
Monocular Ego-motion Estimation with a Compact Omnidirectional Camera

Wolfgang Stürzl, Darius Burschka, and Michael Suppa

Abstract— We present a generalization of the Koenderink–
van Doorn (KvD) algorithm that allows robust monocular
localization with large motion between the camera frames
for a wide range of optical systems including omnidirectional
systems and standard perspective cameras. The KvD algorithm
estimates simultaneously ego-motion parameters, i.e. rotation,
translation, and object distances in an iterative way. However
due to the linearization of the rotational component of optic
flow, the original algorithm fails for larger rotations. We present
a generalization of the algorithm to arbitrary rotations that is
especially suited for omnidirectional cameras where features
can be tracked for long sequences. This reduces the need for
vector summation of several individual motion estimates that
leads to accumulation of odometry errors.

The significant improvement in the performance of the pro-
posed generalized algorithm compared to the original KvD im-
plementation is validated using simulated data. The algorithm is
also tested in a real-world experiment with ground-truth data
obtained from an external tracking system. The experiment
was carried out using a novel compact omnidirectional camera
that is designed for small aerial vehicles. It consists of an off-
the-shelf webcam that is combined with a reflective surface
machined into acrylic glass.

I. INTRODUCTION

Ego-motion estimation is an essential task for most robotic

applications. The task can be simplified if the environment

and the geometric structure of the observed features are

known. In many cases, this simplification does not hold and

the system needs to localize in an unknown environment.

In this case, not only the change in the position has to be

estimated but also the geometric relations and the reliability

of the landmarks observed in the images. There exist ap-

proaches in Computer Vision that allow a direct estimation

of the pose change from correspondences between feature

points in two frames. Known approaches are the “8-point

algorithm” [1] and its variations [2], [3] that work for point

sets which are not all in a plane. Homography matrix based

approaches [4], [5] are used for planar cases which are

common especially for flying systems observing the world

from higher altitudes. Most of these approaches are not able

to provide a way to weigh the contribution of each observed

point in an image sequence.

There are several approaches that use omnidirectional

cameras. For example, Vassallo et al. [6] estimate ego-motion

using a non-central catadioptic imaging system. Since their

W. Stürzl is with the Department of Neurobiology and the Center
of Excellence ”Cognitive Interaction Technology”, Bielefeld University,
Germany wolfgang.stuerzl@uni-bielefeld.de

D. Burschka is with the Department of Informatics, Technische Univer-
sität München, Germany burschka@cs.tum.edu

S. Suppa is with the Institute of Robotics and Mechatronics, German
Aerospace Center (DLR) Michael.Suppa@dlr.de

Fig. 1. Omnidirectional camera (highlighted by the red ellipse) on a flying
robot. The USB camera is connected to a “Beagle Board” computer (see
http://beagleboard.org) that controls the four-rotor flyer.

approach, similar to the original KvD algorithm presented

in the next section, is based on linearized equations, it is

not suited for estimating large rotations between frames.

Using a Point Grey Ladybug camera, Tardif et al. [7] recently

presented a monocular visual odometry and SFM algorithm

based on key frames. To obtain accurate results without

bundle adjustment, estimation of orientation is decoupled

from translation estimation. Torii et al. [8] estimate the

trajectory of a high resolution fish-eye camera with low

frame rate (3fps) by means of wide-baseline matching using

affine feature regions. Scaramuzza et al. [9] exploit the non-

holonomic constraints of wheeled vehicles enabling them

to estimate motion from a single point correspondence.

Although highly efficient, this approach is not applicable to

flying vehicles.

In contrast to the majority of algorithms for ego-motion

estimation, the KvD algorithm [10] simultaneously estimates

the camera motion parameters, i.e. rotation and translation,

and the scene structure. Although an omnidirectional view

was considered in the derivation of the original algorithm,

it was proposed for estimating small motions as they are

usually observed between consecutive frames from a per-

spective camera. However, in omnidirectional cameras –

in particular during rotations around the optical axis of

the camera — features remain usually visible for much

longer than in standard perspective cameras. As long as

corresponding features can be found in the current image and

in the reference image, rotation and translation (direction) of

the camera can be directly inferred instead of integrating

over several successive frames. Since each motion estimate

can introduce a small error, a direct computation of motion

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 822

between the reference frame and the current frame avoids

an accumulation of errors. In this paper we describe an

algorithm that avoids the linearizations in the KvD algorithm

and allows the estimation of arbitrarily large rotations. We

also present experiments with a compact omnidirectional

camera that is designed for small mobile robots, in particular

flying systems (Fig. 1).

II. GENERALIZATION OF THE KVD ALGORITHM

In the following, an algorithm is derived that estimates

ego-motion, i.e. translation vector T and rotation matrix R̂,

from corresponding features in two images, and the inverse

distances (called “nearnesses” in [10]) of the features µi ∝
1
ri

.

We describe feature directions as determined from a cam-

era image by unit vectors on the sphere ei, ‖ei‖ = 1. Feature

directions after a movement of the camera are denoted by e′i.

The 3D positions of a feature in the reference frame of

the camera are related according to

x′
i = R̂−1(xi −T) , (1)

with xi = riei being the position before the movement and

x′
i = r′ie

′
i being the position after the movement. Thus, for

the projection on the sphere we find

e′i =
x′
i

‖x′
i‖

=
R̂−1(xi −T)

‖R̂−1(xi −T)‖
=

R̂−1(riei −T)

‖riei −T‖

=
R̂−1(ei −

1
ri
T)

‖ei −
1
ri
T‖

=
R̂−1(ei − µiT)

‖ei − µiT‖

= R̂−1 ei − µiT
√

1− 2µie
⊤
i T+ µ2

iT
2

, (2)

⇐⇒ R̂e′i =
ei − µiT

√

1− 2µie
⊤
i T+ µ2

iT
2

. (3)

Equations (2) and (3) illustrate the fact that only the product

µiT = 1
ri
T can be estimated, and thus distances and

translations can be inferred from camera images only “up-

to-scale”.

A. Derivation of the KvD equation

We can use the linearizations

R̂x ≈ x+ a× x (4)

R̂−1x ≈ x− a× x (5)

for small rotations described by the rotation vector a = αea
with α ≪ 1 (α is the rotation angle, ea defines the axis of

rotation). Using (5), we approximate (2) by

e′i ≈
ei − µiT− a× (ei − µiT)
√

1− 2µie
⊤
i T+ µ2

iT
2

. (6)

If we further assume ‖µiT‖ =
1
ri
‖T‖ ≪ 1, i.e. translation

is small compared to object distance ri,then we have in first

order approximation,

e′i ≈ (ei − µiT)(1 + µie
⊤
i T)− a× ei

≈ ei − µiT+ µi(e
⊤
i T)ei − a× ei . (7)

The shift of a feature on the sphere can be described by the

“flow vector” ∆ei,

∆ei = e′i − ei

≈ −µi(T− (e⊤i T)ei)− a× ei . (8)

Equation (8) is the central equation of the KvD algorithm.

For given flow vectors ∆ei, the KvD algorithm estimates

the motion parameters a, T and the inverse object distances

{µi} by minimizing the error function

E(a,T, {µi})

=
∑

i

(

∆ei − (−µi(T− (e⊤i T)ei)− a× ei)
)2

(9)

under the constraint ‖T‖ = 1 using an iterative proce-

dure [10].

B. Derivation of the generalized algorithm

For the generalized algorithm, we avoid the approxima-

tions that led to (8) and try to directly minimize

∑

i

(

e′i − R̂−1 ei − µiT
√

1− 2µie
⊤
i T+ µ2

iT
2

)2

,

or equivalently,

∑

i

(

R̂e′i −
ei − µiT

√

1− 2µie
⊤
i T+ µ2

iT
2

)2

,

with respect to R̂, T and {µi}. Since possibly not all

feature direction vectors can be estimated with the same

accuracy, we introduce weighting factors wi and obtain the

error function

E(R̂,T, {µi})

=
∑

i

wi

(

R̂e′i −
ei − µiT

√

1− 2µie
⊤
i T+ µ2

iT
2

)2

. (10)

We rewrite (10) by introducing parameters {γi},

E(R̂,T, {µi}, {γi})

=
∑

i

wi

(

R̂e′i − γi(ei − µiT)
)2

, (11)

with the additional constraints γi‖ei − µiT‖ = 1. We will

also fix ‖T‖ = 1.

Let us assume for the moment that {µi} and {γi} are

known. Then the optimal motion parameters R̂ and T can

be calculated directly. Solving ∇TE(R̂,T) = 0 for T gives

T∗ =

∑

i wiγiµi(γiei − R̂e′i)
∑

i wiγ2
i µ

2
i

= −R̂

∑

i wiγiµie
′
i

∑

i wiγ2
i µ

2
i

+

∑

i wiγ
2
i µiei

∑

i wiγ2
i µ

2
i

(12)

= −R̂ē′ + ē , (13)

823

where ē and ē′ are defined as

ē =

∑

i wiγ
2
i µiei

∑

i wiγ2
i µ

2
i

and ē′ =

∑

i wiγiµie
′
i

∑

i wiγ2
i µ

2
i

. (14)

Substituting (13) into (11) gives

E(R̂, {µi}, {γi})

= E(R̂,T∗, {µi}, {γi})

=
∑

i

wi

(

R̂(e′i − γiµiē
′)− γi(ei − µiē)

)2

=
∑

i

wi

(

R̂c′i − c
)2

=
∑

i

wi

(

c′i
⊤
c′i + c⊤i ci − 2c⊤R̂c′i

)2

, (15)

where ci and c′i are defined as

ci = γi(ei − µiē) = γi

(

ei − µi

∑

k wkγ
2
kµkek

∑

k wkγ2
kµ

2
k

)

,

c′i = e′i − γiµiē
′ = e′i − γiµi

∑

k wkγkµke
′
k

∑

k wkγ2
kµ

2
k

.

The minimum of (15) under the constraint R̂⊤R̂ = 1̂ (where

1̂ is the identity matrix) can be found using the “Procrustes

approach”, see [11], [12], [13], [14], i.e.

R̂∗ = P̂ diag
(

1, 1, det(P̂Q̂⊤)
)

Q̂⊤ , (16)

where P̂ and Q̂ are unitary matrices obtained from Singular

Value Decomposition,

(

P̂, Ŝ, Q̂
)

= svd
(

∑

i

wi cic
′
i

⊤
)

. (17)

In (16) the multiplication with the diagonal matrix

diag(1, 1, det(P̂Q̂⊤)) ensures det(R̂∗) = 1.

Minimizing (11) with respect to µk for given R̂ T and

{γi} yields

µ∗
k =

γke
⊤
k T− (R̂e′k)

⊤T

γk‖T‖2

‖T‖=1
= e⊤k T−

1

γk
(R̂e′k)

⊤T . (18)

From the constraint γ2
k(ek − µkT)2 = 1, we find

1 = γ2
k(ek − µkT)2

(18)
= γ2

k

(

ek − (e⊤k T−
1

γk
(R̂e′k)

⊤T)T
)2

= γ2
k(1− (e⊤k T)2) + ((R̂e′k)

⊤T)2 ,

=⇒ γ2
k =

1− ((R̂e′k)
⊤T)2

1− (e⊤k T)2
, (19)

0 < γk =

√

1− ((R̂e′k)
⊤T)2

1− (e⊤k T)2
. (20)

Algorithm: Using the results of the previous section, we

propose the following iterative procedure for estimating R̂,T

and {µi} from N tracked features:

• Initialization (t=0):

Set µi = 1 and γi = 1, i = 1, 2, . . . , N , estimate

R̂ and T using (16) and (12), and compute E0 =
∑

i wi

(

R̂e′i − ei +T
)2

• Loop (t← t+ 1):

1) Normalize T, i.e. T← T/‖T‖
2) Calculate γi using (20) and µi using (18), i =

1, 2, . . . , N

3) Estimate R̂ and T using (16) and (12), respec-

tively

4) Compute Et = E(R̂,T, {µi}, {γi}) from (11)

• Until 1
N
|Et−1 − Et| < ǫ∆E .

We used ǫ∆E = 10−10 and a maximum number of 100

iterations for the experiments described in section IV. In (the

rare) case the denominator in (20) is very small, we set γi =
1 and µi = 0 (in our implementation we checked for e⊤i T >
cos(0.25◦), i.e. whether the angle between feature direction

vector ei and estimated translation T is smaller than 0.25◦).

III. COMPACT OMNIDIRECTIONAL CAMERA

In this section, we describe a novel compact omnidirec-

tional camera that is designed for mobile robots, in particular

for small aerial vehicles. In order to obtain ground-truth data

by means of an external tracking system the camera of our

four-rotor flyer (see Fig. 1) was mounted on a helmet, as

shown in Fig 2 a. Results of this experiment will be presented

in section IV.

a b

23 mm

Fig. 2. a) Omnidirectional camera mounted on a helmet used for testing
of the generalized algorithm. b) Close-up view with spherical markers of
the ART-tracking system attached. The diameter of the spherical body is
≈ 23mm.

As shown in Fig. 2 b and Fig. 3 a, we improved our light-

weight and compact omnidirectional mirror design described

in [15] by further reducing weight and size. In contrast to

most omnidirectional systems that are usually much larger

because they consist of a separate mirror and additional

supporting parts [16], the reflective surface (red curve in

Fig. 3) was machined into solid acrylic glass and coated

with a vapor-deposited aluminum layer. The outer curved

824

a −30 −20 −10 0 10 20 30 40 50 60
−20

−10

0

10

20

30

40

50

b

η
r0

r(η)

~xm(η)

~O

ε

Fig. 3. a) Schematic drawing and raytracing diagram (blue rays) of our
omnidirectional imaging system. The red curve highlights the shape of the
reflective surface. The blue dot at (0, 23)mm illustrates the approximate
view-point. b) Illustration of the parameters defining the shape of a reflective
surface with constant angular gain, equation (22).

surface is designed to be orthogonal to the incoming rays to

avoid ray deflection due to refraction. A small ’plastic cap’

was fitted into the concave opening for protection of the thin

aluminum layer and to prevent unwanted light from entering

the camera from above.

We used a shape with “constant angular gain” [17] for the

reflective surface (see red curve in Fig. 3). This leads to a

linear mapping of η, the angle between the reflected rays and

the optical axis, to elevation angle ε,

ε = gαη −
π
2 , (21)

where gα is the “angular gain” of the reflective surface. As

derived in [17] and illustrated in Fig 3 b, the profile of the

reflective surface is defined by

xm(η) = r(η)

(

sin η
cos η

)

, η ∈ (0, ηmax) , (22)

r(η) =
r0

cos(gα+1
2 η)

2
gα+1

.

The angular gain of the reflective surface in our om-

nidirectional camera was chosen to be gα = 7.5. The

second parameter r0 that defines the distance to the apex

of the mirror is r0 = 25mm; the maximum of angle η is

ηmax = 17.3◦. Due to refraction at the planar acrylic glass

surface facing the camera lens, the effective view point of

the camera is about 3.5 mm further away from the reflective

surface and the camera angle is reduced by a factor 1/np,

where np ≈ 1.5 is the refractive index of acrylic glass. See

[15] for further details.

For capturing images, we used a Philips SPC 900NC USB

webcam that is based on a 1/4-inch color CCD sensor

(640×480 pixels) and well supported by the Linux operating

system1. We removed the camera housing and replaced the

original lens with a S-mount lens of 2.5 mm focal length and

an IR-cut-off filter attached.

1http://www.saillard.org/linux/pwc/

IV. RESULTS

A. Simulation

For comparing the presented generalized algorithm and

the original KvD approach and for analyzing the noise de-

pendence of the ego-motion estimation results, we simulated

the movement of a spherical camera in an environment with

N = 14 features. As shown in Fig. 4 a, the simulated

camera starts surrounded by the points with varying nearness

values µi. It moves in 100 steps along a half circle while

continuously changing orientation from 0◦ to 180◦. For each

time step t, feature points were projected onto the viewing

sphere and optionally Gaussian noise was added, resulting in

the feature directions ei(t), i = 1, 2, . . . , N . The movement

of the features on the viewing sphere is shown in Fig. 4 b.

Fig. 4 c,d shows results for zero noise. Please note that in

order to test its performance for large motion between camera

frames, the ego-motion estimation starts “from scratch” at

every time step, i.e. no information from previous steps is

used.2 While the generalized algorithm estimates correctly

orientation and direction of translation for all positions, the

original KvD approach produces valid results only as long

as the change in orientation is smaller than about 10◦. For

noise level of 1◦, the translation direction cannot be estimated

correctly for small translations of the camera as depicted

in Fig. 4 f for t . 5. This is not unexpected since for

small translations shifts of the features in the image caused

by translation are small and hard to detect in the presence

of noise. Using more points will improve the ego-motion

estimation accuracy due to the implicit averaging of the

algorithm.

As illustrated in Fig. 5, the simultaneously estimated

inverse distances µi allow to reconstruct the 3D-positions of

the feature points. Since each inverse distance contributes just

to a single term to the sum defining the error function (10),

the accuracy of the estimated µi will mainly depend on the

accuracy of the vectors ei and e′i(t). However, similar to the

original KvD approach [10], slight improvements can still be

achieved by increasing the number of points since estimation

of rotation and translation direction will be enhanced.

B. Real-world experiment

As it was more convenient to obtain ground-truth data

indoors, the omnidirectional camera of the four-rotor flyer

(see Fig. 1) was mounted on top of a black helmet, enabling

us to capture images while walking freely in a room, see

Fig. 2 a. Four spherical markers were attached below the

camera (Fig. 2 b) for estimating all 6 DOF with an ART

tracking system3. Images were captures at a constant rate

of 10 fps and stored on a laptop carried in a backpack. The

trajectory measured by the ART tracking system is shown in

Fig. 8 a.

In order to obtain feature correspondences, features were

tracked for 148 frames (corresponding to about 15 sec) using

2Of course, for a continuously operating ego-motion estimation, the
solution from the previous step can be used for initialization. In addition,
reliably estimated µi’s could be fixed and the normalization of Test omitted.

3http://www.ar-tracking.de/

825

a
−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

2

−1

−0.5

0

0.5

1

b −1

0

1

−1

−0.5

0

0.5

1
−1

0

1

x
y

z

0 20 40 60 80 100

0

50

100

150

200

250

Rotation angles (zero noise)

time t

a
n
g
le

 [
D

E
G

]

true yaw rotation angle
z−comp rotation vector (gen alg)

z−comp rotation vector (KvD alg)

x−comp rotation vector (gen alg)
y−comp rotation vector (gen alg)

c 0 20 40 60 80 100

0

50

100

150

200

250

Azimuth angle of translation (zero noise)

time t

a
n
g
le

 [
D

E
G

]

true values

generalized algorithm

KvD algorithm

d

0 20 40 60 80 100

0

50

100

150

200

250

Rotation angles (noise 1DEG)

time t

a
n
g
le

 [
D

E
G

]

true yaw rotation angle
z−comp rotation vector (gen alg)

z−comp rotation vector (KvD alg)

x−comp rotation vector (gen alg)
y−comp rotation vector (gen alg)

e 0 20 40 60 80 100

0

50

100

150

200

250

Azimuth angle of translation (noise 1DEG)

time t

a
n
g
le

 [
D

E
G

]

true values

generalized algorithm

KvD algorithm

f

Fig. 4. Testing the original KvD approach and the generalized algorithm
using simulated features positions and their projections onto the unit-sphere.
a) Overview of the position of the feature points (located at the 14 corners
of the polyhedron), the camera trajectory (red curve, the blue cross marks
the start position), and the camera orientation (illustrated as short lines
orthogonal to the trajectory). b) Motion of the projected feature points on
the unit-sphere. Start points are highlighted by blue circles, end points are
highlighted by red crosses. c) – f) Comparison of the KvD algorithm (green
dots) and the proposed generalized algorithm (blue dots). Ground truth
values are shown in red. c) Estimation of rotation for zero noise. Plotted
are the components of the rotation vector. d) Estimation of the azimuth
angle of the translation vector for zero noise. The ground-truth values are
indistinguishable from the values estimated by the generalized algorithm.
The original KvD algorithm produces correct estimates only up to a rotation
angle of about 10◦. e), f) as c), d) but with Gaussian noise of 1◦ standard
deviation added to the feature vectors ei and e

′

i
.

Birchfeld’s C-implementation [18] of the Kanade-Lucas-

Tomasi (KLT) feature tracker [19], [20]. The omnidirectional

camera was calibrated using the “OCamCalib” Matlab tool-

box [21] enabling us to calculate feature directions ei and e′i
from points in the images. We kept 50 features that showed

the smallest standard deviation in µi relative to the mean

over the sequence (see green circles Fig. 6 a,b). The reference

frames of the omnidirectional camera and the tracking system

were aligned using the estimated and measured (normalized)

translation vectors for frames 20–50.

Results of the ego-motion estimation (rotation vector and

translation direction) are shown in Fig. 7. Similar to the

results of the simulation (Fig. 4 f for t . 5), the estimated

translation direction shows comparatively large errors for

small translations because feature shift is small and noise

has strong impact (dashed blue curve in Fig. 7 b for t . 20).

For larger frame numbers t & 70, errors are most probably

a

−0.5
0

0.5
1

1.5
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

b

−0.5
0

0.5
1

1.5
−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. Reconstruction of scene structure x
est

i
(t) = µ−1

i
(t)ei(t) at

t = 50. For comparison with true 3D positions, x
est

i
were multiplied

by ‖Ttrue(t)‖. a) For zero noise, estimated 3D points (blue) are indis-
tinguishable from true feature positions. b) Results with Gaussian noise of
1◦ standard deviation (true feature positions are highlighted by red dots).

a b

Fig. 6. First (a) and last (b) camera image of a image sequence where
50 features were tracked for 148 frames with a KLT tracker. Features are
highlighted by small green circles. The dashed yellow circle highlights the
horizon (elevation angle ε = 0◦) of the omnidirectional camera, the two
continuous yellow circles demarcate the FOV used in the experiment (inner
circle ε = −40◦, outer circle ε = +36◦). Only features inside this area
were tracked. The spherical markers of the ART tracking system are visible
in the image center close to the inner yellow circle.

due to drifts in the feature tracking process. Estimation of

the z-component of the rotation vector appears to be less

sensitive to this error (dashed blue curve in Fig. 7 a).

The algorithm was again initialized “from scratch” in

every time step in order to test its performance for large

motion between the two camera frames. Thus, it can estimate

translation and inverse distances only up to scale. However,

it is possible to introduce an approximately fixed scale

over the whole sequence by assuming that the mean over

the inverse distances µ̄(t) = 1
N

∑

i µ(t) is proportional to

translations. The rationale behind this is that for perfect

feature tracking and because the translation vector is nor-

malized in every time step, µi(t) and thus also
∑

µi(t) are

proportional to translation, i.e.
∑

µi(t) ∝ T (t)µi(1). Thus,

by plotting µ̄(t)Test(t) we can obtain an estimate for the

whole trajectory up to scale. For better comparison with the

true trajectory, we multiplied the estimated trajectory by a

scaling factor k in Fig. 8 a, where k was chosen to minimize
∑50

t=20 ‖T
true(t)−kµ̄(t)Test(t)‖2 – the deviation of the 3D

trajectories between the 20th and 50th frame.

V. DISCUSSION AND OUTLOOK

We have presented an algorithm for visual ego-motion

estimation with monocular cameras that does not require

826

0 50 100 150
−250

−200

−150

−100

−50

0

50
Rotation angles

frame number t

a
n

g
le

 [
D

E
G

]

z−comp est rotation vector
z−comp true rotation vector
x−comp est rotation vector

x−comp true rotation vector
y−comp est rotation vector
y−comp true rotation vector

a 0 50 100 150
−80

−60

−40

−20

0

20
Translation direction

frame number t

a
n

g
le

 [
D

E
G

]

azimuth est translation

azimuth true translation

elevation est translation

elevation true translation

b

Fig. 7. Real-world test of the generalized algorithm. Dashed curves show
ground-truth data from the ART-tracking system. a) Estimation of rotation.
Plotted are the components of the rotation vector. b) Estimation of azimuth
and elevation angle of the translation vector.

0 50 100 150
0

5

10

15

20

25

30

35

40

frame number t

Σ
i µ

i(t
)

0 50 100 150 200

−200

−150

−100

−50

0

50
60

70

40

80

100

90

30

120

110

20

130

140

10

x [cm]

50
60

80

70

40
30

100

90

120

110

140

20

130

10

y
 [

c
m

]

ba

Fig. 8. a) Trajectory measured by the ART-tracking system (red)
and estimated trajectory (blue, shifted by 100 cm in x-direction) using
k µ̄(t)Test(t) as an estimate of the position at time t. The scaling factor
k was calculated to minimize the sum of squared differences between
the estimated and the measured translation vectors between the 20th and
50th frame (see text). The numbers close to the trajectories show the
corresponding frame numbers. b) Sum of nearnesses

∑
i
µi(t) = Nµ̄(t)

over the whole sequence.

any initialization sequence in opposite to Davison’s original

approach [22]4 or the VGPS system [13]. The presented

algorithm does not rely on the linearization introduced in

the original KvD algorithm and, therefore, allows a con-

vergence over a large range of rotations and translations

as validated in the results section. This system was tested

on an omnidirectional camera that enhances the visibility

of the tracked points over a larger range of motion. As

already mentioned earlier, we calculate the localization result

relative to an initial reference image instead of integrating the

incremental changes over an image sequence. This prevents

accumulation the ever present error due to quantization and

detection accuracy.

While the algorithm computes ego-motion reliably even

in the presence of noise, feature drift during tracking can

significantly degrade estimation results. Although changes

in feature positions are usually small between consecutive

frames and thus feature tracking is unlikely to be strongly

affected by the varying resolution in azimuth angle of our

omnidirectional camera, adapting the KLT algorithm to this

4A recent extension of Davison’s approach by Civiera et al. [23] based
on inverse distances makes a separate initialization procedure unecessary.

type of sensor might improve tracking performance. Of

course, instead of continuously tracking features, approaches

that directly match features, like SIFT [24] or SURF [25],

could be used. However they are computationally more

expensive.

The weight factors wi in (17) and (12) allow to modify

the contribution of a single feature to the result. The tracking

quality of features depend on the structure of the local

environment. Some features cannot be tracked reliably. This

error can be found through re-projection of the position of

each feature using the current localization result. Features

with large errors should have a lower weight in the algorithm

as proposed in [26]. Even in case of ideal tracking, features

detected in images have different sensitivity to motion in

3D space. The Image Jacobian matrix relates changes in

the images to changes in the position. The observability of

the features was studied in [27] where the condition number

(the largest ratio of the eigenvalues) of the Image Jacobian

was analyzed. As a result, features with reasonable projective

height in the image were optimal for the motion detection.

For planar motion, neither features along the horizon nor

features above the robot are good candidates to be included

in the feature set if the number of features needs to be kept

low. Therefore, close features with large “nearness” value µi

are preferred in the calculation of motion and should be given

a higher weight. This will be generalized and analyzed in the

future work.

In future work, the proposed generalized KvD algorithm

will be compared to existing state-of-the art approaches and

tested on the four-rotor flyer shown in Fig. 1. The algorithm

will be used in a global navigation system robustified through

fusion with inertial measurements. It is not feasible to keep

just one reference image in global navigation frameworks.

Therefore, we will add a hand-off process to switch be-

tween different reference points while traveling over large

distances. This approach has been applied in a navigation

system described in [26].

VI. ACKNOWLEDGMENTS

We thank Simon Strübbe for providing an implementa-

tion of the KvD-algorithm, Claudius Strub for MATLAB

programming, and the machine shops at the Institute of

Robotics and Mechatronics (DLR) and Bielefeld University

for machining the parts of the omnidirectional camera.

REFERENCES

[1] H. C. Longuet-Higgins, “A Computer Algorithm for Reconstructing a
Scene from Two Projections,” Nature, vol. 293, pp. 133–135, 1981.

[2] R. I. Hartley, “In defense of the eight-point algorithm,” Pattern

Analysis and Machine Intelligence, vol. 19, pp. 580–593, 1997.
[3] D. Nister, “An efficient solution to the five-point relative pose prob-

lem,” Pattern Analysis and Machine Intelligence, vol. 26, pp. 756–770,
2004.

[4] O. Faugeras and F. Lustman, “Motion and structure from motion in
a piecewise planar environment,” Int. Journal of Pattern Recognition

and Artificial Intelligence, vol. 2, no. 3, pp. 485–508, 1988.
[5] Z. Zhang and A. R. Hanson, “3d reconstruction based on homography

mapping,” in ARPA, 1996, pp. 1007–1012.
[6] R. F. Vassallo, J. Santos-Victor, and H. J. Schneebeli, “A general

approach for egomotion estimation with omnidirectional images,” in
OMNIVIS, 2002, pp. 97–103.

827

[7] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis, “Monocular visual odometry
in urban environments using an omnidirectional camera,” in IROS,
2008, pp. 2531–2538.

[8] A. Torii, M. Havlena, and T. Pajdla, “Omnidirectional image stabi-
lization by computing camera trajectory,” in PSIVT, 2009, pp. 71–82.

[9] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, “Real-time monocular
visual odometry for on-road vehicles with 1-point ransac,” in ICRA,
2009, pp. 488–494.

[10] J. J. Koenderink and A. J. Doorn, “Facts on optic flow,” Biological

Cybernetics, vol. 56, no. 4, pp. 247–254, 1987.
[11] P. Schönemann, “A generalized solution of the orthogonal procrustes

problem,” Psychometrika, vol. 31, pp. 1–10, 1966.
[12] S. Umeyama, “Least-squares estimation of transformation parameters

between two point patterns,” Pattern Analysis and Machine Intelli-

gence, vol. 13, no. 4, pp. 376–380, 1991.
[13] D. Burschka and G. D. Hager, “V-GPS – Image-Based Control for 3D

Guidance Systems,” in IROS, 2003, pp. 1789–1795.
[14] L. Dorst, “First order error propagation of the procrustes method for

3d attitude estimation,” Pattern Analysis and Machine Intelligence,
vol. 27, no. 2, pp. 221–229, 2005.

[15] W. Stürzl, M. Suppa, and D. Burschka, “Light-weight panoramic
mirror design for visual navigation,” in Omnidirectional Robot Vision,
2008, pp. 218–229.

[16] R. Benosman and S. B. Kang, Panoramic Vision: Sensors, Theory and

Applications, 1st ed. Springer, Berlin, 2001.

[17] J. Chahl and M. Srinivasan, “Reflective surfaces for panoramic imag-
ing,” Applied Optics, vol. 36, pp. 8275–8285, 1997.

[18] S. Birchfield, “KLT: An implementation of the Kanade-Lucas-Tomasi
feature tracker,” www.ces.clemson.edu/∼stb/klt/.

[19] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in IJCAI, 1981, pp. 674–679.

[20] J. Shi and C. Tomasi, “Good features to track,” in CVPR, 1994, pp.
593–600.

[21] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for easily
calibrating omnidirectional cameras,” in IROS, 2006, pp. 5695–5701.

[22] A. J. Davison, “Real-Time Simultaneous Localisation and Mapping
with a Single Camera,” in ICCV, 2003, pp. 1403–1412.

[23] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth
parametrization for monocular slam,” IEEE Transactions on Robotics,
vol. 24, no. 5, pp. 932–945, 2008.

[24] D. G. Lowe, “Object recognition from local scale-invariant features,”
in ICCV, 1999, pp. 1150–1157.

[25] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346–359, 2008.

[26] E. Mair, K. Strobl, M. Suppa, and D. Burschka, “Efficient Camera-
Based Pose Estimation for Real-Time Applications,” in IROS, 2009,
pp. 2696–2703.

[27] D. Burschka, J. Geiman, and G. D. Hager, “Optimal Landmark
Configuration for Vision-Based Control of Mobile Robots,” in ICRA,
2003, pp. 3917–3922.

828

