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Abstract— A snake-like robot has an advantage in moving
into a narrow space. Particularly ”pedal wave”, which is one
of its locomotion styles, is suitable for entering a thin path.
However, pedal wave have been used only for going straight
in most of the prior studies. In particular horizontal steering
of pedal wave by a real robot has not been investigated
sufficiently. Therefore in this paper we studied a kinematically
appropriate steering method of pedal wave using a continuous
snake-like robot model. We proposed steering by superposition
of a steering curvatures and a pedal wave’s curvature, and
investigated the condition of suitable steering curvature using
kinematic simulations. The proposed steering method was
verified by experiments with a real snake-like robot.

I. INTRODUCTION

Generally speaking, there are a lot of spaces in our living
environment which are difficult for us to enter because of
limited room or obstacles. A machine which is equipped with
camera and some tools and able to go through thin paths will
help us in working in such environments. For example, this
type of machines is potentially helpful for search and rescue
in a disaster area and investigation of a pipeline. A snake-
like robot, which has a slender body and a large number of
bending joints, is hopeful as an all-purpose machine working
in narrow environments. Since the first snake-like robot was
developed in 1972[1], various snake-like robots have been
realized so far.

Several locomotion styles for a snake-like robot such as
lateral undulation and sidewinding are known until today.
They have the different pros and cons; for example, lateral
undulation, which is the most typical style of a snake’s
locomotion, is fast and efficient but not useful in a thin
straight path and on a slippery surface because it requires
a space for winding its body and footholds to push. On the
other hand, ”pedal wave” is known as a locomotion style
suitable for such environment (Fig. 1), though it is relatively
slow and inefficient. (We note that this style has been called
such as ”travelling wave locomotion (or gait)” in other
literatures[2]. However, we have called it as ”pedal wave”,
which is originally used for the locomotion of gastropods
such as snails, because the feature that the vertical waves
travel to the same direction as the movement is similar. In
addition, sometimes this style has been called ”rectilinear”,
however, it may be not suitable because the waves travel
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to the opposite direction to the movement in a real snake’s
rectilinear[3]. ) Therefore pedal wave is complementary to
lateral undulation. So far many robots have realized pedal
wave experimentally[4][5].

However, pedal wave has been used only for going straight
on in most of the prior studies. Literature[2] is the only study
that described the detailed kinematics of steering of pedal
wave as far as we know. But, the proposed algorithm required
a mechanism with extremely large degree of freedom and a
program to solve the inverse kinematics in order to fit the
robot into the path in real time, thus it haven’t been applied
to a real robot. Literatures[4][6] describes the adaptations
of pedal wave to uneven terrain and verified them experi-
mentally, however, horizontal steering was not realized. The
reader may think this situation is a little strange, because it
seems sufficient to control the joint angle only around the
tips of pedal wave in order to steer. Actually this idea is
possible, but not attractive. For example, when a robot is
steering on a level surface with this method, the projection
to the surface looks like connected straight line segments
(Fig. 2). This shape is clearly disadvantageous to steering
along a narrow path. In addition, the turning radius tends
to be large because this method doesn’t utilize the joints
not being around the tips. Moreover, there is a problem of
how to control the joint angle when a tip comes to the gap
between 2 adjacent joints in terms of the control of a real
robot. Therefore in this paper we study the steering of pedal
wave using distributed curvature.

This paper is organized as follows: In section I, the back-
ground of research was described. In section II, we review
the kinematic model of a continuous snake-like robot, which
is the basis of discussion in this paper. In section III, the
steering method by superposition of curvatures is proposed
and the condition of steering curvatures is investigated. In
section IV, the experiments to verify the method using a
real robot are described. Finally section V concludes this
research.

II. KINEMATICS OF A CONTINUOUS
SNAKE-LIKE ROBOT

Until today various structures of snake-like robots have
been proposed; e.g. a series of universal joints, or a series of
1 DoF bending joints whose joint axes are rolled by 90 deg.
to the previous joint. Though these structures have deferent
kinematics, the general kinematic features are common. Thus
an abstract model which is able to approximate various struc-
tures is very efficient for studies about general problems of
snake-like robots such as locomotion styles[1][7]. Recently
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Fig. 1. Pedal wave of a snake-like robot (The point indicates the middle
of the body)
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Fig. 2. Steering by controlling the joints only around the tips of pedal
wave

we have proposed a continuous kinematic model inspired
by the theory of a spatial curve, which we call a ”dorsal
reference curve”, and clarified that it is able to approximate
various structures of snake-like robots[8]. In this section
we briefly review the mathematical definition of a dorsal
reference curve.

A continuous curve is not enough to represent the shape
of snake-like robot, because the robot has the distinction
of the belly and the back[7]. Thus we have introduced
differential equations extended from Frenet-Serret equations
of a spatial curve, and called the solution as a ”dorsal
reference curve”[9][10]. A dorsal reference curve is a natural
representation of an elongate body. Actually, the same idea
was introduced for the study of elastica in the field of physics
in 19th century[11].

The shape of a dorsal reference curve is explained by
analogy of a track of an air plane (Fig. 3(a)). Now we
consider a vector c = (x(s), y(s), z(s)) as the position of
the plane. s is a length of the track, therefore s = 0 means
the starting point. An orthogonal frame (er(s), ep(s), ey(s))
is considered as the posture of the plane, and er(s) (roll axis)
is a unit vector facing the direction of movement, ep(s) (pitch
axis) is a unit vector facing to the direction of the left wing,
and ey(s) (yaw axis) is a unit vector facing to the direction
of the vertical tail.

As a plane has an aileron, an elevator, and a rudder, we
introduce 3 functions τ (s), κp(s) and κy(s) as the rotational
velocity of rolling, pitching, and yawing respectively. These
functions mean the difference of rotational angle [rad] when
the plane travels for a unit length. Then, the track of the
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(b) A dorsal reference curve

Fig. 3. A dorsal reference curve

plane is calculated by following equations[9][10].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dc(s)
ds

= er(s)

der(s)
ds

= κy(s)ep(s) −κp(s)ey(s)

dep(s)
ds

= −κy(s)er(s) +τ (s)ey(s)

dey(s)
ds

= κp(s)er(s) −τ (s)ep(s)

(1)

If the position (c(0)) and the posture (er(0), ep(0), ey(0)) at
the starting point (s = 0) and τ (s), κp(s), κy(s) are given,
the position (c(s)) and the posture (er(s), ep(s), ey(s)) of
the track are obtained as the solution of (1). Fig. 3(b) shows
a visualized image of a solution.

Now we consider the starting point of the track as the
head (or tail) of a snake-like robot, and consider c(s) and
(er(s), ep(s), ey(s)) as the position and the posture of its
body respectively. Thus we can translate the track to the
shape of the snake-like robot. We call the set of c(s) and
(er(s), ep(s), ey(s)) a ”dorsal reference curve”, because its
shape (Fig. 3(b)) reminds us a slender fish that has a dorsal
fin. In addition we call τ (s), κp(s), κy(s) shape functions.

We assume that a dorsal reference curve in this paper
always satisfies τ (s) = 0, because we consider a snake-like
robot which doesn’t twist.

III. KINEMATICS OF STEERING OF PEDAL WAVE

A. Steering by Superposition of Curvatures

First, we define a shape of pedal wave without steering. A
dorsal reference curve of pedal wave forms vertical waves,
therefore κp(s) should be a cyclic function whose average is
0. Though any function is available if it satisfies the above
condition, we use a sine function because it is smooth and
has been used in our prior research. The shape functions for
straight pedal wave are as follows;

κp(s) =
2π

Lp
αp sin

2π

Lp
s (2)

κy(s) = 0, (3)

where αp is a maximum angle between the body and the
direction of movement and Lp is the wavelength. Fig. 1
shows an example of this shape. This curve is called a
serpenoid.
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Projections

(a) A successful case (L = 4Lp) (b) A failed case (L =
2Lp)

Fig. 4. Shapes of pedal wave with horizontal steering curvature

Second, we see if it is possible to bend this shape around
the vertical axis by adding some appropriate value to κy(s).
Now we test the following function.

κy(s) =
2π

L
α sin

2π

L
s (4)

This is also a sine function and Fig. 4a shows the shape
when α = π/3 and L = 4Lp. The dorsal reference curve
bent smoothly around the vertical axis while it kept the shape
of pedal wave. Therefore, we propose the following shape
functions for steering of pedal wave considering the change
of the time;

κpw(s, t) ≡ 2π

Lp
αp sin 2π

(
s

Lp
− t

Tp

)
(5)

κp(s, t) = κsp(s + vt) + κpw(s, t) (6)
κy(s, t) = κsy(s + vt), (7)

where t is the time, Tp is a period of pedal wave, v is a
velocity of movement by pedal wave, κpw(s, t) is the pedal
wave’s curvature, and κsp(s, t) and κsy(s, t) are the vertical
and horizontal steering curvature respectively. We note that
the shape functions are superposition of curvatures of pedal
wave and steering. The reason why κsp and κsy are functions
of s + vt is that the steering curvatures should travel along
the body synchronously with the movement by pedal wave.

However, the shape obtained by the above equations is not
always appropriate. For example, when we choose L = 2Lp

at (4), the dorsal reference curve becomes different from both
of pedal wave and the steering curve, and not suitable for
pedal wave. In general, when we design a curve by super-
position of curvatures of 2 different curves, the new curve
does not necessarily have the same feature as original curves,
because the curvatures and the shape of curve complexly
affect each other as shown by (1). However, speaking from
experience, the above method is available when we combine
curvatures which have much different wavelength like the
example shown in Fig. 4a. Therefore we investigate the
condition of the appropriate steering curvature quantitatively
in this section. We use numerical simulations here because
analytical approach is difficult due to the complexity of (1).

B. Evaluation of Pedal Wave’s Shape

First, we consider the following 2 conditions of appropri-
ate pedal wave.

1) The dorsal reference curves forms vertical waves.
2) The average position and direction of the dorsal refer-

ence curve don’t change significantly when the phase
of pedal wave changes.

The condition (2) needs supplementary explanation. When a
robot is moving with pedal wave, its phase (the value inside
the parentheses of (5)) changes as time passes. Therefore, the
shape of the dorsal reference curve around the area where the
steering curvature is not zero can change significantly. The
condition (2) means that this change should be small. For
example, the shape shown in Fig. 4b is inappropriate because
it doesn’t satisfy the condition (1). However, it is difficult to
test the condition (1) quantitatively, we use condition (2)
in this paper. It is empirically sufficient because a shape
satisfying (2) also satisfies (1) in our experience.

C. Calculation of Changes of Position and Direction

Now we describe how to evaluate changes of position and
direction of a dorsal reference curve. We set the steering
area between point O (s = 0) and point A (s = si), and
assume that the steering curvatures are 0 outside this area
(Fig. 5). The change of the position is calculated as the
change of average position between point A and point B.
Now we assume that the distance between A and B is Lp

(wavelength of pedal wave) and B is outside the steering
area. Therefore the average position of a curve between A
and B is obtained as follows;

cave(t) =(∫ sf

si
cx(s, t)ds

Lp
,

∫ sf

si
cy(s, t)ds

Lp
,

∫ sf

si
cz(s, t)ds

Lp

)
,

(8)

where sf = si +Lp and {cx(s, t), cy(s, t), cz(s, t)} indicates
the position vector of the dorsal reference curve calculated
by (1). Next we define c̄ave as the average of cave(t) and
Re as the maximum value of ||cave(t) − c̄ave||/Lp during
one cycle. They are calculated as follows;

c̄ave =
1
Tp

∫ Tp

0

cave(t)dt (9)

Re = max
t∈[0,Tp]

(||cave(t) − c̄ave||/Lp), (10)

where || · || means the norm of a vector and (9) means that
each component of cave(t) is integrated. The reason why
we use Lp to normalize distance at (10) is that Lp is usually
a constant value for each robot. This definition shows that
the average position of the curve (cave(t)) is always in the
sphere with a radius of Re ·Lp. Therefore when the shape of
the curve is appropriate, Re is small. However, even when
Re is small the shape is not always suitable, because the
rolling of curve doesn’t affect Re. Hence we introduce Δθ
which evaluates the change of the angle (θ(t)) between the
vertical axis of the absolute coordinate system and pitch axis
at point B (Fig. 5). Δθ is defined as the difference between
the maximum and minimum value of θ(t) during one cycle.
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Fig. 5. Setting for evaluation

In addition, we have to adjust the position and direction
of a dorsal reference curve at point O as follows in order to
cancel the movement of pedal wave;

cx(0, t) = cy(0, t) = 0 (11)
cz(0, t) = cs

z(−t/Tp · Lp, 0) (12)

er(0, t) =
{

cos
(

αp cos
2πt

Tp

)
, 0, sin

(
αp cos

2πt

Tp

)}
(13)

ep(0, t) = (0, 1, 0), (14)

where cs
z(s, t) is a z-coordinate of a dorsal reference curve

when steering curvatures are 0.
The permissible range of Re and Δθ can be change

according to circumstances. However, in this paper we
empirically decide the permissible range as Re < 0.1 and
Δθ < 0.2 rad (11deg). Some examples of the evaluation are
shown in the video attachment.

1) Horizontal Steering: We investigate Re and Δθ when
we superpose a horizontal steering curvature. The steering
curvature is given by a half of serpenoid as follows;

κsp(s) = 0 (15)

κsy(s) =

{
π
Lβ sin 2π

L s (s < L/2)
0 (L/2 ≤ s)

, (16)

where β is the amplitude of steering. The reason why we
chose sine is that it connects the straight area and the steering
curve smoothly and that it is convenient to investigate the
condition about wavelength. Fig. 6 shows the shape when
α = π/6, β = π/2 and Lp/L = 0.25, and Fig. 7 shows Re

and Δθ when αp = π/3. Fig. 7 shows that when |β| and
Lp/L are small, Re and Δθ become small. In addition, we
also confirmed that when αp is small Re and Δθ becomes
small. Considering that we can’t make |β| small in order
to steer, we obtained the condition of Lp/L ≤ 0.25 for an
appropriate steering curvature according to the permissible
range (Re < 0.1Lp and Δθ < 0.2) which we decided above.
We checked this condition holds true when αp ≤ π/2.

Moreover, we found that Re and Δθ are often included
within the permissible range even when we superpose curva-
tures of serpenoid which satisfy Lp/L ≤ 0.25. For example,
Fig. 8 shows the shape of a dorsal reference curve with
steering curvature made of superposition of 2 serpenoid (β =
π/2 and Lp/L = 0.25 in the first curve, and β = −2π/3

O

Fig. 6. A shape with horizontal steering curvature (Lp/L = 0.25, β = π,
αp = π/6)
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(b) Δθ (αp = π/3)

Fig. 7. Re and Δθ in horizontal steering

and Lp/L = 0.25 in the second one, and the start position of
the second one was s = L/2). The result was Re = 0.08 and
Δθ = 0.08. This fact indicates that pedal wave can be freely
steered to a certain extent by superposition of curvatures of
serpenoid satisfying Lp/L ≤ 0.25.

2) Vertical Steering: We investigate Re in vertical steer-
ing. In this case Δθ is always 0. First, as we did in horizontal
steering we give the steering curvature by a half of serpenoid
as follows.

κsp(s) =

{
π
Lβ sin 2π

L s (s < L/2)
0 (L/2 ≤ s)

(17)

κsy(s) = 0 (18)

Fig. 9 shows the result at α = π/6 and π/3. These results
shows that when α, |β| and Lp/L are small, Re becomes
small in the same way as horizontal steering. However, Re
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Fig. 8. A shape with superposition of horizontal steering curvature

TABLE I
SPECIFICATIONS OF ACM-L2

Size (L, W, H) Weight DOF Max.torque Max. angle
800, 46, 50 [mm] 1.0 kg 20 0.5 N·m 75deg

is wholly smaller than that of horizontal steering. Generally
speaking, we can assume |β| < π/2 in (18) because the
purpose of this steering is adaptation to uneven terrain.
Considering this condition, the permissible range is decided
as Lp/L < −0.46α + 1 when α ≤ π/3.

Second, we investigate the following curvature whose
purpose is obstacle climbing.

κsp(s) =

{
− π

Lβ sin 2π
L s (s < L)

0 (L ≤ s)
(19)

κsy(s) = 0 (20)

Fig. 10a shows Re at β = π/2. Lp/L should be large to
fit the shape into an obstacle precisely, while αp should not
be too small to keep the velocity of pedal wave. Though
the selection of Lp/L and αp depends on circumstances, we
consider Lp = 0.7 and αp = 0.4 is one of well-balanced
options. Fig. 10b shows a shape at β = π/2, Lp/L = 0.7
and αp = 0.4.

IV. EXPERIMENTS
We conducted experiments to verify the proposed steering

method. Table I shows the specification of ”ACM-L2”,
which we used in the experiments. ACM-L2 is composed of
”double joints” proposed in our prior research[12]. A snake-
like robot composed of double joints can form a similar
shape of a dorsal reference curve[13]. Fig. 11 shows the
approximation of the shape shown in Fig. 8. The joint angles
are calculated in a PC and the target angles are sent to micro
computers in joint units (Fig. 12). The micro computers
conduct position feedback control to realize the target angles.

Before experiments we measured the velocity of move-
ment by pedal wave, which depended on αp, Lp and friction
of the environment. As the result we confirmed that the robot
moved 0.2Lp during one cycle at αp = 0.44 rad (25deg),
therefore we substituted v = 0.2Lp/Tp in (6) and (7). In
addition, the parameters were chosen as αp = 0.44 and
Lp = 273 mm in the experiments.

First we tested horizontal steering by (16). The wave-
length of steering curvature was fixed at Lp/L = 0.25 and
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(b) Re (αp = π/3)

Fig. 9. Re in vertical steering

its amplitude and timing was input by the operator using
joysticks. As shown in Fig. 13a the robot successfully went
through obstacles by horizontal steering. However, we note
that because the wavelength of steering curvature was not
small (L = 1.1 m), the operation of steering was relatively
difficult.

Second, we conducted vertical steering for climbing over
an obstacle. The wavelength of steering curvature was fixed
by Lp/L = 0.67 and its amplitude and timing was inputted
by an operator using joysticks in the same way as the first
experiment. As the result the robot successfully went over an
obstacle of 60mm in height as shown in Fig. 13b. However,
this shape was easy to fall down and it was difficult to go
over obstacles which are higher than 60mm. The scenes of
above experiments are included in the video attachment.

V. CONCLUSION

This paper described steering method of pedal wave of
a snake-like robot. First, we showed that steering can be
realized by superposition of steering curvatures and pedal-
wave’s curvature. Second, the limitation of steering curvature
was investigated quantitatively. As the result, it was clarified
that the wavelength of steering curvature has to be large
compared to that of pedal-wave’s wavelength. Furthermore
we verified the proposed idea by experiments. We believe
that the proposed steering method is so simple that it can be
applied to various types of snake-like robots.
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Fig. 10. Pedal wave with vertical steering for obstacle climbing

Fig. 11. Approximation by a structure composed of double joints (12
joints)

In future work we will study the mechanism and control
of a snake-like robot which utilize pedal wave and has a high
mobility in narrow and complicated environments.
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