
  

  

Abstract— Robot map navigation and localization are 

challenging tasks that require the solving of the data 

association problem for local and global features. Data fusion 

allows the advantages of two or more sensors to be combined, 

and complementary cooperation can be obtained. This paper 

presents two methods to embed depth information in 

omnidirectional images using the extrinsic calibration of a 2D 

laser range finder and a central catadioptric camera. The 

methods presented do not require a visible laser beam, but they 

assume the planar checkerboard patterns are visible for both 

the catadioptric camera and the 2D laser range finder. Unlike 

other approaches, the methods proposed used an invisible laser 

trace, and they are evaluated at pixel error level using ground 

truth data from the calibration patterns projected in the 

omnidirectional image. Results include a mean square error 

analysis of all calibration poses, and laser point projection on 

indoor omnidirectional images. We think that embedding range 

information in omnidirectional images is an interesting tool for 

data fusion approaches, which can be used in robot map 

building and localization. 

I. INTRODUCTION 

VER many years, 2D laser range finders (LRFs) have 

been a basic tool in robot navigation and mapping. 

During this time, machine vision techniques based on one or 

more perspective cameras have been used in order to solve 

the SLAM (Simultaneous Localization and Mapping) 

problem. Omnidirectional vision is now receiving special 

attention due to its long-term landmark tracking, reduced 

perceptual aliasing, and robustness to occlusions. 

Omnidirectional images and 2D LRF data have a higher 

capability of exploiting their wide field of view compared 

with the setup of a perspective camera and a LRF. An 

interesting sensor setup composed by a catadioptric central 

camera and a 2D LRF could be useful in service robots for 
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surveillance, inspection, delivery, cleaning and exploration 

tasks which mostly use appearance-based maps.  

Our main goal is to embed range information in 

omnidirectional images. To do this we use the extrinsic 

calibration of a 2D LRF and a catadioptric camera, which 

can be used for data fusion in mobile robot applications. The 

calibration of a camera, either perspective or catadioptric, 

and a 2D [1-5] or 3D [6-10] LRF is not a new issue but few 

works show detailed information using a catadioptric sensor 

and an LRF. A state of art about the extrinsic calibration of 

these sensors is shown in Table 1. Works such as [5] report 

interesting methods for visible laser traces, but this approach 

clearly cannot be applied to a 2D LRF with an invisible trace 

as mostly used in robotics (SICK or HOKUYO). Other 

works like [8] and [9] build a minimization function based 

on the re-projection error, or obtain a closed form solution 

based on conics, since they use visible laser traces but their 

results show they have a limited range of operation. 2D 

LRFs are commonly used to build 3D range scans by adding 

a pan/tilt mechanism. This is the case with [7], where a 3D 

range scan and a catadioptric camera are used in 3D 

indoor/outdoor environmental reconstruction adopting a 

camera/laser calibration based on [10], which does not 

reveal enough details of the calibration process. In terms of 

perspective cameras, [3] has a general non-linear approach 

unlike [1]. The method proposed in [3] can be extended to 

omnidirectional cameras, and the methods of this paper are 

based on that approach. A Matlab toolbox is included in [6], 

but does not give enough details of its model. 
TABLE I 

STATE OF ART SUMMARY FOR LRF AND CAMERA CALIBRATION 

Ref. Sensors Observation 

[1] Persp. Cam. + 2D LRF Calibration using linear models. 

[3] Persp. Cam. + 2D LRF Adaptable to central catadioptric cameras 
[4] Persp. Cam. + 2D LRF Calibration based on specific target 

[5] Omni. Cam. + 2D LRF 

(visible, invisible) 

Several methods for visible laser, but not 

clear for invisible laser 
[6] Persp. Cam. + 3D LRF Fast calibration using a Matlab toolbox 

[7] Omni. Cam. + 3D LRF One shot calibration 

[8-9] Omni. Cam. + 2D LRF 
(visible) 

Closed solution based on conics. 

[10] Persp. Cam. + 3D LRF Not enough details about calibration 

 

It is important to differentiate our work from the works in 

Table I. These use catadioptric cameras and a 2D laser with 

approaches applicable to visible laser traces. Other works 

use perspective cameras and a 2D LRF, with results that are 

adaptable to the catadioptric cameras case. Our approach 

embeds range information in omnidirectional images using 
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the extrinsic calibration of a 2D LRF with an invisible 

laser trace and an omnidirectional camera

checkerboard patterns, and laser data points on these 

patterns. Unlike [3] or [5], we propose two 

methods and three initial guess options. The calibration 

methods proposed are evaluated at pixel error l

ground truth data from the calibration patterns projected 

onto the omnidirectional image. This error analysis is useful 

for data fusion approaches in mobile robotics localization, 

mapping and navigation. In this work, the omnidirectional 

camera was calibrated with the C. Mei toolbox [11], and the 

2D LRF with invisible trace was calibrated following the 

procedure specified in [12-13]. According to 

our state of art, the calibration between an omnidirectional 

camera and a 2D LRF with invisible trace has not been 

published with the level of detail presented in this paper, 

which does not allow us to compare to other similar 

methods. 

The remainder of this paper is organized as follows: 

Section 2 describes the LRF calibration, two approache

obtaining the extrinsic laser/camera parameters

in Section 3, Section 4 shows the experiments and results, 

and Section 5 presents our conclusions. 

II. LASER RANGE FINDER CALIBRATION

Fig. 1. LRF drift effect over time. 

 

Fig. 2. Range error vs. real distance of calibrated (top) and non
(bottom) laser readings. 

 

The literature offers few works exploring systematic 

errors of the LRF despite the fact that LRFs are commonly 

used in robotics. A good characterization of 

shown in [12] and [13] exploring additional 

like: laser alignment, drift effect and laser model.

collected the suggestions about the material properties 

described in [12] and [13] in order to decrease the range 

error. We use the URG-04LX LRF, and the 

achieved were in accordance with [14]. 

Range fluctuations can be present in the LRF at 

extrinsic calibration of a 2D LRF with an invisible 

trace and an omnidirectional camera using 

and laser data points on these 

we propose two calibration 
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are evaluated at pixel error level using 
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s. real distance of calibrated (top) and non-calibrated 

orks exploring systematic 

errors of the LRF despite the fact that LRFs are commonly 

good characterization of these sensors is 

exploring additional characteristics 

drift effect and laser model. We 

collected the suggestions about the material properties 

described in [12] and [13] in order to decrease the range 

4LX LRF, and the results we 

LRF at power-up. 

Following the methodology mentioned in [13], we got Fig. 

which shows that after 90minutes the range 

stable. From then on, for data acquisition in this work the 

laser was turned on 90minutes before first use

linear trend between the real distance and the mean at each 

position, which agrees with [12], [13] and [14].

running 10 different tests, we found 

range model: � � 1.0088� � 9.1322
given by the LRF, and d is the estimated 

the range error �
 � �, or the difference between the 
estimated distance and real distance, vs. the real distance.

III. 2D LASER RANGE FINDER

CATADIOPTRIC CAMERA CALIBRATION

A central catadioptric camera consists of 

orthographic camera, and a mirror. T

hyperbolic, or parabolic. Projective models for these 

cameras have been developed by [15], [16] and [17]. In the 

remainder of this paper we adopt 

[17], which is related to the toolbox described in [11], and 

use it to calibrate our central catadioptric camera.

The LRF readings are distance measu

to a 2D plane parallel to the floor. We use a coordinate 

system where the Z axis points upwards, the Y axis 

forward, and is centered on the laser projection point. This 

the same axis configuration as for the catadioptric camera

but centered on the mirror’s central projection point.

 

Fig. 3. Problem description and experimental setup.

 

Fig. 3 shows our main goal and experimental setup. There 

are three coordinate systems, those of 

calibration pattern and the camera. 

finding R and T so that laser points 

the camera coordinate system, and then projected on

omnidirectional image. Zhang and Pless [3] base

finding a rotation matrix R and a tr

simultaneous manner, our approach 

simultaneous and non-simultaneous way, and 

three different methods to get the initial guess for the non

linear minimization. A point PC in the camera coordinate

frame can be described by (1). 
 

�� � ��� � �  
 

Where, PL is a point in the laser coordinate frame, 

 

Following the methodology mentioned in [13], we got Fig. 1 

shows that after 90minutes the range measure was 

, for data acquisition in this work the 

laser was turned on 90minutes before first use. We found a 

linear trend between the real distance and the mean at each 

position, which agrees with [12], [13] and [14]. After 

we found the following laser 

1322, where: l is the range 
is the estimated range. Fig. 2 shows 

the difference between the 

istance, vs. the real distance. 

FINDER AND CENTRAL 

CALIBRATION METHODS 

consists of a perspective or 

camera, and a mirror. The latter can be conic, 

hyperbolic, or parabolic. Projective models for these 

developed by [15], [16] and [17]. In the 

adopt the model described in 

the toolbox described in [11], and 

to calibrate our central catadioptric camera. 

readings are distance measurements, belonging 

floor. We use a coordinate 

upwards, the Y axis points 

n the laser projection point. This is 

for the catadioptric camera, 

central projection point. 

 
. Problem description and experimental setup. 

shows our main goal and experimental setup. There 

those of the laser, the 

 Our problem focuses on 

that laser points PL can be represented in 

the camera coordinate system, and then projected onto the 

image. Zhang and Pless [3] base their model 

a translation vector T in a 

ur approach finds R and T through a 

simultaneous way, and we explore 

three different methods to get the initial guess for the non-

in the camera coordinate 

(1) 

is a point in the laser coordinate frame, R is a 
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3x3 rotation matrix, and T is a 3D translation vector of the 

camera center of projection with respect to the laser frame. 

Our goal is to find R and T using the checkerboard planes, 

which are visible from the laser and camera point of view. 

This paper shows two methods to find R and T. The first, 

which tries to find them simultaneously performing two non-

linear minimization processes, it has the advantage of 

arriving at a solution regardless of any alignment constraint 

between the LRF and the omnidirectional camera, but it 

involves 6 degrees of freedom (DOF) estimation. The 

second tries to find the translation vector T, and then the 

rotation matrix R. This decoupled parameter estimation has 

the advantage to reduce the problem estimation to 3DOF + 

3DOF, which requires less training data in comparison with 

a simultaneous parameter estimation. In both cases a 

Levenberg-Marquardt (LM) optimization algorithm was 

used because it is easy to implement, it generally has a fast 

convergence rate, and we think that it is sufficient for our 

approach. However, this algorithm is sensitive to the initial 

guess [18]. Then, three different ways to calculate this initial 

guess were implemented and the results processed using 

[19]. 

A. Methods to Obtain the Initial Guess 

We implemented three different methods to get the initial 

guess for the LM optimization algorithm, which differs from 

[3]. First, we selected one of the calibration poses available 

and a set of linear least squares (LLS) equations were 

defined using these laser points. Second, we selected two 

calibration poses and the LLS equations were defined using 

these points. And third, we used a sub-set of the central laser 

points of each calibration pose to build the LLS equations. 

B. Simultaneous Parameter Estimation 

Data acquisition for this method includes images with 

checkerboard calibration planes and 2D laser points which 

belong to the calibration plane. Using these images camera 

calibration was performed and the extrinsic parameters were 

then used to define a vector parallel to the normal calibration 

plane as described by (2) [3]. 

 

�� � �������� . ���  (2) 

 

Where, R3W and TW are the third column of the rotational 

matrix and the translation vector of the calibration plane 

pose with respect to the omnidirectional camera. Since, the 

laser points belong to the calibration plane there is a 

geometric constraint based on the distance between the 

camera and the calibration plane. This constraint can be 

expressed by (3) [3]. 

 

�� . ���� + �� = �����  (3) 

 

Where, R and T are the parameters to estimate, and PL is a 

laser point. This expression differs from that proposed in [3] 

since we are working in the camera frame rather than the 

laser frame. Using (3) a non-linear minimization function 

can be expressed as in (4) and (5). 

 

���, �, ��� � �� . ���� + �� − �����  (4) 

��,����, �, ��� = �� .  ���,!"�#� , $�%�&  (5) 

 

Where, ∇�,����, �, �����  is the gradient of the 

minimization function using quaternions instead rotational 

matrix, ∇��,!" is the quaternion’s gradient evaluated at point 

PL, and ∇#� is the gradient of the quaternion’s normalization 

factor. A LM algorithm was used to minimize (4), and we 

described three different ways to obtain the initial guess. By 

organizing the laser points in an AX=B system, and using 

(4), the LLS equations we got for the initial guess are (6), (7) 

and (8). 

 

[��)��), ��)��* , ��)��+ , ��*��) , ��*��* , ��*��+ , ��+��)  
                ��+��* , ��+��+ , ��) , ��*, ��+] �  ./   (6) 

 011, 01�, 01�, 0�1, 0�� , 0��, 0�1, 0��, 0�� , 2% , 23 , 24&� � 5  (7) 

����� � 6/   (8) 

 

Where, Ai is a row of the A matrix, Bi is a row of the B 

vector, X is the vector parameters to estimate, "CX, "CY and 

"CZ are the "C vector components of (2), r11 to r33 are the 9 

terms of the rotation matrix, tx, ty and tz are the translation 

vector, and PLX, PLY and PLZ are the i-th laser point 

components. The solution to these simultaneous equations 

gives a rank-2 rotation matrix for all three methods to obtain 

the initial guess. This happens when the training points are 

planar [19] like the laser points, which are constrained to a 

2D plane parallel to the floor. Due to this, the resulting 

matrix is not a proper rotation matrix, since it does not 

satisfy RR
T
 = I. In order to resolve this problem, Eggert et. 

al. [19] propose finding the nearest rotation matrix which 

satisfies RR
T
 = I, by calculating the eigen-values and eigen-

vectors of the resulting matrix, the nearest proper rotation 

matrix can be expressed by (9). 

 

�7 � 89: ± )
<|�>?@A�)�|  (9) 

9: � BCDCDE
<FD

� CGCGE
<FG

H  (10) 

5 � [�89:��89:�� � $]I�I��  (11) 

 

Where, u1 and u2 are the eigen-vectors corresponding to 

the non-zero eigen-values δ1 and δ2, and u3 is the eigen-

vector associated with the zero eigen-value. The sign in (9) 

is chosen in line with the determinant of �7  being +1; and M 

is the LLS resulting matrix. After the LLS and the first non-

linear minimization are solved, a second non-linear 

minimization is performed using and Euclidean constraint 

rather than a geometrical one. This is shown in (12). 

 

���, �, ��� � ∑ ∑ 1
� K LMN

�LMN� O���/P � �Q � ���/�RSPT1U/T1   (12) 

 

Where, K is the total number of calibration poses, M is the 
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total number of laser points in the i-th checkerboard pattern, 

and "Ci is the vector defined by (5) for the 

plane. The minimization algorithm used was 

an initial guess given by the first minimization stage.

C. "on-Simultaneous Parameter Estimation

Our second approach consists of perform

parameter estimation. First, the translation vector is found, 

and then the rotation matrix is estimated

information. This decoupled problem statement is common 

in mobile robotics [6], [11]. In general, this method uses the 

same minimization and geometrical constraints as a

the translation vector estimation (2) to (4) are still valid

the Jacobian is now described by (13). The initial guess for 

the LM algorithm can be re-written as shown 

 

��,����, �, ��� � �� . ($�%�-  
(��)  ��*  ��+- � ./   

 2% 23 24&
�

� 5  
����� � ���)��) � ��*��* � ��+��+� � 6

 

Where, Ai is a row of the A matrix, Bi is a row of 

vector, X is the parameters to estimate, "CX

the "C vector components of (2), tx, ty

translation vector, and PLX, PLY and PLZ are

point components. The second parameter estimation 

calculates the rotation matrix using the translation 

found above. Equations (2) to (4) are still valid, but 

Jacobian is described by (17). The initial guess of 

rotation matrix changes too, and the LLS equation

be expressed as shown (18) to (20). 

 

��,����, �, ��� � �� .  ���,!"�#�&  
(��)��) , ��)��* , ��)��+ , ��*��) , ��*��* , �
                ��+��* , ��+��+ , ��) , ��*, ��+- �  
(011 , 01�, 01�, 0�1, 0��, 0�� , 0�1, 0��, 0��-� � 5
����� � ���)�) � ��*�* � ��+�+� � 6/   

 

Where, Ai is a row of the A matrix, Bi is a row of 

vector, X is the vector parameters to estimate, 

"CZ are the "C vector components of (2), r

terms of the rotation matrix, PLX, PLY and 

laser point components, and TX, TY and TZ are the translation 

vector components of the first minimization stage. The 

resulting rotation matrix has the same rank

described previously, so the nearest proper rotation matrix is 

found following the same procedure as shown 

similar way as the simultaneous parameter estimation, a 

second minimization is performed using (12).

IV. EXPERIMENTS AND RESULTS

Four sets of images were used to validate the methods 

proposed. Each set contained 16 images and

number of laser points. The main difference between the

was the environment structure, which was used to show the 

checkerboard pattern, 

for the i-th calibration 

used was LM, but with 

an initial guess given by the first minimization stage. 

Simultaneous Parameter Estimation 

performing a decoupled 

the translation vector is found, 

and then the rotation matrix is estimated using this 

decoupled problem statement is common 

In general, this method uses the 

and geometrical constraints as above. In 

are still valid. But, 

The initial guess for 

written as shown in (14) to (16). 

(13) 

(14) 

(15) 

6/  (16) 

is a row of the B 

CX, "CY and "CZ are 

y and tz are the 

are the i-th laser 

point components. The second parameter estimation 

calculates the rotation matrix using the translation vector 

are still valid, but their 

The initial guess of the 

equations can then 

(17) 

��*��+ , ��+��) ,   
./   (18) 

  (19) 

 (20) 

is a row of the B 

parameters to estimate, "CX, "CY and 

r11 to r33 are the 9 

and PLZ are the i-th 

are the translation 

vector components of the first minimization stage. The 

resulting rotation matrix has the same rank-2 problem as 

nearest proper rotation matrix is 

as shown above. In 

similar way as the simultaneous parameter estimation, a 

second minimization is performed using (12). 

RESULTS 

o validate the methods 

16 images and the same 

he main difference between the sets 

which was used to show the 

usefulness of our method. The data acquisition process 

main steps: first, laser alignment was performed; second, 

there was a warm-up period of 90minutes; third, 

checkerboard calibration pattern was placed

readings were taken and corrected according

model; fifth, an omnidirectional image was captured; sixth, 

steps 3 to 5 were repeated until acquisition was 

The omnidirectional camera was calibrated

and extrinsic parameters were used to get the 

of the laser points on the calibration planes

that it is difficult to get a reliable 

However, taking advantage of our experimental setup (Fig. 

3), we can define: h = D – d, where 

the laser to the floor, d is the distance from the 

corner on the calibration pattern to the floor, and 

relative distance from the laser trace to the calibration 

pattern origin. D and d were measured 

(±1.5mm). Then, using the intrinsic and extrinsic camera 

parameters a very close “ground truth” data can be obtained.

In this way, unlike with [3] and [5] we 

pixel error associated to the laser point

omnidirectional image. Using the ground 

experimental laser points projected on

image, the results for the three initial guess methods were 

tested. Finally, the calibration planes were taken out, and 

LRF readings were projected on

image, showing depth perception on these images.

 

Fig. 4 Results for simultaneous estimation with 
over all poses and an initial guess using a single

 

 

Fig. 5 Results for simultaneous estimation with 
over all poses, and an initial guess using two 

 

Using the four sets of calibration images a total of 298 

calibration results were processed, 50% for the simultaneous 

(V1) and another 50% for the non

estimation. From these calibration results only those 

total MSE error less than 5px obtained

calibration poses were considered and classified by the 

 

The data acquisition process had 6 

main steps: first, laser alignment was performed; second, 

up period of 90minutes; third, the 

was placed; fourth, 15 laser 

taken and corrected according to the laser 

; fifth, an omnidirectional image was captured; sixth, 

acquisition was completed. 

The omnidirectional camera was calibrated, and its intrinsic 

parameters were used to get the “ground truth” 

laser points on the calibration planes only. We know 

that it is difficult to get a reliable ground truth data. 

f our experimental setup (Fig. 

, where D is the distance from 

is the distance from the bottom right 

calibration pattern to the floor, and h is the 

relative distance from the laser trace to the calibration 

were measured with a LLB-60D laser 

using the intrinsic and extrinsic camera 

parameters a very close “ground truth” data can be obtained.  

[3] and [5] we were able to get the 

point’s projection onto the 

omnidirectional image. Using the ground truth and the 

experimental laser points projected onto the omnidirectional 

results for the three initial guess methods were 

calibration planes were taken out, and 

readings were projected onto the omnidirectional 

image, showing depth perception on these images. 

 
Results for simultaneous estimation with a total MSEs less than 5px 

a single calibration pose. 

 
Results for simultaneous estimation with a total MSE less than 5px 

two calibration poses. 

Using the four sets of calibration images a total of 298 

calibration results were processed, 50% for the simultaneous 

(V1) and another 50% for the non-simultaneous (V2) 

estimation. From these calibration results only those with a 

total MSE error less than 5px obtained considering all 

calibration poses were considered and classified by the 
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initial guess method used. The graphs of this

calibration target poses are plotted in Fig. 4 

show results for simultaneous parameter estimation. These 

figures show initial guess methods corresponding to 

calibration plane, and to take two calibration planes to build 

the LLS equations. It should be noted that the initial guess 

method which takes the central points of all the calibration 

planes is not present. Even so, the calibration results show 

that if a total MSE less than 10px is considered only one 

result is found for this initial guess method. To build Fig. 

and 5 a total of 20 and 40 calibration results were considered 

for these initial guess methods. Using these results, their 

error bands are plotted using a T-Student distribution with a 

confidence of 97.5%. Clearly, if two calibration poses are 

used as initial guess, is more likely to get a solution with less 

MSE error in comparison to use one calibration plane. 

However, Fig. 4 shows some errors go closer to 

case an option would be run many times this method using 

this initial guess and choose the best answer
 

Fig. 6 Results for non-simultaneous estimation with a total

5px over all poses, and an initial guess using a single calibration pose.
 

Fig. 7 Results for non-simultaneous estimation with a total

5px over all poses, and an initial guess using two calibration poses.

 

Fig. 6 and 7 show similar results for non

parameter estimation. Again, the initial guess method which 

takes the central points of all calibration planes is not 

present. In this case, even with a total MSE 

(extremely high and with no practical use) 

possible to obtain any calibration result with 

guess method. To build Fig. 6 and 7 a total of 30 and 119 

calibration results for these initial guess methods 

considered and the same distribution and confidence band 

were used. It can be observed that in the 

simultaneous and non-simultaneous estimation, the 

combination of calibration planes obtain

homogeneous results in error data plots, 

this MSE error vs. 

 to 7. Fig. 4 and 5 

show results for simultaneous parameter estimation. These 

figures show initial guess methods corresponding to take one 

two calibration planes to build 

the LLS equations. It should be noted that the initial guess 

takes the central points of all the calibration 

planes is not present. Even so, the calibration results show 

that if a total MSE less than 10px is considered only one 

result is found for this initial guess method. To build Fig. 4 

0 calibration results were considered 

for these initial guess methods. Using these results, their 

Student distribution with a 

if two calibration poses are 

to get a solution with less 

MSE error in comparison to use one calibration plane. 

some errors go closer to 0; in this 

case an option would be run many times this method using 

this initial guess and choose the best answer. 

 
a total MSEs less than 

calibration pose. 

 
a total MSEs less than 

calibration poses. 

show similar results for non-simultaneous 

parameter estimation. Again, the initial guess method which 

takes the central points of all calibration planes is not 

MSE of less than 20px 

practical use) it was not 

possible to obtain any calibration result with this initial 

a total of 30 and 119 

for these initial guess methods were 

same distribution and confidence band 

the cases of both 

simultaneous estimation, the 

combination of calibration planes obtains more 

in error data plots, than the initial 

guess method which uses only 

Simultaneous parameter estimation has less 

successful results than non-simultaneous estimation

our data set, because in the first case the degrees of freedom 

within each minimization are more than in the second case.

However, Fig. 6 shows 5 excellent calibration results close 

to 2px, but 4 with MSE greater than 4px and wide 

confidence bands. 

Amongst these 4 data sets, we 

readings can cause a loss of calibration accuracy, making 

difficult to get a good enough initial guess due its 

geometrical constraint, which match

made in [6]. Another problem that was 

relative position of the calibration plane 

LRF, since if the calibration plane is 

the Y axis in relation to the laser and camera, then not 

enough and not accurate laser readings are available. 
 

Fig. 8 Detail of projection of tground truth (

calibration pattern. 
 

Fig. 8 shows the laser points (o

omnidirectional image as well as our 

figure shows a zoomed portion of the omnidirectional image, 

though for space reasons the complete omnidirectional 

image is not shown. An important thing should be noted, 

there are some missing laser readings on the black squares at 

bottom right of Fig. 8, which are due to the relative 

orientation between the calibration plane and the LRF, and 

because the URG-04LX LRF is a low power 

Embedding range information on

images can be useful when trying to perform a sensor data 

fusion, in this case of a catadioptric camera and a

usefulness of this data fusion can be exploited using the 

scene vertical lines, which are 

omnidirectional image, and the laser scan projected on

omnidirectional image, because local and global features can 

be extracted from this data fusion [20]

doing this is the extrinsic calibration described in this work, 

applied to omnidirectional images and laser scans taken 

without calibration patterns. Fig. 9

information provided by the LRF 

omnidirectional image, and how the corners match 

scene vertical lines. A good example of this is the heater on 

the wall, and the wall corner just below. 

only the depth information on the omnidirectional image, but 

 

only one calibration plane. 

imultaneous parameter estimation has less chance to get 

simultaneous estimation using 

in the first case the degrees of freedom 

ch minimization are more than in the second case. 

shows 5 excellent calibration results close 

to 2px, but 4 with MSE greater than 4px and wide 

these 4 data sets, we can see that noisy laser 

s of calibration accuracy, making 

difficult to get a good enough initial guess due its 

geometrical constraint, which matches with assumptions 

that was found related to the 

relative position of the calibration plane with respect to the 

is placed vertically along 

to the laser and camera, then not 

enough and not accurate laser readings are available.  

 
truth (+) and laser data (o) onto a 

shows the laser points (o) projected onto the 

our ground truth (+).  This 

figure shows a zoomed portion of the omnidirectional image, 

though for space reasons the complete omnidirectional 

An important thing should be noted, 

there are some missing laser readings on the black squares at 

, which are due to the relative 

orientation between the calibration plane and the LRF, and 

a low power device. 

Embedding range information onto omnidirectional 

images can be useful when trying to perform a sensor data 

fusion, in this case of a catadioptric camera and an LRF. The 

usefulness of this data fusion can be exploited using the 

are still unchanged in an 

omnidirectional image, and the laser scan projected onto the 

omnidirectional image, because local and global features can 

be extracted from this data fusion [20]. An important tool for 

sic calibration described in this work, 

applied to omnidirectional images and laser scans taken 

9 shows how the depth 

information provided by the LRF is projected onto the 

and how the corners match with the 

scene vertical lines. A good example of this is the heater on 

the wall, and the wall corner just below. Fig. 10 shows not 

on on the omnidirectional image, but 
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part of a place with a wall distribution different from typical 

square rooms. Note the visible match between the contour of 

the laser and the image of the place. In the case of Fig. 9

10, we did not a pixel error comparison since we were not 

allowed to get a ground truth data. 

 

Fig. 9. Laser points projection onto the omnidirectional image. Note the 

depth difference in the image of the heater on the wall.

 

Fig. 10. Laser points projection onto the omnidirectional image. Note the 
visible match between the contour of the laser and the image 

V. CONCLUSION 

Embedding range information in omnidirectional images 

has been achieved using two proposed methods to perform 

an extrinsic calibration between an LRF with an invisible 

laser trace and a catadioptric camera. LRF

also been performed, getting practical 

characteristics such as the warm-up period and the 

model. The two methods proposed require

checkerboard patterns to be visible to both 

catadioptric camera. For both methods, 

camera’s intrinsic parameters are used to impose a non

linear minimization function based on geometrical 

constraints and solved using the LM algorithm

different versions of initial guesses for the 

were presented, and their rank-2 problem re

method proposed simultaneously estimates the extrinsic 

parameters and performs a second minimization step based 

on the MSE of all the calibration poses. 

performs a 6DOF estimation, which may be noisy and 

requires more training data. The second method performs a 

non-simultaneous estimation. First the translation vector is 

estimated and then the rotation matrix is found

performs two 3DOF estimations, which requires less training 

data and less noise is involved. Therefore, we think the first 

part of a place with a wall distribution different from typical 

Note the visible match between the contour of 

In the case of Fig. 9 and 

, we did not a pixel error comparison since we were not 

  
the omnidirectional image. Note the 

image of the heater on the wall. 

 
the omnidirectional image. Note the 

visible match between the contour of the laser and the image of the place. 

n omnidirectional images 

methods to perform 

with an invisible 

LRF calibration was 

ng practical and interesting 

up period and the LRF 

he two methods proposed require the calibration 

to both the LRF and the 

 the catadioptric 

parameters are used to impose a non-

linear minimization function based on geometrical 

algorithm. Three 

the LM algorithm 

problem resolved. The first 

method proposed simultaneously estimates the extrinsic 

a second minimization step based 

calibration poses. This method 

performs a 6DOF estimation, which may be noisy and it 

The second method performs a 

irst the translation vector is 

is found. This method 

performs two 3DOF estimations, which requires less training 

noise is involved. Therefore, we think the first 

method is better if enough data is available, even though it 

has shown more accurate results in some cases; and we think 

in the second method is more likely to get 

result. Unlike other approaches, the methods proposed 

are evaluated at pixel error level using ground truth data 

from the calibration patterns and projected 

omnidirectional image, which is important information for 

data fusion approaches. This kind of calibration is

useful for mobile robotics appearance

localization and navigation, data fusion approaches, and 

local navigation through potential field
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This kind of calibration is very 
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