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Abstract— This paper presents a method for the automatic
observation of unknown objects. We aim at finding the position
of the targeted object and at capturing multiple views of its
shape using a single eye-in-hand camera. The main goal is
modeling the unknown object via 3D reconstruction before
grasping and manipulating it with a robot hand. The proposed
method built over a visual servo loop uses simple features
to constantly gaze at the object and handles a three-step
exploration with the same control structure. Images captured
with the experimental setup are processed online to recover a
model with millimetric accuracy.

I. INTRODUCTION

Grasping everyday objects is one of the complex tasks

that robots should perform autonomously when operating

in human environments. For this purpose, anthropomorphic

hands are used to provide in-hand manipulation possibilities.

Such hands are not object-specific tools as grippers are in

factory, and so require the object model to plan grasping

and manipulations. Some knowledge of the scene is then

needed. Analyzing the environment in the specific context

of assistance to people is more challenging since several

constraints on the workspace are added. Indeed, installing

cameras in a large domestic environment is not as easy as it

would be in a limited industrial workplace and it may reduce

people’s intimacy. Therefore, the robot system should only

use a few embedded sensors when operating in human places.

We choose to equip our robot with an eye-in-hand camera.

This placement satisfies the previous constraint and allows

enhanced observation capabilities.

In the field of object manipulation, grasping is sometimes

considered without a 3D model. In such a case, objects and

their grasping points are recognized through demonstration

or previous learning in image space directly [1], [2] but

no fine in-hand manipulation can be performed without a

precise 3D model. A model of the shape can be constructed

through several methods. Some works consider model fitting

with 2D or 3D data provided by camera or laser scanner

[3], [4], while others recover a model from exploration and

image data using contour fitting [5], [6] or back-projection

probability minimization [7]. A third method consists in

reconstructing a more precise model with techniques issued

from the computer vision community as reported in [8], [9].

The research leading to these results has been partially supported by
the HANDLE project, which has received funding from the European
Community’s Seventh Framework Program (FP7/2007-2013) under grant
agreement. ICT 231640

We have also previously proposed a 3D multi-view re-

construction technique [10] to recover a precise model of

unknown objects. It can be decomposed in two major steps.

A first step for the volumetric reconstruction is based on a

progressive estimation of the visual hull made online during

an observation movement. A second step taking advantage of

the graph-cuts [11] refines the coarse reconstructed model.

To get the data required for model reconstruction, informa-

tion on the object and its environment should be retrieved

through observation or scene exploration. With the chosen

robot system using a monocular image as the only input data,

a multi-task visual servoing system has to be developed to

fulfill additional objectives while permanently gazing at the

object. These objectives are defined as follows:

1) Determining the coordinates O(xo, yo, zo) of the ob-

ject center w.r.t. the robot base frame Rb and es-

timating its bounding-box size: both will serve to

restrict the reconstruction processing zone to a small

volume around the object and thus improve the shape

recovering speed.

2) Reaching multiple observation stations around the ob-

ject: the main source of data for the 3D modeling part

will come from these captures of the object surface.

In order to feed our reconstruction process, we propose in

this paper a well suited approach that estimates the initial

size and relative position of the bounding-box enclosing the

object and that generates a movement around it. The ex-

perimental setup consists of a six degrees-of-freedom (DoF)

serial manipulator with an eye-in-hand camera mounted on

its end-effector (see Fig. 1). In this work, a standard visual

servoing method centering the object in the camera field-

of-view (FoV) is adapted to enable direct change of the

sensor orientation. The eye-in-hand camera reaches various

viewpoints without specific feature constraints or complex

trajectory generation, while still focusing on the object.

The remaining of the paper is organized as follows. Sec-

tion II analyzes previous related works on scene exploration,

section III describes the visual control loop, the image-based

features and the control inputs. Section IV explains how the

observation is performed, and the reconstruction process in

combination with the exploration is proposed in section V.

Experiments and their results for viewpoint generation and

for object modeling are presented in section VI. Section VII

concludes and proposes future work research.
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Fig. 1. Six degree-of-freedom manipulator with an eye-in-hand camera

II. RELATED WORKS

Using scene exploration with embedded sensors to build

a 3D model of unknown objects is one solution proposed in

several previous works. As a precursor in 1995, Marchand

et al. [5] developed a structure-from-motion method for

object modeling, improved by a visual servoing scheme

to strategically observe the unknown scene. Within this

scheme, the selected features are segments that should remain

vertical while moving in the horizontal direction to offer

better reconstruction. Unfortunately, with this solution, the

exploration movement only works for primitives shapes. In

[7], a rough approximation of the object location is first

computed by triangulation with the two first views and

is then refined during the movement. The authors propose

an ellipsoidal approximation of the object shape based on

probability distribution in multiple views. Their robot per-

forms a visual servoed exploration motion around the object

by computing the next best view to improve the model

estimation. The same kind of primitives are recovered in [6]

as they fit 2D object contours detected in several views in

a 3D quadric model. Active vision helps them optimize the

quadric parameters by moving the embedded sensor around

the object accordingly with a Simplex method. However,

even if their exploration strategies work well, these solutions

can only recover primitive shapes. Such simplified models

can be sufficient for grasping with a gripper but not for in-

hand manipulation with an anthropomorphic hand. The latter

requires a precise object envelope to position the fingers

while maintaining force-closure [12].

In [8], the authors use a shape-from-silhouette technique

to recover a full object model by means of embedded vision

improved by a laser stripe. In order to find the object

location, no baseline stereo is used but the single camera

is initially oriented downward and the first picture helps find

the (xo, yo) coordinates of the object in some restricted cases.

Instead of optimizing the camera motion, they rather execute

simple observation movements along a top circular trajectory.

An omnidirectional camera is installed in the gripper in

[9] and a similar small circular movement is executed with

the gripper itself on top of the object whose position is

known. A coarse 3D model is built from a visual volume

reconstruction technique adapted for omnidirectional sensors.

For both approaches, the circular top trajectories do not fully

cover the object surface to retrieve all details of its shape.

Even if Berry et al. [13] do not build a model in the

end, their observation technique is interesting. The concept

of task functions is used to smoothly combine two tasks

to turn around an unmodeled object while gazing at it. A

primary task handles the visual servoing part to keep the

object centered in the view at a constant distance from the

camera using three DoF (Rx, Ry, Vz) while a second task

controls the remaining translational motion of the vision

system (Vx, Vy) to follow a defined trajectory. Such a choice

makes it more complicated to generate any motion around

the object since the 3D trajectory must be given in the image

plane. To comply with this multi-task approach, a specific

feature must defined according to the motion direction, which

is not straight forward.

In the proposed automatic observation method, we choose

to reach selected viewing angles around the object rather than

to generate a precise trajectory. For this purpose, a permanent

visual control structure is defined that handles two modes:

a multi-task mode used to find the object position and to

observe it from several viewpoints, and a single-task mode

to estimate the object bounding box by only acting on the

set-points. Our visual servoing loop will not only control the

camera pose to permanently keep the object centered in its

FoV and but also ensure that the object silhouette occupies

a correct ratio in the picture. This will provide a good image

capture, totally enclosing the unknown target in the views.

III. VISUAL SERVOING STRUCTURE

This section describes the servoing structure (Fig. 2),

which is an adaptation of a standard one avoiding invariant

feature selection and still providing multi-task possibilities.

A. General Principle

The model of the object is the missing element we want

to reconstruct, which implies that the visual servo control

must necessarily be image-based. The general structure of

an image-based visual servoing loop is presented in [14].

It includes a block that extracts m features s to give

visual feedback and a control law block that provides n

control inputs X in task-space. In visual control systems, a

redundancy occurs if m < n. It is possible to take advantage

of such a redundancy to perform other tasks.

In literature, there exist two major approaches to build a

multi-task control law :

• The hybrid task function approach [15] used in [13]

• The configuration control approach by Seraji [16]

Both approaches are complex for the considered application.

We rather propose to use a simpler control structure (Fig. 2)

based on the selection of the control inputs, so that the

camera viewpoints can be modified while controlling the

sensor position to keep the object in the FoV with three visual

features (s∗ = (0, 0, 0.25)). Among six components of the

camera control input vector X̄c = [V ,ω]⊤, three are chosen

to achieve the primary visual control (X̄vs) whereas three
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Fig. 2. The visual servoing control loop structure: A primary loop handles camera translations whereas the viewpoints generation changes its orientation.
Our robot is internally position-controlled, in task-space directly. The gain matrix G also serves to the selection of the control inputs

other inputs (X̄vp) are used to generate arm motions. These

remaining control inputs can be viewed as a disturbance input

vector that will be rejected if the gains of the servo loop

are correctly tuned. The desired tool configuration X∗

t is

obtained after a camera to tool transformation and a specific

integration block. The system output is internally regulated

in task-space with regard to X∗

t .

B. Visual Features

For the primary visual control loop, three features must be

defined and extracted from the image data. They only rely

on the object silhouette in our method. Keeping the object

in the FoV requires a minimum of two features to center the

object silhouette in the view. The normalized coordinates

(x, y) of the center point of the object silhouette will serve

this purpose. They correspond to the barycenter coordinates

of the silhouette pixels extracted from a binary mask. The

mask itself is obtained by some robust and fast processing

not detailed here but based on a color region segmentation

by graph-cut [11], completed by standard geometry regular-

ization. Initially, the object is supposed to be at least partially

visible in the first view and selected by the user by clicking

on it. The quality of the features depends on the segmentation

but does not really influence the objective of this task since

no precise centering is needed.

Additionally, we need another feature to regulate the object

occupancy ratio Cim in the image. We found that the

silhouette surface of standard graspable objects does not vary

much when seen from various points of view at a certain

distance. Therefore, this third feature will also indirectly

play the role of controlling the relative distance between the

camera and the object up to a maximum limit depending on

the robot workspace. We then obtain a feature vector s as:

s = [x; y;Cim]
⊤

The interaction matrix (1) generated by those features and

linking ṡ (3 × 1) to X̄c (6 × 1), consists of two parts. Its

two first lines are computed from the variation (ẋ, ẏ) of the

silhouette center coordinates relatively to the camera velocity.

The last line depends on the surface that theoretically varies

with the square of the object distance Z on the camera depth

axis ~Zc. The distance Z is initially estimated to the height

of the camera zc |Rb
and is set as the distance from camera

to object once its position is known. We approximate the

parameter to make it depend on a coefficient Ksurf and on

Z−2. We also limit its influence to the camera depth velocity

(Vz). This way, we ignore the effect of the shape variation

seen from different view angles.

Limg =




− 1

Z
0 x

Z
xy −1 − x2 y

0 − 1

Z
y
Z

1 + y2 −xy −x

0 0
Ksurf

Z2 0 0 0





(1)

In the end, we use L̂
+

img , the pseudo-inverse of the estimated

interaction matrix.

C. Control inputs

In this part, the control inputs for each task are described.

The three features defined previously can be controlled

efficiently with three control inputs (three DoF). Within our

structure, we have several selection options, depending on

the control inputs used for the visual control task.

We choose the camera translations (Vx, Vy, Vz) as con-

trol inputs for the visual servoing (2): two translations for

centering operations and one for the silhouette occupancy

ratio Cim, which induces motion along the optical axis. This

choice is not usual since centering is generally done using

camera orientations (pan, tilt), but we found that translations

are able to fulfill the task perfectly, if the control law is tuned

well.

X̄vs = [Vx;Vy;Vz]
⊤

(2)

The remaining control inputs (ωx, ωy, ωz) are then directly

devoted to viewpoint reaching (3). Indeed, two rotation vari-

ables α and β defined as the viewing angles w.r.t. the robot

arm base reference are equivalent to spherical coordinates

(elevation θ and azimuth ϕ). These angles are sufficient to

reach any 3D position on a sphere as long as the radius

is defined (see Fig. 3). Since the camera depth is visually

controlled, the radius is implicit. So, using camera rotation

velocities ω is an efficient way to obtain desired camera

viewpoints α, β. The camera roll angle γ around the optical

axis remains constant and is equal to zero.

X̄vp = [ωx;ωy;ωz]
⊤

(3)

The combined visual servoing X̄vs and viewpoint X̄vp input

vectors finally control the six DoF with X̄c.
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IV. AUTOMATIC OBSERVATION

As several information need to be retrieved from the

environment, we propose three steps to fulfill the automatic

observation. Two steps A and C use the multi-task mode

whereas step B only uses the single task mode.

A. Pose estimation

The first information to be determined from the environ-

ment is the object location O(xo, yo, zo) w.r.t. the robot base

frame Rb. Orientation is not relevant as the object shape

is unknown. This relative position is sufficient to correctly

grasp the object from a robot point of view, without any

assumption on the absolute location as long as it is in a

reachable range. We choose a similar technique as proposed

in [8], with no initial orientation however, as it works from

any viewpoint at any distance, with the object at least

partially in the FoV. We act on viewing angles to reach the

downward orientation, which indirectly move the arm above

the object.

With our proposed servoing loop structure, both camera

viewing angles (α, β) can evolve easily while maintaining

the object centered (see Fig. 3). As a response to this task

fixing α = π and β = 0, the arm automatically reaches the

top viewing station where ~Zc and ~Zo are coincident. Then,

(xc, yc) coordinates of the camera w.r.t. Rb are the same as

the object center coordinates (xo, yo) |Rb
.

~Zo~Xo

~Yo

θ

ϕ

(xc, yc, zc) |Rb

(xo, yo) |Rb

~Zb

~Yb

~Xb ~Xc

~Yc~Zc

α
β

~Xc

~Yc

~Zc

Fig. 3. Pose estimation: For α = π and β = 0, the camera reaches a top
view of the object while servoed to keep it centered. (xc, yc) are always
the same as the object center (xo, yo) at the end of the movement.

B. Bounding box estimation

Once the camera centered over the object, looking down-

ward, coordinate zo |Rb
of the object bounding-box (b.box)

and its dimensions (Dx, Dy, Dz) can be estimated using

the main control loop by only changing the set-points. In

this mode, the viewpoint generation block provides null

orientation velocities. The b.box dimension Dz is arbitrarily

fixed but its position zo |Rb
will be set to the estimated

distance zsil between the silhouette plane and the robot base

plane (Fig. 4). zsil and dimensions Dx, Dy will be obtained

in a similar fashion, directly from the following technique.

image
plane

silhouette
plane

f

z1

z2

zsil

Dx

⊘d2

⊘d1

S2

Rb
object is at any height

S1

Dz

dx2

dx1

⊘D

B.Box

Fig. 4. Bounding-box estimation: The camera is servoed along the
optical axis for two different surface ratios C1, C2. With two consecutive
measurements of zc, an approximate object position zo = zsil w.r.t. Rb

can be determined as well as Dx and Dy .

Consider a particular case when the object is a cylinder with

diameter D and height Dz . Diameter D is measured in the

silhouette plane and is projected as dk in the image plane.

dk is related to zsil and to the height zc of the camera. Two

different set-points C1 and C2 for the occupancy feature are

successively set. Since the resulting motion occurs on the

optical axis oriented downward, we get two camera distance

measurements z1 and z2 w.r.t. the robot base. d1, d2 are the

diameters of the object silhouettes S1 and S2 in the image

plane. Eq. 4 is used to extract zsil:

D =
d1

f
(z1 − zsil) =

d2

f
(z2 − zsil) (4)

⇔ zsil =
d2z2 − d1z1

d2 − d1

In the case of the cylinder, d can be written as an exact

function of the silhouette surface S; d = µ
√

S. This relation

is also true for a box with dimensions (Dx, Dy, Dz) and is

a rough approximation for any other forms. Eq. 5 can first

be derived according to the surface ratio C = S
Sim

with Sim

the total image surface and then simplified using the known

variation between the desired surface ratios n = C2

C1

,

zo = zsil =
z2

√
C2 − z1

√
C1√

C2 −
√

C1

=
z2

√
n − z1√
n − 1

(5)

Although objects may have various forms, if the Dz is large

enough around the estimated position zo, the b.box encloses

the object and still reduces the working zone without any

knowledge on its absolute z location. The same way, with

the previous measurements, completed by the known camera

focal and the size dx1, dx2 (resp. dy1, dy2) of the bounding

square including the object silhouette in the image, we get

an approximate Dx (resp. Dy) size of the 3D b.box as:

Dx =
z2 − z1

f( 1

dx2

− 1

dx1

)
(6)

C. Turning around the object

For this step, the viewpoint generation block (Fig. 2)

provides camera orientation velocities. Still starting from
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the top view, it generates slow variations on ω to reach

different viewing stations defined by (α, β) viewing angles.

No 3D position relative to the object center is needed as

the correct camera position and orientation come from the

combined action of the visual servoing loop and this viewing

angles generation. To cover a majority of the object surface,

and have a large amplitude of movement, angles have been

determined experimentally. A sufficient coverage can be done

with 10 viewpoints only since adding more views does not

improve the model significantly [10]. As the distance to the

object varies in a short range, the camera appears to move

on a pseudo-half-hemisphere centered on the object (Fig. 5).

The path passing through the viewing stations goes along a

descending arc and a surrounding arc. The arc radius is not

fixed but is induced by the third visual feature regulation.

~Zo
~Xo

~Yo

Fig. 5. Turning around: Starting from the top position, the apparent motion
goes along a descending arc and a surrounding arc whose radius are induced
by the surface ratio regulation. 10 images are captured on the fly.

V. 3D RECONSTRUCTION

To finally build an object model online, the reconstruction

process described in [10] is combined with the proposed

exploration technique in three steps.

A. Pre-processing

During the observation movement, at each observation

station, a picture is taken on the fly (Fig. 5) and processed to

extract a more precise silhouette than the one used for visual

features. We adapted a growcut technique [17] for precisely

separating the object from the background thanks to known

seeds. Indeed, since the object is known to be centered by

visual servoing for this part of the exploration, seeds defined

in an area at the center of the image belong to the object

whereas the ones at the border belong to the background.

The picture position and orientation are retrieved from

the robot end-effector position according to the camera to

tool frame transformation. This transformation is obtained

off-line through eye-hand calibration [18] and is done once.

Precise tool measurements and camera versus robot synchro-

nization are the key points for correct extrinsic parameters

computing. The first two parts of the observation movement

finally provide a bounding-volume and the calibrated silhou-

ettes needed for the reconstruction process.

B. Visual Volume reconstruction

In [10], we proposed a simple volumetric reconstruction

of the object visual hull similar to [19]. It consists in

progressively carving the initial bounding volume divided in

sufficiently small elements called voxels. Each voxel is tested

for consistency to the visual hull by checking if its projection

lies in the silhouettes. We have added a progressive test to

reconstruct this envelop during the observation movement.

Indeed, as soon as the first data are introduced in the

pipeline, the consistency test is started for the first silhouette.

The resulting voxel set is stored in a linked-list that will

be used as the new volume to be checked for the next

image, progressively removing inconsistent voxels from the

list during the robot movement. This solution results in a

faster reconstruction taking advantage of the time running

between captures at the viewing stations.

C. Refining the model

At the end of the previous step, the observation movement

combined with the visual volume extraction process gives a

first coarse model of the object, more precise than previous

solutions based on primitives, which can already serve for

approach strategy planning. In the same time, the model is

refined through an optimization process of colorimetric data.

We use the following principle: Voxels that belong to the true

object surface are photo-consistent in each view where they

are visible. A photo-consistency is computed for each voxel

in the coarse envelope and is embedded in a graph. A graph-

cuts process [11] is applied to reject inconsistent voxels, most

of which are in the object concavities. The refined model can

be used for fine manipulation.

VI. EXPERIMENTS & RESULTS

A. Experiments

We tested our visual control loop and reconstruction

pipeline first in a virtual environment using Marilou Robotic

Studio that offers simulated physics and embedded vision,

and then in a real world setup on our industrial Adept robot

equipped with a VGA Sony camera. The camera intrinsic

parameters and tool relative transformation are determined

by the standard calibration process provided by the OpenCV

library. The camera is synchronized with the robot mea-

surements by software triggering. A frame can be captured

every 32 ms at the same instant the robot end-effector

transformation is measured. Note that the height of the object

support seen in Fig. 1 is not known and is not required

anyway.

B. Results

First, some observation motions were performed for dif-

ferent kinds of objects and positions. As long as the object is

in a reachable range, the automatic exploration worked well

for any starting position where the object is seen at least

partially. The controller gain matrix for the visual loop has

been manually tuned once for the first experiments so as to

reject the disturbance introduced by the viewpoint change.

Measurements on the real robot for a centering movement

during the pose estimation task is presented in Fig. 6. Object

locating task is executed smoothly and the xo, yo position is

retrieved at the end of the movement. The motion around the
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Fig. 7. Trajectory of the camera around the object for 10 viewpoints.

object is shown in 3D on Fig. 7. The 10 stations are reached

progressively by changing the viewpoints.

Real objects have been reconstructed with the calibrated

pictures, captured at these viewpoints (Fig. 8). The visual

volume is computed in a maximum of 5 seconds, so the

robot movement is executed over a slightly larger time range.

Presently, additional 10 seconds are required for the refine-

ment step. In the end, the model accuracy is millimetric.

Fig. 8. 8 of the 10 silhouettes, one camera view and a rendering of the
reconstructed model for real objects.

VII. CONCLUSION & FUTURE WORK

In this paper, we have proposed a method for automatic

observation of unknown objects to feed a modeling process

in the case of grasping and manipulation applications. Input

images are captured from various viewpoints around the

object thanks to a well suited visual control structure that

keeps the object in the field of view of an eye-in-hand camera

while moving the arm. The relative position and size of a

bounding-box enclosing the object are automatically found.

An online multi-view reconstruction method combined with

the presented scene exploration provides a model of the

object with millimetric accuracy.

As a future work, we intend to convert our algorithms to

parallel computing on GPU and to execute pre-processing

of colorimetric or visibility data during the movement to

improve the speed of the modeling steps. A complementary

exploration depending on reconstruction quality measure-

ments is our next goal to recover more details. The best

viewpoints will then be computed according to less visible

zones in the model.

REFERENCES
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