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Abstract— This paper proposes a model for trail detection
that builds upon the observation that trails are salient structures
in the robot’s visual field. Due to the complexity of natural
environments, the straightforward application of bottom-up
visual saliency models is not sufficiently robust to predict the
location of trails. As for other detection tasks, robustness can
be increased by modulating the saliency computation with top-
down knowledge about which pixel-wise visual features (e.g.,
colour) are the most representative of the object being sought.
This paper proposes the use of the object’s overall layout
instead, as it is a more stable and predictable feature in the case
of natural trails. This novel component of top-down knowledge
is specified in terms of perception-action rules, which control the
behaviour of simple agents performing as a swarm to compute
the saliency map of the input image. For the purpose of multi-
frame evidence accumulation about the trail location, a motion
compensated dynamic neural field is used. Experimental results
on a large data-set reveal the ability of the model to produce
a success rate of 91% at 20Hz. The model shows to be robust
in situations where previous trail detectors would fail, such as
when the trail does not emerge from the lower part of the image
or when it is considerably interrupted.

I. INTRODUCTION

Trails are usually safe pathways and also free of dead-lock

situations. A robot following a trail is thus able to traverse

large distances in off-road environments in an effortless way.

On the one hand, computation for obstacle detection and

trajectory/path planning is saved. On the other hand, fewer

are the chances of getting lost or incurring into collisions.

Most of the challenges of trail detection relate to their lack

of a well defined morphology or appearance. This hampers

a straightforward learning of trail models. In addition, they

exist in environments that are unstructured themselves. This

in turn complicates the learning of background models.

Moreover, the problem of supervising the learning process

remains an open issue. This is aggravated by the fact

that trails change over time, thus rendering hand-labelling

unsuited for the task at hand. Hence, model-free solutions

are essential for robust trail detection.

Typical solutions either assume that the robot is already

on trail [1], [2] or that strong edges segment it from the

background [3]. However, these two assumptions often fail to

occur on realistic situations. An alternative is to segment the

image, group some of the segments to build trail hypotheses,
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Fig. 1. Typical trail detection results (red overlay) obtained with the
proposed model. These results show that the proposed model is able to
localise the trail even when it is highly interrupted, blends itself with the
background, or does not start from the bottom of the image.

and then score these hypotheses against a model of the trail

[4], [5]. However, contemporary models for robust image

segmentation and subsequent grouping are computationally

intensive and consequently unsuitable for real-time require-

ments. Moreover, grouping tends to fail in the presence of

interrupted trails. The observation that trails are typically

conspicuous in the robot’s visual field led us to propose

the use of visual saliency to focus the detection process [6].

This approach does not impose any hard constraint on the

appearance or shape of both trail and background, nor it

requires learning. Moreover, since it is rather common the

use of saliency for other tasks in cognitively rich robots

[7], [8], the overhead of its computation is diluted over

all modules using it. This paper extends considerably this

concept by recurring to the swarm-based collective behaviour

metaphor and by exploiting evidence accumulation across

frames for improved robustness. See Fig. 1 for typical results

obtained with the extended model.

In a parallel study, Rasmussen et al. [9] proposes the use

of appearance contrast for trail detection, which resembles

to some extent the concept of visual saliency. However, they

assume that trails are imaged as perfect triangles and both

their left and right sides share the same appearance. Natural

trails not always possess these properties. Additionally, the

extensive use of 3-D information to bias the detection pro-

cess in their model complicates the assessment of the role

played by the appearance-based component. Finally, their

method generates several trail hypotheses, whose contrast

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 759



is computed afterwards. Conversely, our model only gener-

ates hypotheses whose potential for high contrast is known

beforehand, thus saving computation.

This paper is organised as follows. Section II overviews

the proposed model. The way conspicuity maps are com-

puted is summarised in Section III, which is followed by

the detailed description of the swarm-based system in Sec-

tion IV. Section V shows how the evidence about the trail

location is improved across time. Experimental results are

presented in Section VI. Finally, some conclusions are drawn

and future work is proposed in Section VII.

II. SYSTEM OVERVIEW

We showed in previous work [6] that the saliency map of

a given image corresponds itself to an efficiently computed

segmentation of the latter. That is, the segmentation of

the input image, which can be a computationally intensive

task, can be obtained as a by-product of determining which

regions of the visual field detach more from the background.

Furthermore, the obtained segments are already prioritised by

their conspicuity level. We also showed that visual saliency

and trail location in the input image are positively correlated.

From these findings it should follow that the highest

priority segment in the saliency map matches the location

of the trail in the input image. In practise, this is a brittle

assumption in the face of not so well behaved saliency maps,

which may occur in the presence of distractors or when the

trail is considerably heterogeneous. This difficulty can be

diminished with top-down boosting of visual features (e.g.,

colour) that are known to describe the object being sought

[10], [11]. However, these visual features are considerably

unpredictable in the case of trails in natural environments. In

opposition, trails’ overall layout is a much more predictable

feature. For example, the projection of trails onto the input

image typically converges towards a vanishing point. This

novel use of top-down knowledge was embedded in our

previous work in the form of behaviours ruling the motion

of simple agents inhabiting the saliency and its intermediate

conspicuity maps. The motion paths of these agents were

then taken as the skeleton of a set of trail hypotheses, which

were then scored, and three of them selected as the output

of the system.

Despite its overall good results, our previous work was

unable to reduce the ambiguity of three trail hypotheses, it

was brittle in the presence of interrupted trails, and it was

unable of exploiting historical information to improve its

robustness. Fig. 2 depicts the model proposed in this paper,

which extends our previous work to overcome its limitations:

(1) by allowing the agents to exhibit collective behaviour

through pheromone-based interactions, and (2) by allowing

the system to accumulate evidence about the most likely trail

location across multiple frames through the use of a dynamic

neural field.

In short, two conspicuity maps, CC(t) ∈ [0,1] for colour

and CI(t) ∈ [0,1] for intensity information, are computed

from the input image I(t) [6]. A set of agents is then

Fig. 2. System overview. The red overlays in both pheromone fields, PC(t)
and PI(t), are two illustrative agent paths. For the sake of clarity, motion
compensation aspects are not represented.

deployed on each map. These agents interact with the cor-

responding conspicuity map according to their perception-

action rules, which embed the trail-specific top-down mod-

ulation process [6]. During the process, pheromone is de-

ployed and sensed by the agents in two pheromone fields,

PC(t)∈ [0,1] and PI(t)∈ [0,1], according to the ant foraging

metaphor. An additional perception-action rule is introduced

to make the agents’ behaviour sensible to the pheromone

deployed by the swarm, and thus enabling coherent collective

behaviour to emerge. This way, agents help each other on the

task of perceptual completion, resulting in a global behaviour

that is robust to the local variations inherent to trails.

Being the deployed pheromone a function of agents’

sensations across their trajectories on the corresponding

conspicuity maps, it is influenced by the activity occurring

in distant regions of the map. This long-range spatial con-

nectivity allows handling the potentially large size of trails

in a robust and parsimonious way.

Rather than blending both conspicuity maps to gener-

ate the final saliency map S(t) ∈ [0,1], as typically done

[12], [10], in this work S(t) is obtained by blending both

pheromone fields. The final saliency map S(t) feeds a dy-

namic neural field [13], [14], F(t) ∈ [0,1], which integrates

pheromone (i.e., evidence) across frames and also imple-

ments both lateral excitation and long-range inhibition. This

neural field allows the system to maintain a coherent focus

of attention across time [14]. Motion compensation is also

implemented so that the dynamics of the neural field can

be decoupled from the dynamics of the robot. The neural

field’s state feeds back both pheromone fields so that history

influences agents’ activity. The output of the system is given
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by the current state of the neural field, where the higher the

activation of a given neuron the higher its chances of being

associated to a trail’s pixel.

III. CONSPICUITY MAPS COMPUTATION

Conspicuousness computation is about determining which

regions of the input image detach from the background

at several scales and feature channels. In this paper only

intensity and colour channels are used.

Shortly, one dyadic Gaussian pyramid with eight levels

is computed from the intensity channel. Two additional

pyramids also with eight levels are computed to account for

the Red-Green and Blue-Yellow double-opponency colour

feature channels. The various scales are then used to per-

form centre-surround operations [12]. The resulting centre-

surround maps have higher intensity on those pixels whose

corresponding feature differs the most from their surround-

ings. An example is a bright patch on a dark background (on-

off), as well as the other way around (off-on). On-off centre-

surround operations are performed by across-scale point-by-

point subtraction, between a level with a fine scale and a

level with a coarser one. Off-on maps are computed the other

way around, i.e., subtracting the coarser level from the finer

one. Then, the centre-surround maps are blended to produce

a colour conspicuity map, CC(t) ∈ [0,1], and an intensity

conspicuity map, CI(t) ∈ [0,1]. The width, w, and height, h,

of both maps is 80 and 60, respectively.

When blending maps, the most discriminant ones are

promoted by recurring to a normalisation operator. Here we

follow the normalisation operator previously proposed by us

[6], which was shown to outperform other known models

[12], [10] in trail detection. Please refer to [6] for further

details and to Fig. 2 for examples of conspicuity maps.

IV. COLLECTIVE BEHAVIOUR

A. Agent Behaviours

This section describes how an agent deployed on a given

conspicuity map m ∈ {CC(t),CI(t)} behaves in order to

generate, in cooperation with other agents, a pheromone field

p ∈ {PC(t),PI(t)} whose activity level is correlated with the

localisation of the trail. If the agent is allocated to the colour

conspicuity map, CC(t), then it contributes to the colour

pheromone field, PC(t). The same process for the intensity

conspicuity map.

At the onset of each frame, both pheromone fields are ze-

roed and subsequently affected by a small ratio λ of the robot

motion compensated neural field’s previous state, F′(t −∆t),
PC(t) = PI(t) = λF′(t −∆t). In this study λ = 0.1. Refer to

Section V for details on the computation of F′(t −∆t). This

pheromone level offset allows agents’ activity to be affected

by history. This induces stability, robustness to noise and

across-frames progressive improvement.

For a given number nmax = 50 of iterations, whose index

is represented by n, the agent builds up a trail hypothesis by

updating its position, o(n), according to a set of behaviours

B, which are sensible to the level of conspicuity in the agent’s

surroundings. These behaviours embed top-down informa-

tion on the object being sought, such as its approximate

shape. The agent’s motion is also affected by other agents’

activity according to the ant foraging metaphor, i.e., via

stigmergy. That is, agents interact with each other through a

pheromone field built by them while moving. Conspicuity-

based behaviours and pheromone influence contribute to the

agent’s motion according to the following voting mechanism,

a+(n) = argmax
a∈O

(

∑
b∈B

αb fb(m,a,n)+βg(p,a,n)+ γq

)

(1)

ȯ(n) = Γ
(

a+(n)
)

(2)

where: O is the set of possible agent motor actions (e.g.,

“move to the right”); Γ(.) transforms a motor action, a ∈
O, onto pixel coordinates centred on the current agent’s

position; β is the weight accounting for the contribution of

pheromone, which is described by the motor action evalua-

tion function g(p,a,n) ∈ [0,1]; αb is the weight accounting

for the contribution of behaviour b ∈ B, which is described

by the motor action evaluation function fb(m,a,n) ∈ [0,1];
and γ is the weight accounting for stochastic behaviour, being

q ∈ [0,1] a number sampled from a uniform distribution each

time the action is evaluated.

The following describes which regions in the local neigh-

bourhood of the current agent position are selected as its

next position by each of the five behaviours composing B,

and thus embody top-down knowledge about trails,

1) Regions of higher levels of conspicuity, under the

assumption that trails are salient in the input image;

2) Regions whose average level of conspicuity is more

similar to the average level of conspicuity of the pixels

visited by the agent, under the assumption that trails’

appearance is somewhat homogeneous;

3) Regions that maintain the agent equidistant to the

boundaries of the trail hypothesis being pursued;

4) Upwards regions under the assumption that trails are

often vertically elongated;

5) Region targeted by the motor action at the previous

iteration, under the assumption that trails’ outline is

somewhat monotonous.

The newly proposed evaluation function g(p,a,n) greedily

provides higher score to the motor actions that take the agent

to regions of higher level of pheromone. By making the

score proportional to the level of pheromone, this evaluation

function guides the agent towards regions recurrently visited

by other agents. The outcome is coordinated collective

behaviour. By the end of each iteration, the agent contributes

to pheromone field p by deploying an amount of pheromone

ε in its current position, o(n), and to the other conspicuity

map p′ a small portion of ε , υ . That is, if p = CC(t) then

p′ = CI(t), and the other way around. This process enables

loosely coupled cross-modality influence, thus allowing each

agent to exploit multiple cues indirectly, and therefore to

maintain their simplicity. In this study ε = 0.008 and υ = 0.3.
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The ratio β/(∑b∈B αb + γ) controls the importance of

the collective over the individual experience. In this study

β = 1.0 and γ = 0.8. Please refer to [6] for further details

on the agent motor actions set O, on the behaviour set B,

on its associated weights αb, and on how the agent’s local

surroundings is segmented into regions.

B. Agents Recruitment

A set of agents, Em, is deployed at each conspicuity map

m ∈ {CC(t),CI(t)}. The chances of deploying an agent on a

given location of conspicuity map m depends on the level of

conspicuity at that location and on the level of pheromone

at the same position of the corresponding pheromone field

p. The following describes in detail the deployment process.

To avoid any noise potentially present at the map’s bound-

aries, agents are deployed with a small offset of the bottom

of the conspicuity map in question, i.e., at row r = h− 5,

where h is the height of the conspicuity maps.

To determine the column where each agent is deployed, the

unidimensional vector vm = (vm
0 , . . . ,v

m
w) is first computed,

where w is the width of the conspicuity maps. The element

vm
k of vm refers to the average conspicuity level of the

pixels in column k, contained between row r and row

r − δ , where δ = 5 to avoid deploying agents in columns

with spurious highly conspicuous pixels. Formally, vm
k =

∑l∈[r,r−δ ] m(k, l)/δ , where m(k, l) is the conspicuity level at

pixel in column k and row l. The same process is repeated

to build a vector for the pheromone field in question, vp =
(vp

0 , . . . ,v
p
w), where p(k, l) is the pheromone level at pixel in

column k and row l. In this case, v
p
k = ∑l∈[r,r−δ ] p(k, l)/δ .

Then, the test z < (vm
j·w + max(vp

j·w−4,v
p
j·w+4)) is repeated

until it succeeds, where z ∈ [0,1] and j ∈ [0,1] are numbers

sampled from a uniform distribution each time the test is

performed. At that time, the agent is deployed in column

j · w. With this test, the chances of deploying an agent

in a randomly selected column j · w is as high as the

conspicuity and pheromone levels at the deployment region.

This sampling process is repeated until |Em|= 20 agents are

deployed per map m.

V. EVIDENCE ACCUMULATION

To integrate evidence across time, to consider competi-

tion between multiple focus of attention, and to promote

perceptual grouping, the fusion of both pheromone fields,

S(t) = 1
2
PC(t) + 1

2
PI(t), feeds a 2-D dynamic neural field

F(t). Note that this process only occurs after the agents’

activity has ceased, and therefore the pheromone fields have

been fully updated.

The dynamical characteristic of the neural fields [13], [14]

is what enables their ability to integrate information across

time. To avoid the blurring of the neural field when the

robot moves, the following three steps explicitly compensate

the neural field for the camera motion engaged between the

previous and current frames:

1) Estimate the homography matrix H(t) that describes

the perspective transformation between the current

frame, I(t), and the previous one, I(t −∆t). This step

is further detailed in Section V-A.

2) Obtain a perspective compensated version of the previ-

ous neural field’s state by using the estimated homog-

raphy matrix, F′(t −∆t) = H(t)F(t −∆t).
3) Obtain F(t) by updating the perspective compensated

neural field F′(t −∆t) with the pheromone field S(t).
This step is further detailed in Section V-B.

A. Homography Matrix Estimation

To estimate the perspective transformation, a set of Shi and

Tomasi [15] corner points are first detected in the previous

frame, I(t−∆t). These points are then tracked in the current

frame, I(t), with a pyramidal implementation of the Lucas-

Kanade feature tracker [16]. The resulting sparse optical

flow is then used to estimate the perspective transformation

relating both frames, i.e., the 3×3 homography matrix H,

u′
i = H(t)ui (3)

where ui is a local feature found in I(t − ∆t) and u′
i its

correspondence in I(t). Due to noise in the tracking process,

the homography matrix is calculated as the least-squares

solution that minimises the back-projection error [17]. This

process assumes that distortion introduced by the camera lens

into the input images has been corrected. It also assumes

that either: (1) the terrain in front of the robot is planar or

(2) the camera was only rotated, and not displaced, between

frames. None of these two constraints can be strictly ensured

in off-road environments. Still, in most situations the terrain

is somewhat planar and the attitude of the camera changes

more significantly than its position. Experiments have shown

that the co-occurrence of these two relaxed constraints is

sufficient to maintain a robust operation. If a minimum of

four correspondences is not found, the homography matrix

is set to the identity matrix, H(t) = diag(1,1,1).

B. Neural Field Update

The neural field F(t) is a 2D lattice of w×h neurons with

“Mexican-hat”-shaped lateral coupling. This property helps

in the formation of a coherent focus of attention [14]. On

the one hand, activated neurons excite their neighbours, thus

promoting perceptual grouping. On the other hand, activated

neurons tend to inhibit distant ones, thus reducing ambigu-

ities in the focus of attention. Formally, the connection’s

weight between a neuron in position x and a neuron in

position x′ is given by a Difference of Gaussians (DoG),

function of the Euclidean distance between both, w(x,x′).
In addition to lateral connectivity, the neural field also has

afferent interactions with pheromone field S(t). The weight

of a connection between an element of S(t) in position y

and a neuron of F(t) in position x is given by a Gaussian

function of the Euclidean distance between both, d(x,y).
This operation enlarges neurons’ receptive field to reduce

sensitivity to noise.

The average membrane potential of a given neuron at

position x can now be expressed by the following nonlinear

integro-differential equation,
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τ
∂F(x, t)

∂ t
=−F(x, t)+
∫

w(x,x′) f
(

F(x′, t)
)

dx′+
∫

d(x,y)S(y, t)dy+h (4)

where f (x) = x in this paper, τ is a time constant and h = 0

is the neuron threshold. For numerical integration, the Euler

forward method is used to obtain an approximation of the

neural field, which in matrix form results in the following

rearranged expression,

F(t) = F′(t −∆t)+
∆t

τ

(

−a ·
(

F′(t −∆t)
)

+ (5)

b ·
(

DoG
k1,k2
σ1,σ2

∗F′(t −∆t)
)

+

c ·
(

G
k3
σ3
∗S(t)

)

+h
)

where ∗ is the convolution operator, a, b and c are weights

defining the contribution of each term, DoG
k1,k2
σ1,σ2

= G
k1
σ1

−

G
k2
σ2

, Gk
σ is a Gaussian kernel of size k×k and width σ . Note

that the neural field’s previous state, F(t −∆t), is substituted

by its motion compensated counter part, F′(t − ∆t). The

neural field free parameters have been empirically defined,

σ1 = 4.25, σ2 = 14.15, σ3 = 2.15, k1 = 25, k2 = 91, k3 = 11,

a = 2, b = 2.5, c = 8, and ∆t
τ = 0.03. The system showed

robustness to small variations around these values as long as

the proportions are roughly maintained.

To enable fast computation, the model is synchronously

evaluated, meaning that at time t neurons are updated based

on the network state at time t −∆t. Due to robot motion,

any potential symmetry at the sensory input does not pre-

vail, making neural field oscillations unlikely to occur over

relevant periods of time.

The dynamical characteristic of the model in conjunction

with the long-range lateral inhibition results in the following

property. The higher the number of frames with the same

spot with high activity the more difficult it is, due to

lateral connectivity, for other regions to become activated.

Hence, transient distractors are actively inhibited once a large

evidence on the trail location is accumulated (see Fig. 3).

VI. EXPERIMENTAL RESULTS

An extensive data-set of 25 colour videos encompassing

a total of 12023 frames with a resolution of 640× 480 has

been obtained with a hand-held camera (see Fig. 4). The

camera was carried at an approximate height of 1.5m and at

an approximate speed of 1ms−1. The model’s output on these

videos is available at the Authors’ site1. The trail detector

was evaluated on a Core2 Duo 2.8 GHz running Linux.

OpenCV was used for low-level routines. Table I shows that

the model runs on average at 20Hz, where only 4% refers

to the swarm-based activity. The timing reported for the

neural field update also includes optical flow computation,

homography estimation, and neural field wrapping.

1http://www.uninova.pt/∼pfs/iros2010trail.html

(a) t = 190 (b) S(190) (c) F(190)

(d) t = 220 (e) S(220) (f) F(220)

(g) t = 250 (h) S(250) (i) F(250)

(j) t = 280 (k) S(280) (l) F(280)

Fig. 3. Example of neural field competition in a situation represented by
four ordered frames obtained from video #11 of the tested data-set. The
trail is present in the input image for several frames prior to t = 220, thus
eliciting high level of activity in the neural field, F(190). Although the
transient appearance of a trail-like grass segment in the bottom-left region
of the image is felt in the pheromone field, S(220) and S(250), this distractor
is actively inhibited in the neural field, F(220) and F(250).

The experimental results are twofold. First it is shown

that the proposed swarm-based saliency model is more

robust than a classical one [12], [10], where conspicuity

maps are blended, S(t) = 1
2
CC(t)+ 1

2
CI(t), rather than their

corresponding pheromone fields, S(t) = 1
2
PC(t)+ 1

2
PI(t). For

the sake of fair comparison, the neural field F(t), which is

fed by S(t), is used to generate the output in both cases.

Then, a qualitative comparison with related trail detectors

highlights the advantages of the proposed model. To handle

the probabilistic nature of the agents behaviours, a set of 5

runs was performed per video.

The trail is considered correctly localised if the biggest

blob of neural field activity above 0.85 (from a maximum of

1) is fully within the trail’s boundaries. In cases of ambiguity

caused by co-occurrence of two similar blobs, the pheromone

field S(t) is used to assess which blob is being reinforced

and consequently should be taken as the output.

Table II shows that the proposed swarm-based saliency

model clearly outperforms the classical one. That is, a higher

average success rate is obtained along with a smaller standard

deviation. It follows from the success rate of 91%±12% that

the proposed model is well suited for off-road autonomous
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robots. This result is more stringent if the difficulty of the

tested data-set is taken into account. To our knowledge no

previous work has been tested against a data-set with trails

as narrow, unstructured and discontinuous as the ones herein

considered. Moreover, differently from previous works [4],

[2], [5], [9], the model succeeds in situations where the trail

is not starting from the bottom of the image (see Fig. 1(a)).

It is also worth noting that in 7 of the 25 videos, the

proposed model shows 100% success rate for all the 5 five

runs. Video 5 is accounted as a long run with almost 5

minutes length. Besides being often interrupted and highly

unstructured, the trail in this video also exhibits a variable

width. Moreover, the terrain surrounding the trail is heteroge-

neous and highly populated with potential distractors, such as

trees and bushes. The 85% success rate of the model in this

video clearly shows its robustness in demanding situations.

About 5% of the fail cases refer to situations where the trail

is nevertheless noticeable in the neural field. In this case, as

in other lower performance videos, ambiguity between trail

and surroundings could be reduced by considering additional

perceptual modalities, such as texture and depth.

When the trail is highly conspicuous in the environment,

as most often occurs, ambiguity is rarely present. When

this assumption fails and distractors are scattered, the model

is still able to perform correctly. This robustness owes to

the agents’ sensori-motor coordination capabilities, which

allow an opportunistic exploitation of the trail-background

segmentation present in the conspicuity maps.

VII. CONCLUSIONS

A swarm-based model for top-down modulation of visual

saliency with the goal of localising unstructured trails in

natural environments was proposed. The model has been

successfully validated against a highly demanding and di-

verse data-set by exhibiting 91% success rate at 20Hz.

These results due to large extent to the swarm-based design,

which enabled a robust self-organisation of visual search,

perceptual grouping, and multiple hypotheses tracking. All

these characteristics allow the system to perform in situations

where previous trail detectors fail, such as when the trail does

not emerge from the lower part of the image or when it is

considerably interrupted. To our knowledge, this work is the

most complex application of the agent-based sensori-motor

coordination approach to object detection.

The high success rate across the diverse data-set shows

that the selected parametrisation is not over-fit to a specific

environment, thus highlighting its robustness. Nevertheless,

a more extensive sensitivity analysis of the model still needs

to be addressed in future work. Other perceptual modalities,

such as texture and depth, will be included to further increase

neural
field

conspicuity maps
computation

swarm

computation total

time (ms) 12 36 2 50

TABLE I

AVERAGE COMPUTATION TIMES.

the robustness of the model. Finally, we plan to test the

swarm-based saliency model to other visual search tasks.

ACKNOWLEDGMENTS

This work was partially supported by FCT/MCTES grant

No. SFRH/BD/27305/2006. The authors wish to thank the

fruitful comments provided by the anonymous reviewers.

REFERENCES

[1] C. Rasmussen and D. Scott, “Terrain-based sensor selection for
autonomous trail following,” in Proc. of the 2nd Intl. Workshop on

Robot Vision (Robvis 2008), 2008, pp. 341–355.
[2] D. Fernandez and A. Price, “Visual detection and tracking of poorly

structured dirt roads,” in Proc. of the Intl. Conf. on Advanced Robotics

(ICAR), 2005, pp. 553–560.
[3] A. Bartel, F. Meyer, C. Sinke, T. Wiemann, A. Nchter, K. Lingemann,

and J. Hertzberg, “Real-time outdoor trail detection on a mobile robot,”
in Proc. of the 13th IASTED Intl. Conf. on Robotics, Applications and

Telematics, 2007, pp. 477–482.
[4] C. Rasmussen and D. Scott, “Shape-guided superpixel grouping for

trail detection and tracking,” in Proc. of the 2008 IEEE/RSJ Intl. Conf.

on Intelligent Robots and Systems (IROS), 2008, pp. 4092–4097.
[5] M. Blas, M. Agrawal, K. Konolige, and A. Sundaresan, “Fast

color/texture segmentation for outdoor robots,” in Proc. of the

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Nice,
France, 2008, pp. 4078–4085.

[6] P. Santana, N. Alves, L. Correia, and J. Barata, “Fast trail detection:
A saliency-based approach,” in Proc. of the Intl. Conf. on Robotics

and Automation (ICRA 2010), Anchorage, Alaska, 2010.
[7] J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J. Santos-Victor,

and R. Pfeifer, “Multimodal saliency-based bottom-up attention a
framework for the humanoid robot icub,” in Proc. of the IEEE Intl.

Conf. on Robotics and Automation (ICRA), 2008, pp. 962–967.
[8] J. Moren, A. Ude, A. Koene, and G. Cheng, “Biologically based top-

down attention modulation for humanoid interactions,” International

Journal of Humanoid Robotics, vol. 5, no. 1, pp. 3–24, 2008.
[9] C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast for fast,

robust trail-following,” in Proc. of the IEEE Intl. Conf. on Intelligent

Robots and Systems (IROS), 2009.
[10] S. Frintrop, G. Backer, and E. Rome, “Goal-directed search with a

top-down modulated computational attention system,” Lecture Notes

In Computer Science, vol. LNCS 3663, p. 117, 2005.
[11] V. Navalpakkam and L. Itti, “Modeling the influence of task on

attention,” Vision Research, vol. 45, no. 2, pp. 205–231, 2005.
[12] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual

attention for rapid scene analysis,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, pp. 1254–1259, 1998.
[13] S. Amari, “Dynamics of pattern formation in lateral-inhibition type

neural fields,” Biological Cybernetics, vol. 27, no. 2, pp. 77–87, 1977.
[14] N. Rougier and J. Vitay, “Emergence of attention within a neural

population,” Neural Networks, vol. 19, no. 5, pp. 573–581, 2006.
[15] C. Tomasi and J. Shi, “Good features to track,” in Proc. of IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 1994, pp. 593–
600.

[16] J. Bouguet, “Pyramidal implementation of the lucas kanade feature
tracker description of the algorithm,” Intel Corporation, Microproces-

sor Research Labs, OpenCV Documents, 1999.
[17] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with

the OpenCV library. O’Reilly Media, Inc., 2008.

764



Fig. 4. Data-set representative frames. Each image corresponds to one video whose ID is given by increasing order from left to right and top to bottom.
The overlaid red blobs represent the model’s estimate of the trail location, which corresponds to an activity of the neural field above 0.85.

Classic Saliency Computation Proposed Swarm-Based Saliency Computation

Video

ID
Nr. of Frames

Nr. of Correct

Frames
% of Correct

Frames

Average Nr. of
Correct Frames

Average % of
Correct Frames

1 278 124 44.60 278.00±0.00 100.00±0.00

2 204 126 61.76 204.00±0.00 100.00±0.00

3 422 20 4.74 362.40±9.45 85.88±2.24

4 135 0 0.00 135.00±0.00 100.00±0.00

5 2854 927 32.48 2457.40±24.91 86.10±0.87

6 186 52 27.96 185.80±0.45 99.89±0.24

7 121 0 0.00 121.00±0.00 100.00±0.00

8 124 0 0.00 124.00±0.00 100.00±0.00

9 309 58 18.77 277.40±4.51 89.77±1.46

10 147 73 49.66 138.40±1.14 94.15±0.78

11 386 0 0.00 386.00±0.00 100.00±0.00

12 158 0 0.00 108.20±15.71 68.48±9.94

13 134 54 40.30 132.60±1.67 98.96±1.25

14 676 299 44.23 669.60±0.55 99.05±0.08

15 683 181 26.50 559.60±8.38 81.93±1.23

16 770 35 4.55 592.60±11.93 76.96±1.55

17 403 141 34.99 380.40±3.71 94.39±0.92

18 335 325 97.01 331.80±0.45 99.04±0.13

19 230 195 84.78 225.20±2.28 97.91±0.99

20 439 28 6.38 244.20±1.64 55.63±0.37

21 490 18 3.67 479.60±2.30 97.88±0.47

22 230 25 10.87 230.00±0.00 100.00±0.00

23 600 36 6.00 560.20±4.55 93.37±0.76

24 802 0 0.00 683.80±7.05 85.26±0.88

25 907 0 0.00 710.40±9.13 78.32±1.01

∑ = 12023 ∑ = 2717 (µ ±σ) = (23.97±27.73) ∑ = (10577.60±109.80) (µ ±σ) = (91.32±1.01)

TABLE II

TRAIL DETECTION RESULTS. CLASSIC SAL. COMP.: S(t) = 1
2

CC(t)+ 1
2

CI(t). PROPOSED SAL. COMP.: S(t) = 1
2

PC(t)+ 1
2

PI(t).
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