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Abstract—Due to the anticipated future, extensive use of 

robots, human beings will probably share common spaces with 

them. The relationships between robots and humans will be 

conducted at close distances. Predicting people’s future positions 

helps robots understand human behavior and react safely and 

naturally. In this paper, we propose a method for predicting 

people’s positions in crossing behaviors, i.e. different trajectories 

people follow when they are crossing each other. We conducted a 

field experiment to gather various crossing behaviors of 

pedestrians in a shopping mall environment and analyzed them 

by focusing on “hot areas” spaces where people modify their 

trajectories for crossing. We clustered typical crossing behaviors 

in hot areas and modeled them using Hidden Markov Models for 

predictions. Our algorithm more accurately predicts the future 

positions of pedestrians by considering moving direction and 

speed. 

I. INTRODUCTION 

OBOTICS researchers have started to explore the daily 

applications of mobile robots based on advances in 

robotics technologies. Past robotics researches have revealed 

that mobile robots can be used in such daily environments as 

museum guides [1,2], peer-tutors in schools [3], delivery staff 

in hospitals [4], and greeters in shopping malls [5,6].  

Such mobile robots must be able to predict and track 

people’s future positions to work more safely and efficiently 

in daily environments. Past related works represented the 

importance of predicting people’s future positions. Kanda et 

al., who anticipated the behaviors of individuals by a few 

seconds, demonstrated that their system enabled robots to 

efficiently serve people [5]. Foka et al. predicted people’s 

motions and exploited the predictions so that their robot could 

avoid people [7]. Some works also focused on robots that 

avoid people by predicting people’s future positions [8-10]. 

Another related work predicted people’s future position with a 

statistical approach and extended the method to car-like 

robots [11-13].  

Moreover, [22] presents an approach for determining robot 

movements efficiently accomplish the robot’s tasks while no 
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hindering the movements of people within the environment. 

So they predict pedestrians’ trajectories in order to plan the 

robot movements without disturbing them.  

Nevertheless, this is not always possible: in crowded 

environments or narrow corridors persons walk very close and 

their trajectories are affected each other. 

However, none of these past researches focused on 

crossings that affect future positions, although such behaviors 

often occur in daily environments. People choose a distance 

from others by safely changing their movement direction 

before they meet (Fig. 1). After crossing, they return to their 

original direction. We believe this is the key for mobile robots 

to behave safely during human robot interaction, especially in 

crowded or tight environments in which humans and robots 

usually move and avoiding crossings is not feasible. Therefore, 

we focus on people’s crossing behavior to more accurately 

predict their future positions. Crossings behaviors are defined 

as the significant different trajectories a person follows when 

he is crossing with other and it depends on different aspects as 

direction, shape of the space or even social factors. 

In this paper, we propose a method to predict people’s 

future positions by considering their crossing behaviors. We 

first conducted an experiment to gather pedestrian trajectories 

in a shopping mall for one week. The proposed method 

clusters these trajectories with the k-means method [23] and 

makes models for each cluster using Hidden Markov Models. 

These models are used for predicting people’s future positions 

in a crossing. 

 

 
Fig. 1.  People creating distance when crossing 

II. DATA COLLECTION 

A. Position Estimation with Laser Range Finders  

Data were collected during an experiment in a shopping 

mall. The motion of people through the environment area was 

monitored using a ubiquitous sensor network consisting of six 

HOKUYO UTM-30LX laser range finders mounted around 
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the trial area’s perimeter at 110 cm height (Fig. 2). 

A particle filtering technique tracked the people’s 

trajectories through this space. Each person’s location in the 

scan area was calculated based on the combined torso-level 

scan data from the laser range finders. In our tracking 

algorithm, a background model was first computed for each 

sensor by analyzing hundreds of scan frames to filter out noise 

and moving objects. Points detected in front of this 

background scan are grouped into segments, and segments 

within a certain size range that persist over several scans are 

registered as human detections. 

Each person is then tracked with a particle filter using a 

linear motion model with random perturbations. Likelihood is 

evaluated based on the potential occupancy of each particle’s 

position (i.e., humans cannot occupy spaces that have been 

observed to be empty). By computing a weighted average 

across all particles, the x-y position is calculated at a 

frequency of approximately 37 Hz. This tracking technique 

provides quite stable and reliable position data with position 

accuracy measured to be +/- 6 cm for our environment. 

Further details on this algorithm are presented in [14, 15]. 

 

B. Data collection in a shopping mall 

Human motion data were collected for seven consecutive 

days in a shopping mall environment from 11 am to 8 pm each 

day (Fig. 3). We chose this time schedule because the shops 

open at 11 a.m., and the number of visitors drops after 8 p.m. 

In this environment, the major flow consisted of visitors 

crossing the space from the left to the right or vice versa, 

generally taking about 50 seconds to go through it. The users 

were mainly commuters, couples, and families. We gathered 

about 71,425 visitor trajectories
1
.  

III. ANALYSIS OF CROSSING BEHAVIOR 

Using the laser range finder system described in the 

previous section, a vast amount of data was stored in a 

database. We analyzed how people cross using the stored data 

with a graphical interface tool on the experimental data stored 

in the database [16].  

 

 
1 In this study, we obtained approval from shopping mall administrators 

for this recording under the condition that the information collected would be 

carefully managed and only used for research purposes. The experimental 

protocol was reviewed and approved by our institutional review board. 

 
Fig. 3.  Shopping mall environment 

A. Hot area 

We first focused on a hot area, which is a space where 

people modify their trajectories when they are crossing. In 

most cases, people modified their movement directions at a 

distance to another person of less than five meters. Therefore, 

we defined the size of the hot area as a circular area within a 

five-meter radius around a person. In other words, our system 

focuses on all movements in that area and predicts the future 

positions of people within it. At Fig.4 hot area is presented and 

a character is the center of this area where other person is 

walking in. 

 
Fig. 4.  Hot area and crossing time concepts. Dashed line 

represents the trajectory a person follows inside other’s hot 

area.  

 

B. Crossing time 

Defining crossing time between two persons as the time a 

person remains in the other’s hot area, it is one crucial metric 

to distinguish among crossing behaviors and others. For 

example, when two people are walking together, their 

trajectories are always observed in a hot area because their 

speeds and directions are almost identical. In such behaviors, 

the crossing time will be much longer than in crossing 

behaviors. For example, if two people are walking together, it 

takes around 50 seconds from entrance to exit. Therefore, we 

defined the maximum crossing time as ten seconds, calculated 

based on the hot area’s dimension, the average walking speed 

in the environment (around four kilometers per hour), and 

observations from stored trajectories. This idea can be 

observed at Fig.4 where a person is walking in other’s hot area 

at tstarting time and leving it at tending time instant. Consequently, 

crossing time is tending time minus tstarting time. 

 
Fig. 2.  Laser range finder 
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C. Changes of speed in crossing behavior 

We also analyzed the speed during crossings because it 

directly affects the future positions in those crossing. In most 

cases, no significant speed variation was found during a 

crossing, even when direction of movement has been changed. 

At Fig.5 we show the typical relation between walking speeds 

(blue and red lines) and distance (black line) of two people 

crossing. Distance decreases until a minimum is reached 

(around two meters) and then it increases again; at the same 

time, both walking speeds are not affected. Therefore, we 

concluded that average speed is a reliable value for predicting 

people’s future positions in crossing behaviors. 

 

 
Fig. 5.  Variation of speed during a 2-person crossing. 

Concave line means distance between two people. Upper 

two lines mean average speeds of two people crossing. 

 

D. Selecting reasonable trajectories 

Based on the previous analysis, we extract crossing 

behaviors from the stored trajectories. We have defined 

crossing behaviors as the significant different trajectories 

persons follow when they are crossing each other inside the 

hot area. Therefore, in our approach, trajectories are the key 

element. Trajectory data have to be filtered to avoid noise 

from false detections in the position tracking system. Then 

filtering data are required to maintain reasonable trajectories. 

So we conducted four filtering processes. 

First, since a minimum lifespan was established for every 

trajectory, any people found to exist less than five seconds 

were not considered.  

Second, as indicated above, the crossing time is limited to 

ten seconds so any trajectory over this time will be removed 

from the data set.  

In daily human environments, people from entry and exit 

points, i.e. doors, suddenly appear and disappear; then, no 

general trajectories are observed. These situations are not 

covered in this work. According to it, in the third filtering, 

only crossing trajectories starting and ending farther than four 

meters are taken into account 

Fourth, we removed trajectories whose missing duration is 

more than three seconds. It means that trajectories which total 

lost data sums more than three seconds are not considered. 

After the filtering process was completed and clarified, 

about 11,000 crossing trajectories were obtained. 

IV. EXTRACTING CROSSING BEHAVIORS 

Because of the big amount of trajectories obtained from the 

previous steps, clustering is needed in order to define the 

crossing behaviors. Otherwise, real time applications using 

the proposed method are not feasible. Due to the nature of our 

behaviors, trajectories must be compared for clustering them 

and establishing different patterns. To compare trajectories 

inside the hot area, every two subjects that move within a 

distance less than five meters away are studied. One of the 

subjects is considered the reference point because it is in the 

center of the hot area, and the other one is moving inside it. 

The relative trajectory between both characters is computed 

and called the crossing trajectory, which is defined as the 

relative trajectory between two persons when one of them is 

inside the other’s hot area. These trajectories are considered 

as a sequence of points, so a crossing trajectory t consist of a 

sequence of N positions  where each 

position has x and y coordinates. 

 

 
Fig. 6.  (a) raw trajectory data and (b) normalized trajectory data. 

Green (white gray in monochrome printing) means starting point 

and red (dark gray in monochrome printing) ending point. 

 

A. Normalization and clustering of crossing behaviors 

After gathering the crossing trajectory data and before 

clustering, we need a method to fairly compare them to 

acquire different groups of trajectories with similar 

characteristics. In our approach, normalization was 

accomplished by rotating all trajectories to the same starting 

angle; hence similar trajectories can be recognized despite 

different entry and exit angles, life spans, speed, or other 

variables. After normalization, all crossing trajectories have 

the same starting zone, and different courses can be observed. 

At Fig. 6(a) raw data from all trajectories are presented. 

Trajectories go from starting point (green color) to ending 

point (red color). Fig. 6(b) represents all trajectories after 

normalization and reader can observe how all starting points 

are in the same area. 

K-means algorithm [17, 18] was applied to the crossing 

trajectories to create typical crossing behaviors. This 

algorithm’s basic form is used for classifying discrete objects 

ignoring the number of dimensions. The algorithm was 

adapted to our problem for classifying trajectories, which are 

considered a sorted sequence of points in the space.  

The procedure follows a simple and easy way to classify a 

given trajectories set through a certain number of clusters 
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(assume k clusters). The main idea is to define k centroids, one 

for each cluster. These centroids should be placed in a cunning 

way because of different location causes different result. So, 

the better choice is to place them as much as possible far away 

from each other. The next step is to associate each trajectory 

to the nearest centroid. When no trajectory is pending, the first 

step is completed and an early grouping is done. At this point 

we need to re-calculate k new centroids as the average 

trajectory of the clusters resulting from the previous step. 

After we have these k new centroids, a new binding has to be 

done between the same trajectories sets and the nearest new 

centroid. A loop has been generated. As a result of this loop 

we may notice that the k centroids change their location step 

by step until no more changes are done, it is when centroids do 

not move any more. 

As described in [19], when k-means is used to cluster the 

trajectories, we need to compare two trajectories by 

measuring the distance between them. In this case, the average 

Euclidean distance was implemented between every pair of 

points in the trajectories. This implies that both trajectories 

must have the same number of points. Therefore the trajectory 

with the fewest points is linearly interpolated until the needed 

number of points is obtained. Then, the distance between two 

trajectories is calculated based on this expression: 

 

, 

 

where t1 and t2 are trajectories with N1 and N2 points, 

respectively. N is calculated as  and  and 

 are the i-th points of t1 and t2 respectively. 

At this point, the k-means algorithm is applied (Fig. 7). 

First, we define the number of clusters and the initial 

centroids. Firstly, the centroids were chosen randomly, but the 

resulting clusters were not satisfactory. Thereby the initial 

centroids were evenly assigned by pre-classification after 

normalization: crossing trajectories were split based on the 

exit angles and groups were made every five degrees creating 

72 groups (360º/5º). For every group, its average trajectory is 

calculated and its initial centroid is chosen as the closest 

trajectory to it. 

A trajectories group  consists of a set of trajectories 

  where each trajectory  consists of a 

sequence  of positions. With the aim of 

obtain its average trajectory , trajectories in the same cluster 

are modified to have the same number of points ( ). 

Therefore  is determined by sequence  of 

the average points for every position. So �is defined as: 

 

 
 

 
Fig.7.  Adapted k-means algorithm 

 

Now, using these initial centroids as the characteristics for 

all clusters, the distances from each trajectory to every 

centroid are calculated. At this, every trajectory is shifted to 

the group represented by its closest centroid. New centroids 

are computed using the trajectories from every group. Then 

the algorithm starts calculating the distances to centroids 

again and continues to run until convergence is reached, it is 

no shifts of trajectories occur among groups.  

The final centroids represent the different behavior patterns 

related to each cluster of trajectories. 

V. ESTIMATING FUTURE POSITIONS  

For estimating a person’s future positions in a crossing, the 

person’s crossing behavior has to be determined by his 

trajectory. In the previous section, the trajectories 

representing different behaviors were calculated and they will 

be compared with the person’s trajectory to assess his 

behavior. As the estimation tool, Hidden Markov Models 

(HMM) [20, 21] have been chosen. Markov Models are very 

rich in mathematical structures, so they can be used in a wide 

range of applications. Previous works, such as [7] [24], from 

different fields have proved that HMM is a reliable stimation 

tool.  

Deriving HMM from clustering 

Since every behavior will have an associated HMM, an 

HMM is created for every group obtained in the clustering 

step. We used the mean trajectory in each cluster as the base 

for each HMM. 

HMM λ is defined by the next five 

elements:  

• Q (hidden states): . 

 The hidden states are related to different points of the 

average trajectory. The distance between two consecutive 

hidden states, defined as ds, is used for calculating all the 

hidden states in succession. This parameter affects the system 

accuracy. In the experiments, ds was set to 500 mm. All our 

HMM will have at least two states: starting and ending states. 

Therefore, a 1300 mm length trajectory will have four hidden 

Defining number of clusters and their centroids 

Calculating distances from each trajectory to all centroids 

Assigning each trajectory to a group 

Computing new centroids 

Any 

shift? 
End NO 

YES 
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states which represent positions at 0 mm, 500 mm, 1000 mm 

and 1300 mm from the starting point. 

• O (observations):  

 This is the set of observations per state. In our system, the 

coordinates of every position were used as observations. 

• π (initial state probability):  

For each state, this determines the probability of its being 

the first state. Due to the normalization of the crossing 

trajectories, the initial state of the HMM is well known: 

. 

• A (state transition probability): 

 

aij is the probability of staying at qj in time t+1 after qi on t. 

Because of the idiosyncrasy of the crossing trajectories, the 

HMMs are left-to-right, meaning that no backward transitions 

can be observed (Fig. 8). These transition probabilities are set 

to zero ( ), and the rest are evenly distributed.  

 
Fig. 8.  State transition probabilities in a left-to-right HMM 

with N=3 

 

• B (observation probability): 

 

bj(k) is the probability of observation ok at state qj. In this 

research, each hidden state has a bivariate Gaussian 

distribution utilized as the observation probability 

distribution. The coordinates of positions represented by the 

hidden states are used as the distribution’s mean values. The 

standard deviation and covariance matrix are calculated when 

the hidden states are computed. All of these parameters are 

required to define the bivariate Gaussian distribution for each 

state.  

 The bivariate Gaussian function refers to two 

distributions, a and b, and can be represented as 

, where mean matrix  and 

covariance matrix  are calculated. The 

probability is calculated based on the next equation: 

. 

Because both distributions are considered independents,  

is set to zero. Variances are calculated, but the minimum value 

is set to 1. 

In Fig. 9, several behaviors are represented. In each one, the 

plotted trajectories defined the behavior. The black line 

represents the average trajectory for the corresponding cluster, 

and the black dots correspond to the states in the HMM that 

represent the behavior. 

 
After the HMM models have been created, the least 

significant behaviors are rejected. If the number of trajectories 

associated with a behavior is less than 10, this behavior has to 

be removed because it is not adequately representative. 

Finally, after calculating, we obtained 64 behaviors, utilizing 

64 HMMs. Fig. 10 displays all average trajectories and their 

corresponding states in HMMs. After filtering the noisy data 

and eliminating the strange trajectories, 10,335 trajectories 

were used to create all the HMMs. 

 
 

Estimating person´s behavior 

Once all HMMs have been calculated, the estimation step�

follows. Observations of a person’s positions are required to 

appraise behaviour. Every new observation is added to a 

sequence of observations computed in all HMMs. The HMM 

responding with the highest probability of the observation 

sequence will reveal the current behaviour. Given the 

observation sequence and the HMM, the observation 

probability is computed by the Forward-Backward algorithm 

[21]. 

 
Fig. 10.  Trajectories representing all 

behaviors used in experiments 

 
Fig. 9.  Examples of clustered crossing trajectories 

State 2 State 3 State 1 

a12 

a10=0  a21=0  

a01 

a00 

 

a11 a22 
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Then, during a defined period called observation time tobs, 

the system stores observations that will be evaluated later with 

the HMMs. During this observation time, the average speed is 

also computed. Finally, we get the most probable HMM for 

the observation sequence and consequently the most probable 

behavior. The average trajectory for the selected behavior is 

the guideline for estimating the future position: the closest 

point in the average trajectory to the last observation is the 

start point (pst) for the estimation. Using the average speed 

previously calculated and estimation time test, displacement 

(d) is calculated. Then the estimated point after tobs seconds 

observation becomes the point in the most probable average 

trajectory after covering d from pst. As explained previously, 

since the person’s walking speed is not significantly affected 

when she crosses another person, speed is considered constant, 

and the results will not be heavily affected. 

VI. EXPERIMENTS 

We experimentally investigated the performance of our 

proposed system using trajectories randomly selected from 

the data collection. These trajectories were not used for setting 

up the system, so no relationship exists between them and our 

models. 

The trials simulated real-time data acquisition by defining 

observation time step  as the interval between two 

observations in a row. This means that the chosen trajectory 

will be covered by “jumping”  ms before a new 

observation (the corresponding coordinates) is extracted from 

it.  is constant. 

In this experiment, the future trajectory positions were 

predicted and compared with the actual succeeding positions. 

Future positions are considered the coordinates of the 

trajectories several seconds after the last observation was 

acquired. In our experiments, we measured the accuracies of 

predicting future positions after one/two seconds of 

observation (tobs). Future positions are appraised after one, 

two, three, four, and five seconds (test). This is explained at Fig. 

11. 

Our method was compared with the baseline method, which 

uses average speed and straight direction calculated by the 

most recent observations. In both cases, the same 300 

trajectories constitute the testing data set. The trajectories 

selected for the trials have to be long enough in time, i.e., life 

spans of at least tobs + test. The prediction process is executed 

until the rest of the lifespan for each trajectory becomes less 

than test. 

 

 
Fig. 11 Configuration of the experiments 

 

Table I Average errors values from our proposed method and the 

baseline [mm]. 

Estimation  

time 

Observation time 

1 second 2 seconds 

Proposed  

method 
Baseline 

Proposed  

method 
Baseline 

1 sec. later 829.44  1966.57  904.75  6582.94  

2 sec. later 1927.93  1994.49  1239.94  2166.08  

3 sec. later 1915.37  2535.85  1741.80  3029.60  

4 sec. later 2381.59  2827.30  2165.54  3749.49  

5 sec. later 2505.91  3549.93  2477.14  3482.29  

 

A. Experimental results 

Table I presents the average error values from the 

experiments. These data is used in the next plots for a better 

comprehension. 

Figure 12 shows the average error when predicting the 

future positions after one second of observations. The 

proposed method�outperforms the baseline for all situations�

and achieved less than 1-m prediction position error one 

second later. As expected, errors increased when the 

estimation continues in time, but our method still achieved 

2.5-m prediction error five seconds later.  

Figure 13 shows the results after two-second estimations. 

The rest of the configuration in the experiment is identical as 

the former one. The proposed method achieved less than 1-m 

prediction position error one second later and 2.5-m error 

when predicting the future position five seconds later. Our 

method gets better results here as well, and the difference with 

the baseline is bigger now. This means that the longer the 

observation, the more our method outperforms the baseline. 

 

 
Fig. 12 Average error after 1-sec observations 

 

 
Fig. 13 Average error after 2-sec observations 
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Figure 14 compares the results of our method with one- and 

two-second observations. After two seconds, the error is 

smaller in all cases, except for the first situation. This is 

logical; after longer observations, the estimating error 

decreases because more data have been analyzed. At the same 

time, as estimations continue, both methods get very similar 

results. Then the results of estimations farther in the future 

will be more or less equal despite observation times. 

We conclude that our method works better than the baseline�

because of the nature of the considered behaviors in each one. 

The former is based on natural behaviors that include avoiding 

movements, detours, and human reactions. The last one just 

supposes completely unnatural linear behaviors, and therefore 

its outputs are not relevant. 

VII. DISCUSSION 

A. Implementation for real-time prediction 

In our experiments, we conducted offline processing to 

predict the future positions of people. To achieve real-time 

prediction, the processing time is crucial. In our method, the 

maximum time for evaluating a sequence of observations with 

all HMMs is around 30 ms in a Core2Duo (3.00 GHz) 

processor with 3.25GB of RAM, so applying it to such 

real-time systems as robotics is feasible. Heavy calculation 

cost is needed to model crossing behaviors, but that is an 

offline process. After models are calculated, they can be used 

for real-time estimation. Therefore, we do not think that 

processing time is a problem for real-time prediction. 

Another problem is dealing with strange trajectories in 

real-time prediction; however, this problem can be overcome 

because such trajectories are very rare. During experiments, 

the percentage of weird trajectories was minor. We tried to 

understand these strange trajectories�that apparently reflected 

persons who were aimlessly wandering. Even the person 

herself will have difficulty precisely estimating such behavior 

or such a trajectory.  

Very short trajectories also present estimation�problems. 

HMM is used as�an estimation algorithm, so achieving good 

results requires a sequence of observations. If the trajectory is 

too short, it means that there will not be enough observations 

of the trajectory for a good appraisal. 

B. Feasibility in other environments 

We expect to easily apply our proposed method to other 

environments because it can model crossing behaviors by 

gathering crossing trajectories in any environment. Once 

models are computed for a new environment, a calculated 

relative trajectory can be used to estimate future positions of 

crossing people. Such a wide range of applications is one of 

our method’s strengths.  

One possible future work is to predict the future position of 

people who are crossing a mobile robot. We expect that their 

crossing behavior involving robots will be different from their 

crossing behaviors with people. Our method can model the 

crossing behavior between a robot and people as well as the 

crossing behavior of people. By applying our method for this 

purpose, robots can move more safe and natural by 

considering the future positions of the crossing people. 

VIII. CONCLUSION 

Predicting people’s future positions is one of important 

ability as well as tracking their positions for mobile robots that 

act in daily environments. Because robots will share common 

rooms with persons, avoiding crossings is not possible. Hence, 

to predict future positions more accurately, we focused on the 

crossing behavior of people and proposed a method to predict 

the future positions of people who are crossing each other. 

This method will be applied later to robot-person crossings on 

an actual scene. 

We first conducted a field experiment to gather various 

crossing behaviors of pedestrians in a shopping mall 

environment to analyze them. We focused on a “hot area,” a 

space where people modify their trajectories when they are 

crossing. We clustered typical crossing behaviors in hot areas 

and modeled them using Hidden Markov Models for 

predictions. 

We conducted experiments to investigate the performance 

of our proposed method. Using the gathered trajectories from 

a shopping mall, we measured the accuracies of predicting 

future positions after one/two seconds of observations. Future 

positions�were appraised after one, two, three, four, and five 

seconds. The proposed method achieved less than 1-m 

prediction position error one second later and 2.5-m 

prediction error of future positions five seconds later. 

The presented method can work on real time applications 

because heavy calculations are processed off-line. Estimation 

process is in the order of 30 ms. 

In future experiments, the performance of our method will 

be tested on real environments. 

ACKNOWLEDGMENTS 

We wish to thank the staff of the Asia and Pacific Trade 

Center Co., Ltd. for their kind cooperation. 

REFERENCES 

[1] W. Burgard, A. B. Cremers, D. Fox, D. Hänel, G. Lakemeyer, D. 

Schulz, W. Steiner, and S. Thrun, The interactive museum tour-guide 

robot, Proc. of National Conference on Artificial Intelligence, pp. 

11-18,  1998.  

 
Fig. 14 Average errors of proposed method 

 

5436



[2] R. Siegwart et al., Robox at Expo. 02: A Large Scale Installation of 

Personal Robots, Robotics and Autonomous Systems, 42(3), pp. 

203-222, 2003. 

[3] T. Kanda, T. Hirano, D. Eaton, and H. Ishiguro, Interactive Robots as 

Social Partners and Peer Tutors for Children: A Field Trial, Human 

Computer Interaction, 19(1-2), pp. 61-84, 2004. 

[4] Bilge Mutlu and Jodi Forlizzi, Robots in organizations: the role of 

workflow, social, and environmental factors in human-robot 

interaction, Proceedings of the 3rd ACM/IEEE international 

conference on Human robot interaction, March 12-15, 2008, 

Amsterdam, The Netherlands. 

[5] Kanda, T. et al., Who will be the customer?: A social robot that 

anticipates people’s behavior from their trajectories, UbiComp2008, 

2008. 

[6] M. Shiomi, T. Kanda, D. F. Glas, S. Satake, H. Ishiguro, and N. Hagita, 

“Field Trial of Networked Social Robots in a Shopping Mall,” 

Proceedings of the 2009 IEEE International Conference on Intelligent 

Robots and Systems (IROS2009), 2009. (to appear) 

[7] A. Foka and P. Trahanias, “Real-time hierarchical POMDPs for 

autonomous robot navigation,” Robot. Auton. Syst., vol. 55, no. 7, pp. 

561–571, 2007. 

[8] Rongxin Jiang,   Xiang Tian,   Li Xie,   and Yaowu Chen, “A Robot 

Collision Avoidance Scheme Based on the Moving Obstacle Motion 

Prediction,” Proceedings of the 2008 ISECS International Colloquium 

on Computing, Communication, Control, and Management. 

[9] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Probabilistic 

Rapidly-exploring Random Trees for autonomous navigation among 

moving pedestrians,” Proceedings of the 2009 IEEE International 

Conference on Intelligent Robots and Systems (IROS2009), 2009. 

[10] E. Owen and L. Montano, Motion planning in dynamic environments 

using the velocity space, RSJ International Conference on Intelligent 

Robots and Systems (IROS’2005), Edmonton, Alberta, Canada, 

997-1002, August 2-6, 2005. 

[11] Montesano, J. Minguez, and L. Montano, Modeling the Static and the 

Dynamic Parts of the Environment to Improve Sensor-Based 

Navigation, In Proceedings of the International Conference on 

Robotics and Automation (ICRA), pages 4567–4573, Barcelona, 

Spain, 2005. 

[12] Dizan Vasquez and Thierry Fraichard, 2004, “Motion Prediction for 

Moving Objects: a Statistical Approach,” In: Proceedings of the 2004 

IEEE International Conference on Robotics & Automation, 2004  

[13] Large, F., Vasquez, D., Fraichard, T., and Laugier, C., “Avoiding cars 

and pedestrians using velocity obstacles and motion prediction,” IEEE 

Intelligent Vehicles Symposium, 2004. 

[14] Glas, D. F., Miyashita, T., Ishiguro, and H., Hagita, N. Laser Tracking 

of Human Body Motion Using Adaptive Shape Modeling, In Proc. 

IROS2007, (2007), pp. 602-608. 

[15] Glas, D. F., Miyashita, T., Ishiguro, and H., Hagita, N. Laser-Based 

Tracking of Human Position and Orientation Using Parametric Shape 

Modeling, Advanced Robotics 23 (2009), pp. 405-428. 

[16] Tijn Kooijmans, Takayuki Kanda, Christoph Bartneck, Hiroshi 

Ishiguro and Norihiro Hagita, Accelerating Robot Development 

through Integral Analysis of Human-Robot Interaction, IEEE 

Transactions on Robotics (Special Issue on Human-Robot Interaction), 

23(5), pp. 1001-1012, 2007. 

[17] Loyd, S. P. Least squares quantization in PCM. IEEE Transactions on 

Information Theory 28 (2), March 1982, pp. 129-137. 

[18] MacKay, David. Chapter 20. An Example Inference Task: Clustering. 

Information Theory, Inference and Learning Algorithms. Cambridge 

University Press. pp. 284-292. ISBN 0-521-64298-1. 

[19] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern 

Approach 2nd Edition. Pearson Education. 2003. ISBN 0-13-080302-2. 

[20] L.R. Rabiner and B.H. Juang. An Introduction to Hidden Markov 

Models. IEEE ASSP Magazine. January 1986. 

[21] L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected 

Applications in Speech Recognition. Proceedings of the IEEE, vol. 77 

(2). February 1989. 

[22] Brian D. Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, 

Kevin Peterson, J. Andrew Bagnell,, Martial Hebert, Anind K. Dey and 

Siddhartha Srinivasa. Planning-based Prediction for Pedestrians. 

IEEE/RSJ International Conference on Intelligent Robots and Systems. 

October 2009. St. Louis, USA. 

[23] J. B. MacQueen. Some Methods for classification and Analysis of 

Multivariate Observations, Proceedings of 5-th Berkeley Symposium 

on Mathematical Statistics and Probability, Berkeley, University of 

California Press, 1:281-297. 1967. 

[24] Robert B. Scharpf, Giovanni Parmigiani, Jonathan Pevnser, and Ingo 

Ruczinski, "A HIDDEN MARKOV MODEL FOR JOINT 

ESTIMATION OF GENOTYPE AND COPY NUMBER IN 

HIGH-THROUGHPUT SNP CHIPS" (February 2007). Johns Hopkins 

University, Dept. of Biostatistics Working Papers. Working Paper 136. 

5437




