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Abstract— The paper deals with modeling of human-like
reaching movements. Several models are under study. First,
we consider a model of reaching movement that corresponds
to the minimization of control effort. It is shown that this
model is represented by the well-known Beta function. The
representation can be used for the construction of fractional
order models and also for modeling of asymmetric velocity
profiles. The natural boundary conditions, defined in this part
of the paper, can also be used in modeling asymmetric velocity
profiles. Finally, we consider the minimum time formulation of
the optimization problem and (for the n-th order integrator)
find its analytical solution in the general form.

I. INTRODUCTION

Modeling of human-like reaching movements is a very
important research problem in modern robotics and computer
animation. In this paper, we address this problem using an
optimization approach where the trajectory of the human
arm is predicted by minimizing, over the movement time
T , an integral performance index J subject to boundary
conditions imposed on start and end points. In our analysis,
we will consider a simplified, one-dimensional model of
human movements where the configuration dependence of
the human arm is ignored and the motion considered at
the hand level. This simplified model is not an end in
itself. It just helps to introduce and clarify different issues,
such as the smoothness and the asymmetry of the hand
velocity profiles, arising in the computational representation
of reaching movements.

Several modeling issues are studied in this paper. First,
in Section II we consider a generalization of the classical
minimum jerk model of reaching movements [1], relate it
to the lowest polynomial approach, and derive the solution
in the form of the regularized incomplete Beta function.
The solution was first obtained in [2]. Here, we present a
different (more solid and compact) derivation and show how
this representation can be useful for modeling of asymmetric
velocity profiles. The fractional order models of reaching
movements are also discussed and illustrated in this section.

Next, in Section III, we address the boundary conditions
of the optimization task. Since the optimal solution is defined
not only by the optimality criterion but also by the boundary
conditions, the latter is not less important than the former.
However, the role of the boundary conditions is rarely dis-
cussed in the literature on reaching movements. We analyzed
it in [3]. However, the system under consideration in [3]
was somewhat complex (the manipulation of multi-mass
flexible objects in virtual dynamic environments). Certainly,
the boundary conditions can be (and even, methodologically
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speaking, should be) communicated first for the free-space
reaching movements. In this section we first introduce natural
boundary conditions. We show then that a weighted formu-
lation of the natural boundary conditions can be used for
modeling of coordinate jumps and also for fitting asymmetric
velocity profiles.

At last, in Section IV, we address the formation of
reaching movements with bounded control actions and con-
sider the minimum time formulation of the optimization
problem. Here, for the model under consideration (n-th order
integrator) we first establish the general analytical solution
that is not available in the literature on optimal control.
We show then that this solution produces smooth velocity
profiles for n > 2. We thus argue that, contrary to popular
opinion, the minimum time model can be a reasonable
candidate for modeling human-like reaching movements.
Finally, conclusions are summarized in Section V.

II. MINIMUM EFFORT MODEL

Consider a generalized criterion of optimality minimizing
the squared n-th derivative of the hand position x over the
movement time:

J =
1

2

∫ T

0

(
dnx

dtn

)2

dt. (1)

From the control theoretical point of view this is the mini-
mum effort criterion for the controlled system x(n)(t) = u,
describing the hand movement in the free space. Here,
u is the control input, and n is the order of the motor
dynamics associated with the hand. This order implies 2n
boundary conditions necessary for the correct formulation
of the optimization problem. The state vector is composed
of the hand position and its first n−1 derivatives. Assuming
that the hand is at rest in the beginning and in the end of
the reaching movement, one assigns

x(0)=0, ẋ(0)=0, ẍ(0)=0, . . . , x(n−1)(0)=0, (2)

x(T )=L, ẋ(T )=0, ẍ(T )=0, . . . , x(n−1)(T )=0, (3)

where L stands for the length of reaching movement.
As can be shown, the Euler-Lagrange equation for the

criterion (1) is x(2n)(t) = 0. The general solution for this
equation is given by the polynomial x(t) =

∑2n−1
i=0 ci t

i,
where the coefficients ci are established from the bound-
ary conditions (2,3). Thus, the optimization problem under
consideration is equivalent to the construction of the lowest
order polynomial satisfying the boundary conditions (2,3).

To clarify the analytical structure of the solution, we recast
the optimization task as the optimal control problem. Let us
introduce the state vector x = {x, ẋ, . . . , x(n−1)}T and define
the control input u = x(n). The state dynamics are the n-th
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order integrator ẋ = Ax + bu, where b = {0, . . . , 0, 1}T,
and the elements of the matrix A are defined as

[A]ij =

{
1 if j = i+ 1,
0 otherwise. (4)

The analytical solution for the minimum effort control
problem, seeking the control minimizing J = 1

2

∫ T

0
u2 dt

for the dynamic system ẋ = Ax+bu and the given boundary
conditions x(0) and x(T ), is well-established in the control
literature [4]. It can be represented as

x(t) = eAt
({

I−W (t)W−1(T )
}
x(0)

+W (t)W−1(T )e−ATx(T )
)
, (5)

where

W (t) =

∫ t

0

e−AsbbTe−ATsds. (6)

where T stands for the operation of transposition. For the
n-th order integrator the matrix exponent is defined as

[
eAs

]
ij
=

⎧⎨
⎩

sj−i

(j − i)!
if j ≥ i,

0 if j < i,
(7)

and by direct calculations one finds

[W (t)]ij =
(−1)i+j t2n+1−i−j

(2n+ 1− i− j)(n− i)!(n− j)!
. (8)

As shown in [5], the matrix W (t) can be decomposed as
W (t) = tP (−t)HP (−t), where

[P (t)]ij =

⎧⎨
⎩

tn−j

(n− i)!
if i = j,

0 otherwise.
(9)

and H is the Hilbert matrix

[H]ij =
1

(2n+1−i−j)
, (10)

the inverse of which is known to be[
H−1

]
ij
=

(−1)i+j(2n−i)!(2n−j)!

(2n+1−i−j){(n−i)!(n−j)!}2(i−1)!(j−1)!
.

(11)
The elements of W−1(t) can now be easily established:[

W−1(t)
]
ij
= t−1P−1(−t)H−1P−1(−t)

=
(2n−i)!(2n−j)!

(2n+1−i−j)(n−i)!(n−j)!(i−1)!(j−1)!t2n+1−i−j
.

(12)

For the rest-to-rest movements x(0) = 0, x(T ) =
{L, 0 . . . , 0}T, and e−ATx(T ) = x(T ). The components
of the vector x(t), which are the derivatives of the corre-
sponding order of x(t), are found from (5,7,8,12) by direct
computation:

xi(t) � x(i−1)(t)=
L

T i−1

n∑
j=i

n∑
s=1

(−1)j+s(2n−1)!(2n−s−1)!τ2n+1−i−s

(j−i)!(2n+1−s−j){(n−s)!}2(n−j)!(n−1)!(s−1)!
,

(13)

where τ = t/T . To find the velocity ẋ(t), we set i = 2 and,
after some manipulations with the binomial expansion for
(1−τ)n−1, obtain ẋ(t) = L ˙̄x(τ)/T , where the normalized
velocity

˙̄x(τ)=
(2n−1)!τn−1

(n−1)!

n∑
s=1

(−1)n+sτn−s

(n−s)!(s−1)!
=

τn−1(1−τ)n−1

B(n, n)
,

(14)
and

B(n, n) =
(n− 1)!(n− 1)!

(2n− 1)!
(15)

is the symmetric Beta function. Therefore, the normalized
solution x̄(τ) � x(t)/L can be formally represented as

x̄(τ) =

∫ τ

0
pn−1(1− p)n−1dp

B(n, n)
� B(τ ;n, n)

B(n, n)
� B̄(τ ;n, n).

(16)
This expression is known as the regularized incomplete
Beta function [6]. The first 10 solutions for the normalized
velocity ˙̄x(τ) are plotted in Figure 1. While the solutions are
continuous functions of time for any fixed n, in the limiting
case of n → ∞ the solution is discontinuous.
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Fig. 1. Normalized velocities in the minimum effort model for n =
1, . . . , 10.

Several comments are in order.
1o. It is noticed in [1] that while, in general, the minimum

jerk model (n = 3) is a good candidate for mimicking
human-like movements, the minimum snap model (n = 4)
sometimes also provide a reasonable fit to the experimental
data of unconstrained reaching movements. In this connec-
tion, it should be noted that the Beta function is defined not
only for integer but also for real n. This suggests that the cri-
terion (1) can be generalized to non-integer orders using, for
example, Riemann-Liouville fractional integrals and deriva-
tives [7]. It also suggests that in fitting experimental data
of reaching movements we can use real numbers n ∈ [3, 4]
(see Figure 2). The assumption of real n sounds biologically
plausible because the natural sensors and actuators in the
human body are likely to deal with the fractional derivatives.

2o. It is well established that for relatively fast movements
the velocity profile of the hand trajectory tends to a symmet-
ric bell-shaped form [8], [9]. However, for relatively slow
movements the velocity profiles tends to be left-skewed [10],
[11]. There also exists experimental evidence that for very
fast movements the velocity profiles can be even slightly
skewed to the right [10], [12].

Note that the symmetry of the Beta function with respect
to its last two arguments in (14,16) is explained by the
symmetric placement of the boundary conditions. It can
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Fig. 2. Normalized velocity profiles for the integer (thick lines: n = 3
and n = 4) and fractional (thin lines: n = 3.25, n = 3.5, and n = 3.75)
orders.

be shown that for the asymmetric placement (na boundary
conditions at the start point and nb at the end point, na+nb=
2n) the solution is expressed through the asymmetric Beta
function

x̄(τ) =

∫ τ

0
pna−1(1− p)nb−1dp

B(na, nb)
� B(τ ;na, nb)

B(na, nb)
, (17)

where

B(na, nb) =
(na − 1)!(nb − 1)!

(na + nb − 1)!
. (18)

The asymmetric Beta functions are illustrated in Figure 3.
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Fig. 3. Normalized velocity profiles given by the symmetric and asym-
metric Beta functions.

3o. Note that while the function (17) is the lowest order
polynomial satisfying the asymmetric boundary conditions,
it does not have a variational meaning. Strictly speaking, it
does not minimize (1) because in the classical variational
formulation the boundary conditions at the end-points (those
that are imposed directly, as in (2,3), and those obtained
automatically from the variational formulation and some-
times called the natural boundary conditions [13]) are always
placed symmetrically.

III. NATURAL BOUNDARY CONDITIONS

This section addresses the formation of the boundary
conditions. They are an important part of the optimization
problem because the optimal solution is defined not only by
the form of the optimality criterion but also by the boundary
conditions, and they are not less important than the criterion
itself.

In the optimization problem considered in Section II we
fixed first n − 1 derivatives of the hand position, which,
as far as human movements are concerned, might not be

always plausible from the physiological point of view1.
Note that in experiments human subjects are normally not
literally requested to produce zero end-point accelerations;
they are only instructed to move comfortably from one
point to another and stop there. Therefore, it does not seem
reasonable to constrain the initial and final hand accelerations
to zero in the optimization models. We can reliably pose
the boundary conditions only for position and velocities.
The remaining boundary conditions should be established
differently.

Consider again the optimality criterion given by (1) but
assume now that instead of (2,3) we fix only the first k ≤
n− 1 derivatives of the hand position:

x(0) = 0, ẋ(0) = 0, . . . , x(k)(0) = 0, (19)

x(T ) = L, ẋ(T ) = 0, . . . , x(k)(T ) = 0. (20)

The variation of the functional (1) is defined as

δJ =

∫ T

0

x(2n)(t) δx dt+

[
n−1∑
i=0

x(2n−1−i)(t) δx(i)(t)

]T

0

.

(21)
Taking into account that δx(i)(0) = δx(i)(T ) = 0 for i =
0, . . . , k, from the necessary condition of optimality, δJ = 0,
one obtains the Euler-Lagrange equation x(2n)(t) = 0, and
establishes the following boundary conditions:

x(n)(0) = 0, x(n+1)(0) = 0, . . . , x(2n−2−k)(0) = 0,(22)

x(n)(T ) = 0, x(n+1)(T ) = 0, . . . , x(2n−2−k)(T ) = 0,(23)

Note that in the calculus of variations the boundary con-
ditions (22,23), obtained from the condition δJ = 0, are
called natural [13]. The solution of the optimization problem
is the polynomial of degree 2n − 1 whose coefficients are
established from the directly imposed (19,20) and the natural
(22,23) boundary conditions.

Consider, for the purpose of illustration, the case of n = 3
and k = 1. In this model we fix the boundary conditions
for the position and velocities of the hand, while the hand
accelerations in the beginning and the end of movement are
defined automatically from the minimization of the squared
hand jerk over the movement time. This differs from the
conventional formulation where the boundary conditions for
accelerations are set to zero. The minimum hand jerk model
with the boundary conditions (19,20) and (22,23) yields

x = Lτ2(2.5− 2.5τ2 + τ3), (24)

where τ = t/T , while the conventional minimum hand jerk
model gives

x = Lτ3(10− 15τ + 6τ2). (25)

Both these models produce single-peaked velocity profiles.
However, the maximal velocity in the former model is
1.5625L/T , while in the latter one it is 1.875L/T .

It should be noted that the solution (24) features non-zero
initial and final acceleration jumps because in this model
ẍ(0) �= 0 and ẍ(T ) �= 0. To avoid possible confusion,
it should be said that no coordinate jumps are physical,
of course. Strictly speaking, the exact modeling of this

1For example, in the minimum snap model (n = 4) the end-point jerk
are supposed to be zero. However, it is not evident that human can do the
end-point control of the 3rd derivative of the hand position.
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phenomenon requires more sophisticated models considered
at different time scales as the coordinate (acceleration, in our
case) change is considerably high in a short instance of time.
However, in simplified models, such as the one considered
in our paper, this behavior can be modeled by the jumps in
the boundary conditions.

The assumption of zero initial and final hand accelerations
can be too restrictive when dealing with fast movements
in highly dynamic reaching tasks [3]. For the free-space
movements the applicability of the models (24) or (25) is
likely to depend on the movement duration T . For relatively
slow movements the central nervous system (CNS) has
enough time to nullify the end-point accelerations and this
defines the model (25). For relatively fast movements the
end-point accelerations are placed at will and one gets the
model (24).

To unify the minimum hand jerk model (24) with natural
boundary conditions for accelerations with the conventional
one (25), it is reasonable to assume that the CNS controls the
boundary conditions. Intuitively, the way they are controlled
is changed from task to task and, in general, the more
dynamic the reaching task the looser the control of the
boundary conditions.

To reflect the cost of control of the boundary conditions,
one can replace the optimality criterion (1) by

J =
1

2

∫ T

0

(
dnx

dtn

)2

dt +

1

2

n−1∑
i=0

wi0

(
x(i)(0)−x̃i

0

)2

+ wiT

(
x(i)(T )−x̃i

T

)2

. (26)

Here, x̃i
0 and x̃i

T are the “desired” steady state values for
the derivatives of the hand trajectory at the boundary points,
and wi0 ≥ 0 and wiT ≥ 0 are the corresponding weight
coefficients assigned by the CNS. For simplicity, we assume
that x̃i

0 = 0 for i = 0, . . . , n, x̃i
T = 0 for i = 1, . . . , n, and

x̃0
T = L.
Consider now the criterion of optimality given by (26).

Note that now the separation of the boundary conditions
into the directly imposed and the natural ones is no longer
necessary, as we assume that all of them are controlled by
the CNS and all of them are established from the condition
δJ = 0. In other words, all the boundary conditions are
natural now. It is straightforward to show that the variation
of the functional (26) is defined as

δJ =

∫ T

0

x(2n)(t) δx dt+

[
n−1∑
i=0

x(2n−1−i)(t) δx(i)(t)

]T

0

+

n−1∑
i=0

wi0

(
x(i)(0)−x̃i

0

)
δxi(0)+wiT

(
x(i)(T )−x̃i

0

)
δxi(T ).

(27)

From δJ = 0 one obtains the Euler-Lagrange equation,
x(2n)(t) = 0, and establishes the natural boundary condi-
tions. Since the variations δxi(t) are not restricted at the
boundary points, one obtains:

−x(2n−1−i)(0) + wi0

(
x(i)(0)− x̃i

0

)
= 0, (28)

x(2n−1−i)(T ) + wiT

(
x(i)(T )− x̃i

T

)
= 0, (29)

where i = 0, . . . , n−1. It is worth pointing out two limiting
cases. First, if wi0 → ∞ (the CNS places a very high gain)
the initial state for the i-th derivative coincides with the
desired one, as the condition (28) is reduced to x(i)(0) = x̃i

0.
If, on the other hand, the CNS cannot afford to control
x(i)(0) then wi0 → 0 and we get x(2n−1−i)(0) = 0.

Let us continue the illustrative example of n = 3 and
assign x̃i

0 = 0, i = 0, 1, 2, x̃0
T = L, and x̃i

T = 0, i = 1, 2.
Assuming the tight control for the initial and final position
and velocity, we set wi0 = wiT = ∞, i = 0, 1. By
considering, for simplicity, the symmetric assignment of the
accelerations weights, define w � w20 = w2T . It is not
difficult to show that the optimal solution, parameterized by
the acceleration weight w is defined as

x =
Lτ2

(
30 + 10w̄τ − 15(2 + w̄)τ2 + 6(2 + w̄)τ3

)
(12 + w̄)

,

(30)
where τ = t/T , and w̄=wT . For w = 0 we get the model
(24) with natural boundary conditions for accelerations, and
for w → ∞ we get the conventional minimum hand jerk
model (25). Changing the acceleration weight from zero to
infinity defines a family of curves (all in the class of the
minimum hand jerk models). The normalized velocity and
acceleration profiles of this family are shown in Fig. 4.
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Fig. 4. Velocity and acceleration profiles for the family of curves (30).

Several comments are in order.
1o. Asymmetric velocity profiles can be obtained by asym-

metric placement of the weight coefficients (wi0 �= wiT ).
Note also that the optimality criterion (26) can be generalized
by the introduction of matrix weight coefficients.
2o. It is not clear how specifically the CNS may assign

the weight coefficients. Intuitively, the human perception and
control of position is better than that of velocity, that of
velocity is better than that of accelerations, and so on, and
it is plausible to assume that wi,0 > wi+1,0 and wi,T >
wi+1,T . The specific assignment of the weight coefficients
must depend on how fast the reaching movement under
inspection is. In this connection, it should be noted that the
analysis of reaching movements is often conducted under
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the subtle assumption that the CNS operates without undue
stress, away from the limits of neuromuscular performance
[1]. But this assumption is not specific.

It is reported that for comfortable reaching movements in
free space the movement time is in the range of [0.25, 0.8]s
for the traveling distance varying from 0.2m to 0.5m [14].
Since the conventional (minimum hand jerk or and the
minimum torque change) models are experimentally verified
for these ranges, one can presume that in such movements
the boundary conditions for the hand accelerations are zero.
However, if the movement time is decreased the CNS ob-
viously cannot afford to keep the initial hand accelerations
zero. Therefore, for certain ranges of time the reaching move-
ments will feature the acceleration jumps (soft impacts). And
if the movement duration is decreased further, the movements
will feature even the velocity jumps (hard impact). One can
see such impulsive movements in the exercises of karate
fighters.

Obviously, the movement time T cannot be reduced arbi-
trarily without violating the constraints on the magnitude of
the control input. These constraints were ignored so far in
our paper. Taking them into account would lead to different
models with possibly different criteria of optimality. One of
these models is the minimum time model.

IV. MINIMUM TIME MODEL

In this section, the hand trajectory x(t) is determined by
minimizing the performance index

J =

∫ T

0

dt = T, (31)

where T is the movement time to be obtained. For the
simplicity of formulation, we will consider the rest-to-rest
time-optimal control where the boundary conditions are
defined by (2,3) and the scalar control input is bounded as

|u(t)| ≤ U. (32)

For a linear controllable system, existence and unique-
ness of the time-optimal solution are guaranteed, and the
solution is “bang-bang” control with a finite number of
switches [15]. It is known [16] that for the system under
consideration (n-th order integrator) the optimal solution is
symmetric about T/2, and the number of switches is n+ 1
(t0 = 0, t1, t2, . . . , tn = T ). However, to the best of our
knowledge, the analytical form of the general (with respect
to the order n) solution does not seem to be available in the
literature.

Assuming L > 0, we set u(t) = (−1)sU for the time
interval t ∈ [ts, ts+1], s = 0, 1, . . . , n−1, and, by integrating
x(n) = u(t), define the (n− k)-th derivative (k = 1, . . . , n)
of the hand position:

x(n−k)(t)=
(t−ts)

k

k!
(−1)sU+

k−1∑
p=0

x(n−k+p)(ts)
(t−ts)

p

p!
.

(33)
By setting t = ts+1 and considering the resulting recurrent
relationship with the zero initial condition (2), one can

represent x(n−k)(ts) in the following non-recurrent form

x(n−k)(ts) =
U

k!

s∑
i1=1

s∑
i2=1

. . .

. . .

s∑
ik=1

(−1)min{i1,i2,...,ik}−1Δti1Δti2 . . .Δtik , (34)

where Δti = ti − ti−1, and s = 1, 2, . . . , n. Now, substitute
x(n−k)(tn), k = 1, 2, . . . , n, into the boundary condition (3).
After some algebra, one obtains the following system of n
equations

2

{
n−1∑
i=1

(−1)itki

}
+ (−1)ntkn = 0, k = 1, . . . , n−1,(35)

2

{
n−1∑
i=1

(−1)itni

}
+ (−1)ntnn = (−1)nn!L/U, (36)

with respect to the unknown switching times t1, t2, . . . , tn.
The system (35) is homogenous, and with the introduction
of the non-dimensional switching times τi = ti/tn it is
converted to the following form

n−1∑
i=1

(−1)iτki = (−1)n+1/2, k = 1, . . . , n− 1. (37)

The solution for this system is given by

τi = sin2
(
πi

2n

)
, i = 1, . . . , n− 1. (38)

This can be shown by converting (38) to the double angle
representation, substituting the result into (37), and using the
known (see section 4.4.2 of [17]) identity

n−1∑
k=0

(−1)k cosm
πk

n
=

⎧⎨
⎩

1

2

{
1− (−1)m+n

}
for m = 0, 1, 2, . . . , n− 1

n

2n−1
for m = n

(39)

for m < n.
To define the movement duration T � tn, rewrite (36) as

2

{
n−1∑
i=1

(−1)iτni

}
+ (−1)n = (−1)nn!

L

UTn
. (40)

By using the identity (39) for m = n, it can be shown that
for the switching times (38) one has

n−1∑
i=1

(−1)iτni = − (−1)n

2
+

(−1)nn

22n−1
. (41)

Therefore, the minimal movement time is defined as

T =
n
√

22(n−1)(n− 1)!L/U, (42)

and the control switching times t0, t1, t2, . . . , tn are com-
puted as

ti =
n

√
22(n−1)(n− 1)!L

U
sin2

(
πi

2n

)
, i = 0, . . . , n.

(43)
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To the best of our knowledge, this general solution has not
been reported in the literature.
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Fig. 5. Normalized velocities in the minimum time model for n =
1, . . . , 10.

The first 10 solutions for the normalized velocity profiles
in the minimum time model are plotted in Figure 5. Com-
paring these plots with those shown in Figure 1, one can say
that qualitatively the minimum time model is similar to the
minimum effort model.

Several comments are in order.
1o. It should be noted that in modeling of rapid reaching

movements the minimum time model is often rejected (in
favor of, say, the minimum hand jerk model) on the ground
that it features acceleration jumps, which is not compatible
with experimental data [12], [18]. The rejection of the mini-
mum time model only for this reason is premature because it
is based on the fallacious comparison of the minimum time
model for n = 2 with the minimum effort model for n = 3.

2o. The minimum time model for n = 3 does not feature
acceleration jumps (the discontinuities here are at the jerk
level). The velocity profile in this model looks like the
typical bell-shaped pattern observed in experiments, with
the normalized maximal velocity being between those in
the minimum hand jerk (n = 3) and snap (n = 4) models
(see Table I). Thus, the minimum time model for n = 3 is
a reasonable candidate for mimicking human-like reaching
movements.

TABLE I
NORMALIZED VELOCITY AT THE MIDDLE POINT: ˙̄x(1/2) .

minimum effort model minimum time model
n = 1 1.0 1.0
n = 2 1.5 2.0
n = 3 1.875 2.0
n = 4 2.188 2.343
n = 5 2.461 2.584
n = 6 2.707 2.823
n = 7 2.933 3.039
n = 8 3.142 3.242

3o. An interesting approach to modeling of human-like
reaching movements is proposed in [19]. The approach
is based on the minimum acceleration model and can be
linked to the minimization of kinetic energy. In the gen-
eralized form, for the controlled system dnx/dtn = u(t)
the trajectory is found by minimizing the criterion J =
1
2

∫ T

0

(
dn−1x/dtn−1

)2
dt under the constraints |u(t)| ≤ U .

This is a singular optimal control problem. We conjecture
that this approach is equivalent to the minimum time model
when the movement duration is specified by (42). This fact
can be easily verified for n = 2 and n = 3 but remains to
be proven for the general case.

V. CONCLUSIONS

Several issues related to modeling human-like reaching
movements were studied in this paper. First, a generalized
mathematical model, based on the minimization of square
derivatives of the hand position over the movement duration,
has been established in the analytical form represented by
the Beta function. This representation can be used for the
construction of fractional order models and also for modeling
of asymmetric velocity profiles. Next, we addressed a natural
(from the viewpoint of the calculus of variations) formation
of the boundary conditions. From the mathematical point
of view, the structure of the optimal solution is defined not
only by the form of the optimality criterion but also by the
boundary conditions of the optimization task. The natural
boundary conditions, defined in our paper, can also be used
in modeling asymmetric velocity profiles. Finally, addressing
modeling reaching movements with bounded control actions,
we have considered the minimum time formulation of the
optimization problem and (for the n-th order integrator)
established its analytical solution.
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