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Abstract—A prescribed performance regulator for the gener-
alized position of the robot arm endpoint in the task space is
proposed. The control input which incorporates a transformed
error guarantees a prescribed performance regarding the re-
sponse of the endpoint generalized position error. The use of
two different forms of this transformed error will be presented
and compared. Mathematical proof of the controller’s success
in fulfilling the desired goals is given. A simulation of a three
degrees of freedom robot is used to confirm the theoretical
findings for both cases of the transformed error.

I. INTRODUCTION

Most of the literature on robot position regulation deal

solely with the stability problem in the sense of asymptotic

convergence of the position errors to zero rather than the

system performance in the transient phase. Positions errors

are usually defined in the joint space but task coordinates

have also been considered. A brief treatment and review

of the works on the regulation problem in task coordinates

can be found in [1]. In all these works a priori guaranties

for transient behavior bounds are not given. At best, per-

formance and robustness are guaranteed by the exponential

convergence of a Lyapunov metric that is however dependant

on the values of the control gains while added disturbances

adversely affect asymptotic convergence [2]. Recently pre-

scribed performance controllers have been proposed for robot

joint position regulation [3],[4] that were inspired by the

recent work on prescribed performance controllers [5],[6]

developed for specific classes of non linear systems. As

robot tasks are performed via the robot’s end effector, it is

important to consider error performance in the task space.

Hence, in this work we transfer the design and application

of prescribed performance regulators from the joint space

[3],[4] to the task space.

II. PROBLEM DESCRIPTION AND

PRELIMINARIES

We consider a n degrees of freedom robot with q ∈ ℜn the

vector of the generalized joint variables. The dynamic model

of the robot is given by the following non linear differential

equation:

H(q)q̈ + C(q, q̇)q̇ + g(q) = u (1)

where H(q) ∈ ℜn × ℜn is the positive definite robot

inertia matrix, C(q, q̇)q̇ ∈ ℜn is the vector of Coriolis

and centripetal forces, g(q) ∈ ℜn is the gravity vector and

u ∈ ℜn is the vector of applied torques. Notice that

∃ λq,Λq > 0 : λqIn ≤ H(q) ≤ ΛqIn ∀ q ∈ ℜn.

Further notice that Ḣ(q) − 2C(q, q̇) is a skew-symmetric

matrix and g(q) = ∂U(q)
∂q where U(q) denotes the potential

energy due to the gravity field. A known property of the robot

dynamics is that there exists a positive constant cg so that the

following inequalities simultaneously hold [1]:

U(q)− U(qd)− eTq g(qd) ≥ −cg‖eq‖
2 (2)

eTq

(

g(q)− g(qd)
)

≥ −cg‖eq‖
2 (3)

with qd ∈ ℜn the constant desired robot’s position vector

expressed in the joint space and eq = q(t)− qd the position

error in the joint space.

We consider the position regulation problem of the robot

arm in the task space with prescribed performance guaranties.

More specifically, we want to regulate the generalized posi-

tion of the robot’s end effector X(t) ∈ ℜ6 to a desired value

Xd ∈ ℜ6. The generalized position is described by the three

Cartesian coordinates of the robot’s tip position x(t) ∈ ℜ3

and the three rotation angles that minimally parameterize

the end effector orientation. The generalized velocity Ẋ(t)
is related to the joint velocity q̇(t) through the Jacobian

J(q) as follows : Ẋ(t) = J(q)q̇(t). We assume that joint

positions and velocities are measured and that the Jacobian

J(q) is known. Hence, X(t), Ẋ(t) can be calculated using the

robot forward kinematics. We further consider the problem

of satisfying specific prescribed performance requirements

for the position error eX(t) = X(t)−Xd regarding both its

transient and steady state response.

By prescribed performance guaranties we mean that each

component eXi(t), i = 1, ..., 6 of the position error eX(t),
evolves within a predefined region that is bounded by a

decaying function of time. The mathematical expression

for the prescribed performance is given by the following

inequalities for all i′s [5]:

−Mρi(t) < eXi(t) < ρi(t) ∀t in case eXi(0) ≥ 0 (4)
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−ρi(t) < eXi(t) < Mρi(t) ∀t in case eXi(0) ≤ 0 (5)

where 0 ≤ M ≤ 1 and ρi(t) as defined in [5] is a bounded,

smooth, strictly positive and decreasing function satisfying

limt→∞ ρi(t) = ρ∞ > 0. Further, following [5], we define:

εXi(t) = Ti

(

eXi(t)

ρi(t)

)

(6)

where εXi(t) is the i′th component of a transformation error

vector εX(t) ∈ ℜ6 and Ti(.) is a smooth, strictly increasing

function defining an onto mapping :

Ti : (−M, 1) → (−∞,∞) in case eXi(0) ≥ 0

Ti : (−1,M) → (−∞,∞) in case eXi(0) ≤ 0
(7)

Notice that the choice of the mapping in (7) depends solely

on the sign of the initial error and either mapping is possible

in case the initial error is zero. It has been shown [6]

that owing to the properties of the error transformation, the

uniform boundedness of the transformation error εX(t) (i.e.

εX(t) ∈ L∞) is sufficient to guarantee the satisfaction of the

prescribed performance (4),(5) for the position error.

III. CONTROLLER DESIGN

The design procedure involves the following steps:

Step 1: We specify the error performance function ρ i(t).
Without loss of generality the same function ρ(t) is con-

sidered for all i’s and it is here given by the following

exponentially decaying time function:

ρi(t) = ρ(t) = (ρ0 − ρ∞) exp(−lt) + ρ∞ for all i’s (8)

where ρ0, ρ∞, l are appropriately chosen positive constants.

A graphical presentation of (4) and (5) with ρ(t) given by

(8) is shown in Fig.(1). Constant ρ0 = ρ(0) is selected such

that ρ0 > maxi |eXi(0)| so that (4) and (5) are satisfied at t =
0. Constant ρ∞ represents the maximum allowable size of the

position errors at steady state. Constant l, the decreasing rate

of ρ(t), represents a lower bound on the required speed of

convergence of eXi(t)
′s. Finally, the maximum overshoot is

prescribed less than Mρ0 and may even become zero if we

set M = 0. Thus, by selecting specific values for M and

the performance function parameters, we prescribe specific

performance bounds for each component of the position error

eX(t).

Fig. 1. Performance bounds

Step 2: A transformation function that possesses all the

required properties is specified. In this work we consider two

cases:

T1i

( eXi(t)
ρ(t)

)

=

{

ln
(M+(eXi(t)/ρ(t))

1−(eXi(t)/ρ(t))

)

eXi(0) ≥ 0

ln
( 1+(eXi(t)/ρ(t))
M−(eXi(t)/ρ(t))

)

eXi(0) ≤ 0
(9)

T2i

( eXi(t)
ρ(t)

)

=

{

ln
( M+(eXi(t)/ρ(t))
M(1−(eXi(t)/ρ(t)))

)

eXi(0) ≥ 0

ln
(M(1+(eXi(t)/ρ(t)))

M−(eXi(t)/ρ(t))

)

eXi(0) ≤ 0
(10)

They are both based on the natural logarithm but (10)

is shifted so that it belongs to a sector [κ,+∞]. The two

cases are graphically illustrated in Fig.(2) and Fig.(3). Notice

that transformation function (10), initially proposed in [4]

excludes the choice of a zero value for parameter M .

Step 3: The following PID-type regulator in the task space

is formed where the time argument is dropped from eX(t),
εX(t) and Ẋ(t) for compactness of presentation:

u = JT (q)(−KpeX −KvẊ −KI

∫ t

0

y(τ)dτ − kǫ∂TXεX)

(11)

where ∂TX = diag[∂TX1 ∂TX2 ... ∂TX6] with

∂TXi �
∂Ti

∂(eXi(t)/ρ(t))

1

ρ(t)
> 0 i = 1, ..., 6 (12)

and

y(t) = Ẋ + k(t)eX (13)

with

k(t) =

(

−ρ̇(t)

ρ(t)

)

+ β with
β = 0 if Ti(.) = T1i

β > 0 if Ti(.) = T2i
(14)

Finally, Kp,KI ,Kv ∈ ℜn×ℜn are positive definite diagonal

gain matrices while kǫ is a positive control constant.

0−M 1

0

e(0)>=0

−1 0 M

0

e(0)<0

Fig. 2. Function T1i(.)

−M 0 1

0

e(0)>=0

−1 0 M

0

e(0)<0

Fig. 3. Function T2i(.)
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The closed loop system formed by the system (1) and the

proposed controller (11), expressed in the task space is as

follows:

HX(X)Ẍ + CX(X, Ẋ)Ẋ + gX(X) +KpeX

+KvẊ +KI

∫ t

0

y(τ)dτ + kǫ∂TXεX = 0 (15)

where

HX(X) = (J(q)H(q)−1J(q)T )−1

CX(X, Ẋ)Ẋ = HX(X)J(q)H(q)−1C(q, q̇)q̇ −

−HX(X)J̇(q)q̇

gX(X) = HX(X)J(q)H(q)−1g(q)

The task space model is formally valid for a redundant ma-

nipulator given a full rank Jacobian although X is no longer

a set of generalized system coordinates. Nevertheless redun-

dancy resolution can be performed at either the kinematic

level or at the dynamic level exploiting the homogeneous

term of the general solution for the joint torques [7].

It is known that matrices HX(X) and ḢX(X) −
2CX(X, Ẋ) share the same properties with matrices H(q)
and Ḣ(q)− 2C(q, q̇) respectively. This means

∃ λX ,ΛX > 0 : λXIn ≤ HX(X) ≤ ΛXIn ∀ X ∈ ℜ6

and ḢX(X) − 2CX(X, Ẋ) is a skew-symmetric matrix.

Adding and subtracting gX(Xd) in (15) yields :

HX(X)Ẍ + CX(X, Ẋ)Ẋ + gX(X)− gX(Xd)

+KpeX +KvẊ +KIz(t) + kǫ∂TXεX = 0 (16)

where

z(t) =

∫ t

0

y(τ)dτ +K−1
I gX(Xd) (17)

Notice that: ż(t) = y(t). Considering that the derivative of

εX(t) is calculated as follows:

ε̇X(t) = ∂TX [ėX(t) +

(

−ρ̇(t)

ρ(t)

)

eX(t)] (18)

y(t) can be written as y(t) = ∂T−1
X ˙εX+βeX using (13) and

(18).

The inner product of the closed loop system (16) and y(t)
can be written as:

dV

dt
+W = 0 (19)

where

V =
1

2
ẊTHX(X)Ẋ + k(t)eTXHX(X)Ẋ

+
(

U(q)− U(qd)− eTq g(qd)
)

+
1

2
eTXKpeX

+
1

2
k(t)eTXKveX +

1

2
kǫ‖εX‖2 +

1

2
zTKIz (20)

and

W = −k̇(t)eTXHX(X)Ẋ + ẊT [Kv − k(t)HX(X)]Ẋ

− k(t)eTXḢX(X)Ẋ + k(t)eTXCX(X, Ẋ)Ẋ

+ k(t)eTX

(

gX(X)− gX(Xd)
)

+ k(t)eTXKpeX

−
1

2
k̇(t)eTXKveX + βkǫe

T
X∂TXεX (21)

We will restrict our analysis to a neighborhood Nq inside

which each q corresponds to a unique X and vice versa.

This is a neighborhood of qd (corresponding to Xd) that is

also assumed to contain the initial joint position q(0). This

implies that the forward kinematics mapping f : q → X
in this neighborhood is a continuous vectorial function with

a full rank Jacobian J(q) = ∂f
∂q . The satisfaction of the

performance bounds for the task space error may allow us

to define such a neighborhood by mapping the set NX =
{X ∈ ℜ6 : X ≤ X ≤ X} using the inverse kinematics i.e

NX
f−1

−−→ Nq where X i and X i, the i′th components of X
and X respectively, are defined as follows:

if eXi(0) ≥ 0 :
Xi = ρ0 +Xdi

Xi = −Mρ0 +Xdi

if eXi(0) ≤ 0 :
Xi = Mρ0 +Xdi

Xi = −ρ0 +Xdi

Inside Nq, position error eq = q − qd corresponds to a

unique position error eX = X − Xd in the task space. An

effective way of achieving such correspondence is via the

Jacobian J(q). In fact according to the mean-value theorem

for vectorial functions [8], there exists q∗ : q < q∗ < qd such

that:

eX = J(q∗)eq (22)

Having (22) in mind, V can be lower bounded as below:

V ≥
1

4
ẊTHX(X)Ẋ +

1

4
eTq [J(q

∗)TKpJ(q
∗)− 4cgIn]eq

+
1

2
k(t)eTX [Kv − 2(l + β)ΛXIn]eX +

1

2
kǫ‖εX‖2

+
1

2
zTKIz +

1

4
eTXKpeX (23)

V is positive definite with respect to Ẋ, eq, eX , εX , z(t)
assuming that Kp,Kv are chosen big enough to satisfy the

following inequalities:

min
q∗

(

λmin(J(q
∗)TKpJ(q

∗))
)

≥ 4cg (24)

λmin(Kv) ≥ 2(l + β)ΛX (25)

where λmin(.) denotes the smallest eigenvalue of a matrix.

Demanding Kp to be sufficiently high, we ensure that the

smallest of all the eigenvalues λmin(J(q
∗)TKpJ(q

∗)), each

one corresponding to a different q ∗, is going to be larger

than 4cg. Moreover, given that J(q) is full rank inside Nq,

J(q∗)TKpJ(q
∗) is positive definite. The proof of (23) is

given in the Appendix.
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Term [CX(X, Ẋ)Ẋ−ḢX(X)Ẋ ] is bounded and quadratic

in Ẋ , therefore we can bound it as follows:

[CX(X, Ẋ)Ẋ − ḢX(X)Ẋ] ≥ −c0‖Ẋ‖2 (26)

for a positive c0. Hence, W can be lower bounded as follows:

W ≥ ẊT [Kv − (l + β)ΛXIn

−
l2

8
ΛXξIn −

(

l(ρ0 − ρ∞) + βρ0

)

c0In]Ẋ

+
1

2
|k̇(t)|eTX [Kv − ΛXξ−1In]eX + βkǫe

T
X∂TXεX

+ k(t)eTq [J(q
∗)TKpJ(q

∗)− cgcJIn]eq (27)

where ξ is a free positive constant and cJ =
‖J(q∗)T J(q)−T ‖. Analytical proof concerning (27) is given

in the Appendix. In the following we distinguish two cases

each one employing a different transformation function T 1i(.)
and T2i(.):

1) if εXi(t) = T1i

(

eXi(t)
ρ(t)

)

, then β = 0 from (14). There-

fore, term βkǫe
T
X∂TXεX(t) in (27) no longer exists. If

Kv,Kp are chosen sufficiently high to guarantee the

following inequalities:

λmin(Kv) ≥ [(l + β)ΛX + l2ΛX
ξ

8

+ c0

(

l(ρ0 − ρ∞) + βρ0

)

] (28)

λmin(Kv) ≥ ΛXξ−1 (29)

min
q∗

(

λmin(J(q
∗)TKpJ(q

∗))
)

≥ cgcJ (30)

then W ≥ 0. Notice that inequality (28) is stricter than

(25).

2) if εXi(t) = T2i

(

eXi(t)
ρ(t)

)

, then β > 0. Since

|εXi| >
4

(M + 1)ρ(t)
|eXi|

∂TXi >
4

(M + 1)ρ(t)
(31)

we can lower bound term βkǫe
T
X∂TXεX(t) as follows:

eTX∂TXεX(t) ≥ c1‖eX‖2 (32)

where it is easily proven that: c1 =
(

4
ρ0(M+1)

)2

.

If Kv,Kp are chosen sufficiently high to guarantee

inequalities (28), (29) and (30) then owing to (32),

W ≥ 0.

Since in both the above cases V is positive def-

inite with a non positive derivative dV
dt = −W ,

V (Ẋ, eq, eX , εX , z(t)) ≤ V (0) holds and consequently

Ẋ, eq, eX , εX , z(t) are bounded. The boundedness of εX

implies that eX is bounded by the performance function

according to (4) and (5) as well as that ∂TX is bounded. From

(16) Ẍ is also bounded, hence Ẋ is uniformly continuous.

In case of T1i(.) from (27) since limt→∞ k(t) = β = 0, W
can be lower bounded by a function of ‖Ẋ‖2, thus Ẋ ∈ L2.

Using Desoer and Vidyasagar (1975) it is proved that Ẋ → 0.

Moreover in case of T2i(.) since limt→∞ k(t) = β > 0, W
can be lower bounded by a function of ‖Ẋ‖2 and ‖eX‖2 thus

Ẋ, eX ∈ L2. In fact there exist positive constants γ1 and γ2
such that W ≥ γ1‖Ẋ‖2+γ2‖eX‖2 and hence by integrating
dV
dt ≤ −γ1‖Ẋ‖2 − γ2‖eX‖2 along the time interval [0,+∞]

we get

V (0)− V (∞) ≥ γ1

∫ ∞

0

‖Ẋ‖2dτ + γ2

∫ ∞

0

‖eX‖2dτ

that clearly implies Ẋ, eX ∈ L2. Since Ẋ, eX are uniformly

continuous and belong to the L2 space, using Desoer and

Vidyasagar (1975) it is proved, additionally to Ẋ → 0, that

eX → 0.

This result holds under the assumption that q(t) ∈ Nq for

all t ≥ 0. Thus we need to establish that given q(0) ∈ Nq

the proposed law (11) does not force q(t) to escape N q at

any time. We shall prove this argument by contradiction,

considering only the case of eX(0) ≥ 0, since similar

analysis holds for the case of eX(0) ≤ 0 too. Let us

assume that q(t) escapes Nq. Thus there exist a time instant

t1 at which either q(t1) = f−1(X) or q(t1) = f−1(X)
from which we further conclude that either X(t1) = X or

X(t1) = X (position X1 in Fig.(4)). Since eX(0) ≥ 0 then

X(t1) = −Mρ0+Xd or X(t1) = ρ0+Xd (which is the case

of X1 in Fig.(4)) hence ∀ t ∈ [0, t1], X(t1) ≤ −Mρ(t)+Xd

or X(t1) ≥ ρ(t) + Xd. Consequently owing to

−Mρ0 +Xd < X(0) < ρ0 +Xd and the continuity of the

solution of the closed loop system ∀ t ∈ [0, t1] we conclude

the existence of a time instant t2 satisfying t2 < t1 for which

q ∈ Nq ∀ t ≤ t2 and either limt→t2 X(t) = −Mρ(t2)+Xd

or limt→t2 X(t) = ρ(t2) + Xd (position X2 in Fig.(4))

hence from (7) limt→t2 εX = ±∞ which is in direct

contradiction with the fact that εX is bounded provided

q ∈ Nq . This means that ∀ t, q(t) ∈ Nq.

Theorem 1: The control law (11) applied to the system

(1) guarantees the satisfaction of (4) and (5) for all t > 0
provided that the controller gains Kp,Kv satisfy conditions

(24), (28), (29) and (30) that incorporate minimal information

concerning the robot arm model. Furthermore, Ẋ asymptot-

Fig. 4.
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Fig. 5. Position error responses and disturbance input with T1i(.)

ically converges to zero and if the error transformation (10)

is used then eX also asymptotically converges to zero .

It is therefore possible to achieve the prescribed perfor-

mance bounds with (11) under both cases of T i(.). However

a zero overshoot is possible only in case of T1i(.) in the

expense of non zero although small steady state error. On

the other hand zero steady state error can be achieved when

T2i(.) is used in the expense of a small but non zero value

of overshoot.

Remark: The assumption of a full rank Jacobian is typical

of all operational space control systems and is required

in order to ensure the positive definiteness of V . Notice

however that in our work this assumption is easy to satisfy by

appropriately setting the desired generalized position and the

performance bounds to guarantee that the system trajectories

will evolve away from any Jacobian singularities.

IV. SIMULATION RESULTS

We consider an example of a 3 d.o.f. spatial robotic

manipulator with rotational joints with masses m1 = m2 =
m3 = 1 kg, link lengths l2 = l3 = 0.5 m and inertias

Iz1 = Ix2 = Ix3 = 4.15 × 10−4 kg m2, Iy2 =
Iz2 = 0.021 kg m2 and Iy3 = Iz3 = 0.0039 kg m2.

The initial robot endpoint position is given by X(0) =
[0.3 0.35 0.3]T (m). We consider the case of step magnitudes

of 0.1 m for each coordinate, hence we set the desired

position Xd to Xd = [0.2 0.25 0.2]T (m). Regarding the

prescribed performance function ρ(t) we choose: ρ0 = 0.2 >
|eXi(0)| for all i, ρ∞ = 10−4 and l = 2. Consequently,

the prescribed performance is expressed by the function

ρ(t) = (0.2 − 10−4)exp(−2t) + 10−4. Furthermore we

consider the following bounded disturbance torque acting at

each joint (u(t) +D(t)):

D(t) = tanh(20× (t− 2))− tanh(20× (t− 2.5))

Simulations for both cases of transformation functions

were performed. For the case of T1i(.) (7), M = 0 and

control gains are set to the values of β = 0, Kp = 170I3,

Kv = 120I3, KI = 10I3, kǫ = 0.8. For the case of T2i(.) (8),
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Fig. 6. Position error responses and disturbance input with T2i(.)

M = 0.1 and control gains are set to the values of β = 0.1,

Kp = 100I3, Kv = 200I3, KI = 10I3, kǫ = 0.25.

Simulation results are shown in Fig.(5) - Fig.(9). Notice

that in both cases, our controller succeeds in keeping the

position errors within the boundaries, defined by the per-

formance function ρ(t) despite the presence of disturbances

(Fig.(5) and Fig.(6)). Notice that although disturbances occur

at a time where performance bounds are very strict (lower

plots in Fig.(5) and Fig.(6)) they do not affect the error

response as clearly indicated in the embedded plots. In case

of T1i(.), there is an non-zero but small position error at

steady state of 2.97 × 10−4 magnitude while in case T2i(.)
is used, an asymptotical convergence of the position error

to zero is achieved. Fig.(7) shows the path of the robot arm

endpoint in the three-dimensional space, for both cases of

T1i(.) and T2i(.). The embedded subplot shows details of the

path in the neighborhood of Xd where the overshoot in the

second case as expected by the M value set at 0.1 is clearly

depicted as well as the achievement of the desired position in

contrast to the first case. Input torques are shown with solid

lines in Fig.(8) and Fig.(9) for each case of T i(.) respectively.

Embedded plots show details of early transients. Dashed lines

show the input torques in the absence of disturbances for
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Fig. 7. Robot endpoint movement in task space for each case of Ti(.)
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Fig. 8. Input torque responses with T1i(.) in the presence (solid line) and
absence (dashed line) of disturbance
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Fig. 9. Input torque responses with T2i(.) in the presence (solid line) and
absence (dashed line) of disturbance

comparison purposes. Notice how input torques compensate

for disturbances while torque inputs remain at reasonable

values in all cases.

V. CONCLUSIONS

This work proposes a PID type regulator augmented by

a transformed position error term that achieves regulation

with prescribed performance in the task space. Prescribed

performance bounds are constructed by setting a priori values

for the maximum overshoot, steady state error and minimum

speed of response. Two control variants are analyzed which

differ by the transformation function used. It is theoretically

proved and demonstrated by the simulation of a three degrees

of freedom spatial robot that the control objective is achieved

in both control variants and that the transformation which be-

longs to a sector enables further the asymptotic convergence

of the errors to zero.

VI. APPENDIX

Proof of (23): Notice that the first two terms of V
(20) can be written as follows: 1

4Ẋ
THX(X)Ẋ + 1

4 (Ẋ +

2k(t)eX)THX(X)(Ẋ + 2k(t)eX) − k2(t)eTXHX(X)eX .

From (2) and using eX = J(q∗)eq we can lower bound terms
(

U(q)− U(qd)− eTq g(qd)
)

+ 1
2e

T
XKpeX as follows:

(

U(q)− U(qd)− eTq g(qd)
)

+
1

2
eTXKpeX ≥

1

4
eTq [J(q

∗)TKpJ(q
∗)− 4cgIn]eq +

1

4
eTXKpeX

Since 0 < − ρ̇(t)
ρ(t) < l we can therefore bound V as shown in

(23).

Proof of (27): Notice that the term − k̇(t)eTXHX(X)Ẋ
can be lower bounded as follows: − k̇(t)eTXHX(X)Ẋ ≥

−|k̇(t)|ΛX

(

‖eX‖2

2ξ + ξ
2‖Ẋ‖2

)

for a positive ξ. The inverse

transformation T −1
i (εXi) = eXi(t)

ρ(t) is a smooth strictly

increasing function with the following properties:

−M < T−1
i (εXi) < 1 in case eXi(0) ≥ 0

−1 < T−1
i (εXi) < M in case eXi(0) ≤ 0

(33)

Since |ρ̇(t)| ≤ l(ρ0−ρ∞) and using (26), (33) we can lower

bound term k(t)eTX [−ḢX(X)Ẋ + CX(X, Ẋ)Ẋ ] as follows

: k(t)eTX [−ḢX(X)Ẋ + CX(X, Ẋ)Ẋ] ≥ −
(

l(ρ0 − ρ∞) +

βρ0

)

c0‖Ẋ‖2 for a positive c0. Finally, using (3) we can

bound term

k(t)eTX

(

gX(X)− gX(Xd)
)

=

k(t)eTq [J(q
∗)T J(q)−T ]

(

g(q)− g(qd)
)

as below:

k(t)eTX

(

gX(X)− gX(Xd)
)

≥ −cg‖J(q
∗)T J(q)−T ‖‖eq‖

2

Hence

k(t)eTX

(

gX(X)− gX(Xd)
)

+ k(t)eTXKpeX ≥

k(t)eTq [J(q
∗)TKpJ(q

∗)− cgcJIn]eq

Since |k̇(t)| ≤ l2

4 we can bound W as shown in (27).
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