradient 0.32 0.23 -0.04 0.05 -0.04 0.02

Weighted lum. 0.64 -0.46 -0.04 -0.05 -0.02 -0.08

3D initial error 167.88 0.26 2.19 0.02 -18 0.28

3D final error 0.24 -0.08 0.1 -0.01 0.02 0.1

TABLE I

POSITIONING PRECISION: WE COMPARED THE DIFFERENT APPROACH

PRESENTED IN THE PAPER. FINAL ERROR IN mm AND DEGREES.

B. Hybrid visual feature: luminance and gradient

We also experiment a weighted combination of luminance

and gradient within the same control law as defined in

Section IV-B.2. Although efficient, the camera converges

toward the correct pose, it has to be noted that the positioning

error is higher than with the two previous experiments (see

Fig. 6 and Table I). This is mainly due to the fact that

less information are considered (that is the area with low

gradients).

In the next experiment, we followed the standard practice
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Fig. 5. Square of the norm of the gradient as visual feature (a) Cost
function ‖ ∇I(r) ‖2 − ‖ ∇I(r∗) ‖2, (b) Translational part of ∆r (m),
(c) Rotational part of ∆r (rad.)
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Fig. 6. Using gradient based weighted luminance s = D I(r) (a) Cost
function, (b) Translational part of ∆r (m), (c) Rotational part of ∆r (rad.)

in visual servoing by stacking luminance and the norm of

the gradient for each image pixel, as defined in Section IV-

B.4, in order to create the visual features and its interaction

matrix. As expected, in that case we have a good positioning

accuracy with a higher convergence rate (see Fig. 7 and

Table I).

C. Servo on a 3D object

The goal of the last experiment is to show the robustness

of the control law presented in Section IV-B.3 wrt the depths.

For this purpose, a non planar scene has been used as

shown on Fig. 8. It shows that large errors in the depth are

introduced. Let us recall that since depths are not known (and

can hardly be recovered on-line) assuming a constant depth

in the interaction matrix introduce a modeling error in the

control law. Nevertheless, considering luminance as a visual

feature, it has already been demonstrated that it is robust

to depth variations. Here we consider norm of the gradient

as the visual feature. Although the minimization of the

cost function is more complex, the positioning error always
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Fig. 7. Stacking luminance and norm of the gradient s = (I(r), ‖
∇I(r) ‖2)⊤ (a) Cost function, (b) Translational part of ∆r (m), (c)
Rotational part of ∆r (rad.)

decreases leading to positioning accuracy of ∆r =(0.24mm,

-0.07mm, 0.09mm, -0.014deg, 0.022deg, 0.05deg).

D. Sensibility to light variation

Finally, one of the advantage of the new feature presented

in Section IV-B.3 is to be more robust to light variation than

luminance. One can see on Fig. 11 that despite an important

residual on the cost function due to the modification of

lighting conditions during the positioning task (wrt to, eg,

Fig. 5a) the final error of the positioning task is quite

negligible (less than 0.4mm in translation and 0.12 degrees in

rotation to be compared to an error of 1mm and 0.2 degrees

when considering luminance feature).

VI. CONCLUSION

This study was part on research that seek to define direct

visual servoing strategy. The goal is to proposed a system

that does not require any matching or tracking process which

have proved to be one of the bottleneck for the development

of visual servoing based systems. Pure photometric visual

servoing have first been introduced in [6], [7], [9]. Consid-

ering that most of the information in an image are located in

its high frequency areas (that are contours), we have consider

a new visual feature based on gradient information. We have

shown in this paper that it is possible to use the square norm

of the gradient of all the pixels in an image as visual features

in visual servoing.
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