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Abstract— This paper deals with the detection of the num-
ber of broadband sources in an acoustic environment from
a small-size, embeddable microphone array. The coupling
of information-theoretic statistical identification methods with
MUSIC schemes, which has long been acknowledged in the
array processing community, is first reviewed. From these
considerations, a source number detector based either on
the Akaike Information Criterion (AIC) or on the Minimum
Description Length (MDL) criterion is derived within an
original coherent broadband beamspace MUSIC method. This
constitutes a theoretically sound solution, well-suited to robotics
as it requires no subjective threshold setting and has a limited
computational cost. Experimental results validate the approach.
All the necessary theoretical background is provided, so that
the paper is self-contained.

I. INTRODUCTION

The data of the number of sources is often a prerequisite
to the processing of auditory signals. Many localization
or separation algorithms rely on this prior knowledge, and
their robustness to wrong assumptions may be very poor.
Particularly in robot audition, source detection turns out to be
a key issue. With the tightly connected localization stage, it
constitutes a fundamental precondition to many higher-level
functions [1]. In addition, the number of active sources can
change within the uncontrolled and open-ended environments
of robotics, which makes the problem even more challenging.

So, source detection has been investigated since long ago,
e.g. in [2] through a probabilistic processing downstream
a beamforming based localization. Ref. [3] estimates the
time delays of arrival by an eigenstructure-based generalized
cross-correlation method, then detects the source number by
applying an adaptive K-means algorithm on the deduced
least squares approximations of the source directions and
velocities. MUSIC [7], which constitutes a framework for
many perspectives [4], has been considered for detection
in [5]. Therein, narrowband MUSIC schemes are applied on
a frequency decomposition of the sensed signals, assuming a
common signal space dimension. Then, a higher maximum
number of sources is allowed during the isolation of the
peaks of the—average—broadband pseudo-spectrum. Nev-
ertheless, an empirical tuning of parameters is required.

Despite many contributions, a theoretically sound and
computationally efficient solution to source number detection
still needs to be devised. This paper aims at providing some
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elements towards such a design, first by bringing to the fore
theoretical concepts which have long been acknowledged
in the array processing community, then by instantiating
them into an original approach well-suited to robotics. It
is organized as follows. Section II states the problem, re-
calls elements of the MUSIC localization algorithm, and
discusses basic detection schemes. Sections III and IV then
thoroughly explain how the introduction of information-
theoretic criteria enable the detection of narrowband and
broadband sources, respectively. An information-theoretic
detector within a coherent beamspace MUSIC follows, which
fits the requirements of robotics. Experiments constitute
Section V. A conclusion ends the paper.

II. FUNDAMENTAL ISSUES

Notations are standard. Normal (resp. bold) lower-
case/uppercase letters depict scalar (resp. vector) signals in
the time/frequency domains. Underlined bold letters relate
to matrices. The N ×N identity and N ×M zero matrices
are denoted IN and ON,M , and their subscripts may be
omitted. The transpose and Hermitian transpose operators
are respectively termed (.)T and (.)H . E[.] stands for the
expectation operator, , means “equal to, by definition”, and
CN (z; z̄,Cz) denotes the complex Gaussian distribution on z
with mean z̄ and covariance Cz.

A. Problem Statement

An array of N omnidirectional sensors samples a wavefield
propagating at velocity c from D < N pointwise broadband
sources. These lie in the farfield, so that their locations
are depicted by their azimuths and elevations relative to a
frame F linked to the array. At F ’s origin, the wavefield
is thus the sum of D contributions s1(t), . . . ,sD(t), one per
source. The complex envelopes of s(t) , (s1(t), . . . ,sD(t))T

constitute S(k) = (S1(k), . . . ,SD(k))T ∈ CD, with k = 2π f
c

and f the spatial and temporal frequencies. Let V(rd ,k) ∈ CN

stand for the steering vector of the dth source at az-
imuth and elevation depicted by rd . Then, the com-
plex envelopes N(k) = (N1(k), . . . ,NN(k))T and X(k) =
(X1(k), . . . ,XN(k))T of the noise n(t) , (n1(t), . . . ,nN(t))T

and signal x(t) , (x1(t), . . . ,xN(t))T at the N sensors write as

X(k) = V(r1, . . . ,rD,k)S(k)+N(k), (1)

with V(r1, . . . ,rD,k) = (V(r1,k) | ... | V(rD,k)) [6]. The function
V(., .) is supposed known analytically or by array calibration.
The processes s(t) and n(t) are assumed mutually indepen-
dent, zero-mean, stationary and ergodic on the time window
of interest. Cs(k) , E[S(k)SH(k)] is unknown, and possibly
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singular at every frequency k as in the case of severe mutipath
propagation. n(t) can have any frequency contents and spatial
distribution, and Cn(k) , E[N(k)NH(k)]= σ2

n Cn(k) is known
up to the constant σ2

n . V(r1, . . . ,rD,k) must be full-rank at
r1, . . . ,rD, which is generally true if r1 6= r2 6= · · · 6= rD.

The problem is then to detect—i.e. estimate the number D
of—the active sources from the data of x(t). To simplify, the
array is supposed linear with uniform interspace, and F ’s
origin is set to its midpoint O. By the rotational symmetry
around the array axis, each dependency on the angular
coordinate vector rd of a dth source reduces to a dependency
on its azimuth—or bearing—θd . The nth entry of the steering
vector at any dummy azimuth θ measured with respect to
endfire thus reads as

Vn(θ ,k) = e jkzn cosθ , n = 1, . . . ,N, (2)

with zn the distance of the nth microphone to O.

B. The Elementspace MUSIC Method to the Detection of
Narrowband Farfield Sources

The celebrated MUltiple SIgnal Classification (MUSIC)
method not only enables the high-resolution localization of
sources, but also offers a sound framework to their detection.
A simplified “narrowband” problem is stated first. The basic
“elementspace” MUSIC algorithm—i.e. in the space of the
array elements—is outlined next [7].

1) A Simplified Problem: To begin with, the D sources
are supposed narrowband with common center frequency k0,
and not coherent with each other. So, their covariance matrix
Cs , E[s(t)sH(t)] = Cs(k0) is full rank. The noise n(t), inde-
pendent of s(t), is spatially white, so that E[s(t)nH(t)] = O
and E[n(t)nH(t)] = σ2

nIN , with unknown σ2
n .

2) Elementspace Narrowband MUSIC to Source Detection
and Localization: In this simplified problem, the covariance
matrix Cx , E[x(t)xH(t)] = Cx(k0) has the form

Cx = V(θ1, . . . ,θD,k0)CsV
H(θ1, . . . ,θD,k0)+σ

2
nIN . (3)

Its eigendecomposition then writes as

Cx =
N

∑
i=1

λiUiUH
i , (4)

where its eigenvalues satisfy λ1 ≥ λ2 ≥ . . . ≥ λD > λD+1 =
. . . = λN = σ2

n and can be associated with orthog-
onal right eigenvectors U1, . . . ,UN . In addition, the
columns of US = (U1 | ... | UD ) ∈ CN×D span the so-
called “signal space” S ⊂ CN generated by the steer-
ing vectors V(θ1,k0), . . . ,V(θD,k0) at the source azimuths.
The orthogonal complement N of S , also termed
“noise space”, is then the range of the matrix UN =
(UD+1 | ... | UN ) ∈ CN×(N−D) made of the remaining eigenvec-
tors associated to λD+1 = . . . = λN = σ2

n .
Consequently, even if σ2

n is unknown, the number D of
active sources is computed as N minus the multiplicity of the
smallest eigenvalue of the array spatial covariance matrix Cx.
Then, the so-called—theoretical—“pseudo-spectrum”

h(θ ,k0) ,
1

VH(θ ,k0)ΠN V(θ ,k0)
, (5)

with ΠN , ∑
N
i=D+1 UiUH

i the “projector on the noise
space”, shows infinite peaks at the source bearings, i.e. iff
θ ∈ {θ1, . . . ,θD}.

3) The Colored Noise Case: The method straightly ap-
plies to the case when the noise, though still independent of
the sources, is spatially correlated. If E[n(t)nH(t)] = σ2

n Cn
is known up to the constant σ2

n , then the detection and
localization are unchanged provided {λi,Ui}i=1,...,N term the
generalized eigenvalues and eigenvectors of the matrix pencil
(Cx,Cn). The relationship VH(θ ,k0)UN = 0T underlying
the definition (5) still holds, but the generalized eigenvectors
satisfy (US | UN )HCn(US | UN ) = IN .

4) MUSIC in Practice: In practice, the genuine covari-
ance matrix Cx is not available in closed form, and a
finite-sample estimate C̃x is computed instead. Therefore,
an approximated projector Π̃N is entailed in (5) in place
of ΠN , leading to a practical pseudo-spectrum h̃(θ ,k0)
showing sharp finite peaks at the source locations. If the
estimate C̃x is asymptotically unbiased, then so are the
MUSIC bearing estimates. In the general case when the
number of active sources is not known beforehand, the
mismatch between C̃x and Cx almost surely implies that the
N−D smallest eigenvalues are distinct. This in turn may
hinder the separation of the signal and noise spaces, and
may induce a significant performance drop, see e.g. [8].

C. Two Basic but Unworkable Source Detection Schemes

Some MUSIC-based detectors are hereafter discussed.
1) Ruling out the Most Elementary Detection Scheme:

One can wonder about first defining N−1 separate MUSIC
pseudo-spectra h̃(θ ,k0|d), each one corresponding to an
hypothesized number of sources d ∈ {0, . . . ,N−1}, prior to
detecting d̂ = argmaxd

(
maxθ h̃(θ ,k0|d)

)
. Such an approach

has no sound theoretical basis and can be straightly ruled out.
Indeed, h̃(θ ,k0|d) is the inverse of the quadratic Euclidean
distance of V(θ ,k0) to the signal space defined from the
sample estimate of the covariance matrix under the assump-
tion of d sources. So, maxθ h̃(θ ,k0|d) is always maximum
for the highest-dimension signal space, i.e. for d̂ = N−1.

2) An Hypothesis Testing Based Approach: The oldest
rigorous source detection method relies on the sphericity
test [9], which checks for the sphericity of the iso-density
contours of a M-dimensional Gaussian random vector r.
In other words, given a sample approximation R̃ of r’s
genuine covariance matrix R, this test deduces if the refer-
ence hypothesis H0:all the eigenvalues of R are equal better
explains the distribution of R̃’eigenvalues than the alternative
hypothesis H1:the extremum eigenvalues of R are distinct. Its
implementation takes the form of a Generalized Likelihood
Ratio Test (GLRT), whose threshold should be deduced from
a probability of false alarm selected beforehand.

Its application to source detection consists in a nested
series of such binary hypotheses, each of which checks for
equality of an increasing d̃-element subset of the smallest
eigenvalues of Cx from its sample approximation C̃x. The
detected number of sources is then the maximum value of d̃
below which this series of tests passes. Some fundamental
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drawbacks however limit the pertinence of this approach.
First, given a desired false alarm probability, it is impossible
to determine a threshold for the whole detection problem. At
best, a threshold can be rigorously defined for each nested
GLRT, despite the knowledge of the statistics of the sample
covariance eigenvalues under the H0 hypothesis—which is
necessary to bridge the gap with the desired probability of
false alarm—is hard to get in closed form. Secondly, the
difficulty to characterize the statistical dependence of the
individual tests prevents any deduction of the false alarm
probability of the global detection problem.

III. INFORMATION-THEORETIC DETECTION OF
NARROWBAND FARFIELD SOURCES

In light of the above negative comments on source detec-
tion based on statistical hypotheses tests, the exploitation of
information-theoretic criteria is henceforth presented, which
is the main topic of the paper. Statistical identification is
first reviewed, with a special focus on the case of competing
models. A procedure taking the form of a criterion minimiza-
tion is reviewed which, contrarily to conventional hypotheses
testing, does not require any subjective threshold setting. The
way how it can be declined into constructive algorithms to
the detection of narrowband sources then follows.

A. A Bird’s View at Statistical Identification

1) Basics: Consider a vector random variable y with
probability density function g(y), and f (y|ρ) a den-
sity function with vector parameter ρ used as a model
for g(y). The Kullback-Leibler divergence K (g; f (.|ρ)) ,∫

g(y) ln g(y)
f (y|ρ)dy characterizes the mean information lost

when f (y|ρ) is used to approximate g(y). So, to fit the model
f (.|ρ) to g, one can look for the minimum of K (g; f (.|ρ)),
or of B(g; f (.|ρ)) ,−

∫
g(y) ln f (y|ρ)dy, with respect to ρ .

Let y1, . . . ,yJ be J independent realizations of y. The
average negative log-likelihood of ρ , i.e. NL(ρ|y1, . . . ,yJ) =
− 1

J ∑
J
j=1 ln f (y j|ρ), constitutes a finite-sample estimate

of B(g; f (.|ρ)). It can be computed even if g is unknown,
and converges almost surely to B(g; f (.|ρ)) as J tends to in-
finity. Its argmin, denoted by ρ̂ = argminρ NL(ρ|y1, . . . ,yJ),
is merely the Maximum Likelihood Estimate (MLE) of ρ ,
i.e. ρ̂ = argmaxρ ∏

J
j=1 f (y j|ρ). Under some regularity con-

ditions, the MLE is known to be asymptotically efficient.
So, NL(ρ|y1, . . . ,yJ) when J tends to infinity, and thus
B(g; f (.|ρ)), are “good” criteria, in that they are most
sensitive to a small deviation of f (y|ρ) from g(y).

2) Information based Statistical Identification within
Competing Models: Unfortunately, when handling several
competing models, the MLE no longer provides a sound
solution to statistical identification through the minimization
of an estimate of B(g; f (.|ρ)). This is the case when
these models appear as different forms of f (y|ρ) or as a
single f (y|ρ) but with different restrictions on the parameter
vector ρ . Indeed, in this last case, the average negative log-
likelihood NL(ρ|y1, . . . ,yJ) =− 1

J ∑
J
j=1 ln f (y j|ρ) systemati-

cally achieves a minimum when the optimization of ρ is
performed over the highest-dimension admissible space.

In his seminal paper [10], Akaike derived the “A Informa-
tion Criterion” AIC(ρ)—now commonly referred to as the
“Akaike Information Criterion”— as a fundamental basis to
model selection. This criterion is defined so that 1

J AIC(ρ)
constitutes an estimate of 2E[B(g; f (.|ρ))], and writes as

AIC(ρ) =−2
J

∑
j=1

ln f (y j|ρ)+2k (6)

where k is the number of free parameters in ρ . In the case of
several competing models, the one leading to the minimum
value of AIC(ρ) must be adopted, which will henceforth
be named the MAICE, for “Minimum Akaike Information
Criterion Estimate”.

After Akaike’s pioneering work, model selection was
studied from quite different points of view. Schwarz first
developed a Bayesian approach, which selects the most prob-
able model a posteriori within a suitable family of candidates
assigned with prior probabilities. Independently, Rissanen
handled the models as a way to encode the observed data,
and defined the optimal model as the “Minimum Description
Length” (MDL), i.e. as the one which yields the minimum
code length. In the large-sample limit, both approaches lead
to select the model which minimizes the criterion

MDL(ρ) =−
J

∑
j=1

ln f (y j|ρ)+
1
2

k lnJ. (7)

For a fixed model, the minimum of (6) or (7) is the MLE
ρ̂ = argminρ NL(ρ|y1, . . . ,yJ). Again, the additive corrective
terms enable the comparison of competing models without
erroneously selecting the one which entails the highest-
dimension admissible parameter space, i.e. the maximum k.

B. Application to Source Detection: MAICE and MDL
Source Number Estimates within a Farfield Narrowband
MUSIC Scheme

1) Further assumptions and competing models definition:
Recall that the number of active sources is the rank of the
source covariance matrix Cs = E[s(t)sH(t)], which is entailed
in the genuine array covariance matrix Cx = E[x(t)xH(t)]
through (3). The aim is to detect d = rank(Cs) within a
set of hypotheses from the sole knowledge of the finite-
sample estimate C̃x of Cx. This can fit in the above generic
framework by making some extra assumptions on the nature
of the signals introduced in §II-B and by clearly defining the
competing models. First, besides all the aforementioned as-
sumptions, the sources complex envelopes and noise vectors
are assumed to be Gaussian processes. Secondly, C̃x is de-
fined from J statistically independent samples x(t1), . . . ,x(tJ)
of x as C̃x = 1

J ∑
J
j=1 x(t j)xH(t j). Last, to derive construc-

tive decision algorithms from the data of C̃x, Wax and
Kailath [11] suggest to consider C̃x as a sample of the family

C(d)
x = Ψ

(d) +σ
2IN , (8)

with Ψ
(d) an unknown N ×N Hermitian symmetric posi-

tive semidefinite matrix of rank d ∈ {1, . . . ,N−1} and σ

an unknown scalar. The parameter vector ρ
(d)
x then boils
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down to the eigenvalues and signal space eigenvectors
{λ1, . . . ,λd ,σ

2,U1, . . . ,Ud} of C(d)
x , because (8) also writes

as C(d)
x = ∑

d
i=1(λi−σ2)UiUH

i +σ2IN .
2) Negative log-likelihoods and MLEs for fixed d: The

negative log-likelihood NL(ρ(d)
x |C̃x) , − ln f (C̃x|ρ

(d)
x ) =

− ln f (C̃x|C
(d)
x ), which is central to the definition of the AIC

and MDL criteria, stems from the fact that x(t1), . . . ,x(tJ) are
i.i.d. according to CN (x;0,C(d)

x ). Indeed,

f (x(t1), . . . ,x(tJ)|C(d)
x ) =

= π
−NJ(detC(d)

x )
−J J

∏
j=1

exp−
(
x(t j)H(C(d)

x )
−1

x(t j)
)

= π
−NJ(detC(d)

x )
−J

exp
(
−J trace((C(d)

x )
−1

C̃x)
)

(9)

can be viewed as f (C̃x|C
(d)
x ), and the negative log-likelihood

NL(ρ(d)
x |C̃x) of ρ

(d)
x w.r.t. C̃x follows, with Z1 a constant:

NL(ρ(d)
x |C̃x) = Z1 + J

(
lndetC(d)

x +trace((C(d)
x )
−1

C̃x)
)
. (10)

After [11], the MLE ρ̂
(d)
x = argmin

ρ
(d)
x

NL(ρ(d)
x |C̃x) for

fixed d comes from the eigenvalues l1 ≥ l2 ≥ ·· · ≥ lN and
corresponding eigenvectors Ũ1, . . . , ŨN of C̃x as

λ̂ i = li, Ûi = Ũi, i = 1, . . . ,d; σ̂
2 =

1
N−d

N

∑
i=d+1

li. (11)

The minimum of NL(ρ(d)
x |C̃x) follows, with Z0 a constant:

NL(ρ̂(d)
x |C̃x) = Z0− ln

(
∏

N
i=d+1 l

1
N−d
i

1
N−d ∑

N
i=d+1 li

)
.

J(N−d)

(12)

3) AIC and MDL criteria: The number k(d) of free entries
in ρ

(d)
x amounts to

k(d) = d +1︸ ︷︷ ︸
(I)

+2dN︸ ︷︷ ︸
(II)

−2d︸︷︷︸
(III)

−2(d(d−1)/2)︸ ︷︷ ︸
(IV)

= d(2N−d)+1, (13)

where (I) is the maximum number of—real—distinct eigen-
values in the considered family of C(d)

x ; (II) is the total
number of coefficients of the—complex—entries of the
signal space eigenvectors U1, . . . ,Ud ; (III) (resp. (IV)) ac-
count for the reduction of the degrees of freedom in ρ

(d)
x

due to the normalization (resp. mutual orthogonality) of
U1, . . . ,Ud . Two strategies to the detection of narrowband
sources can be deduced from (12)–(13). Given the eigen-
values l1 ≥ l2 ≥ ·· · ≥ lN of C̃x, they consist in minimizing
either the AIC or MDL criteria below:

AIC(d) , AIC(ρ̂(d)
x ) (14)

=−2J ln

(
∏

N
i=d+1 li(

1
N−d ∑

N
i=d+1 li

)(N−d)

)
+2d(2N−d)

MDL(d) , MDL(ρ̂(d)
x ) (15)

=−J ln

(
∏

N
i=d+1 li(

1
N−d ∑

N
i=d+1 li

)(N−d)

)
+

1
2

d(2N−d) lnJ.

IV. EXTENSION TO BROADBAND FARFIELD
SOURCES

Though the above developments can straightly cope with
colored noise such that E[n(t)nH(t)] = σ2

n Cn—by just re-
placing the eigendecomposition of C̃x by the generalized
eigendecomposition of the matrix pencil (C̃x,Cn)—an ex-
tension is needed to detect broadband sources.

A. Broadband Extensions of MUSIC

1) Basics: As thoroughly discussed in [12], two options
can be taken when extending the MUSIC method to broad-
band signals. Both consist in applying a dedicated processing
to their partitions onto B frequency “bins” kb, b = 1, . . . ,B,
prior to turning the obtained information into a “composite
pseudo-spectrum”. In the first application of MUSIC to robot
audition, [13] defined a broadband pseudo-spectrum as the
average of separate pseudo-spectra independently computed
on the B bins. Besides being computationally expensive—for
it requires B eigendecompositions of N×N complex matrix
pencils—this approach precludes any application of the
above theory of information-theoretic detection. Contrarily,
(14)–(15) extend to “coherent” schemes [14].

2) Coherent Broadband MUSIC: First, B full-rank “fo-
calization matrices” T(kb)∈CQ×N , b = 1, . . . ,B, are defined,
with D < Q≤N, so as to transform the array vector at any
bin kb into its value at a reference frequency k0, i.e., so that

∀θ , T(kb)V(θ ,kb) = T(k0)V(θ ,k0). (16)

Then, summing the second order statistics of
Z(kb) , T(kb)X(kb) ∈ CQ over all bins leads to the
Q×Q “focalized array covariance matrix”

Γz ,
B

∑
b=1

T(kb)Cx(kb)TH(kb) (17)

= T(k0)V(θ ,k0)ΓsVH(θ ,k0)TH(k0)+σ
2
n Γn, (18)

with Γs , ∑
B
b=1 CS(kb), and Γn , ∑

B
b=1 T(kb)Cn(kb)TH(kb)

the “focalized noise covariance matrix”. Importantly, the
generalized eigendecomposition {λi,Ui}i=1,...,Q of (Γz,Γn)
satisfies λ1 ≥ . . .≥ λD > λD+1 = . . . = λQ= σ2

n and
VH(θ ,k0)TH(k0)UD+1 = . . . = VH(θ ,k0)TH(k0)UQ= 0T .
From this generalized eigendecomposition, a single signal
space can thus be defined—which is an approximately
coherent combination of the signal spaces at all frequency
bins—and the source azimuths can again be isolated as the
maximum values of the pseudo-spectrum

hbroadband(θ ,k0) ,
1

VH(θ ,k0)TH(k0)ΠN T(k0)V(θ ,k0)
, (19)

quite similar to (5) but with ΠN , ∑
Q
i=D+1 UiUH

i .
Several important properties are in effect. First, the the-

oretical focalized covariance matrices are not available in
practice, but are instead computed from estimates C̃x(kb)
and C̃n(kb). Secondly, the computational complexity of co-
herent broadband MUSIC is reduced, as the computation of
the broadband pseudo-spectrum entails a single generalized
decomposition of a Q×Q complex matrix pencil. Then,
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reverberant environments entailing multipath propagation of
several fully correlated—mirrored—sources can be dealt
with, as soon as Γs has full-rank Q. Last, AIC and MDL
criteria to source detection as introduced in §III-B can
straightly fit into coherent broadband MUSIC.

B. MAICE and MDL Source Number Estimates within a
Broadband Beamspace MUSIC Scheme

The above ideas are now instantiated into a strategy well-
suited to robotics.

1) Selection of the Focalization Matrices: Each of the
B focalization matrices T(kb) ∈ CQ×N , b = 1, . . . ,B, can
be built by stacking the row weights vectors of Q nar-
rowband beamformers synthesized offline and matched
to kb. In other words, one defines T(kb) , W(kb)H where
WH(kb) = (W0(kb) | ... | WQ−1(kb))H can be viewed as an op-
erator from the N-dimensional microphones elementspace to
a Q-dimensional output beamspace. The alignment property
(16) is then equivalent to the invariance of the beampat-
terns Dq(θ ,kb) = WH

q (kb)V(θ ,kb), q = 0, . . . ,Q−1, across
frequency bins k1, . . . ,kB.

Following [15], an orthogonal beamspace processing
structure can be obtained by setting the beampatterns to the
spherical harmonics of increasing order Y 0(.), . . . ,Y Q−1(.),
i.e. by ensuring that ∀q = 0, . . . ,Q−1, ∀b = 1, . . . ,B, ∀θ ,
Dq(θ ,kb) = Y q(θ). The corresponding QB row coefficients
WH

q (kb) ∈ C1×N , q = 0, . . . ,Q−1, b = 1, . . . ,B, were synthe-
sized for all bins thanks to the constructive method of [12].

2) Algorithm: The Algorithm 1 summarizes the promi-
nent steps of the proposed detection strategy. It has been im-
plemented on the EAR (“Embedded Audition for Robotics”)
integrated auditory sensor [16][17], made up with a uni-
form linear array of 8 microphones with even interspace
λ3kHz

2 = 5.66cm, a fully programmable acquisition board, a
FPGA processing unit, and USB communication. Prior to its
hardcoding on the FPGA, an extended version of Algorithm 1
for Q = 4 has been implemented into a C/C++ library, so
as to simultaneously detect and localize up to 3 broadband
nearfield sources. To this aim, a loop on hypothesized ranges
has been inserted between TIME LOOP and BINS LOOP, as
was done in [12] for localization.

The suitability of the proposed strategy for robotics ap-
plications can be argued on several aspects. Indeed, many
cumbersome computations are performed offline. The most
involved online processing is undoubtedly the generalized
eigendecomposition of the 4×4 matrix pencil (Γ̃z, Γ̃n)—to be
multiplied by the number of hypothesized range if nearfield
sources detection is targeted. Nevertheless, from raw data
sampled at 15kHz, only 35% (resp. 57%) of a single Core of
a DELL D630 laptop is required to compute and plot in real
time @15Hz pseudo-spectra for the hypothesized azimuths
0◦,1◦,2◦, . . . ,180◦ and for 5 (resp. 50) hypothesized ranges.

V. EXPERIMENTS

The EAR sensor presented in §IV-B.2 is used. A first
scenario concerns the detection and localization of a single
broadband nearfield source in a silent but reverberating

environment. The microphone array is fixed on a mast and
oriented downwards, so as to privilege sounds emanating
from a mobile phone on a table. The source true azimuth
(73◦ w.r.t. endfire) and range (0.7m) are determined thanks
to a calibration chart laid on the table. Figure 1 reports
coherent beamspace MUSIC pseudo-spectra. The number of
sources is either assumed to be 1 (top) or detected using
AIC (bottom). Though there is no ambient noise, pseudo-
spectra may become inconsistent during soundtrack pauses
(snapshots #12 and #36). Noticeably, the MAICE detects that
no source is active. Furthermore, online source detection can
lead to an improvement in subsequent MUSIC localization.

A second scenario takes place within a 5m×13m
room, with ≈ 0.45ms reverberation time. A power-
ful air-conditioning system keeps humming and no
sound absorbing material is used. The EAR sensor
is mounted on a 1.5m-high tripod, and placed 1.5m
parallel to a wall. Two loudspeakers S1,S2 are po-
sitioned on similar tripods at azimuths 62◦,118◦ by
hand calibration—which is error prone up to some degrees.
When a single loudspeaker utters a pure tone in
[600Hz;2.5kHz] or a human voice, the detected number
of sources is consistent with the soundtrack pauses and
a—possibly asymmetric—bell-shaped histogram of the es-
timated azimuths along time is obtained. The mean estimate
shows a bias less than ±10◦ w.r.t. ground truth, and 95% of
the estimates gather into an interval of less than 10◦-width,
see Figure 2. A case of two active sources is also shown.

Algorithm 1: Source Detection within a Broadband
Beamspace MUSIC

OFFLINE, do
begin

• determine the B complex Q×N matrices W(kb), b = 1, . . . ,B, by offline
convex optimization as per [12]
• if the noise statistics Cn(kb), b = 1, . . . ,B, are not known, then “learn”
an approximation C̃n(kb) from experimental data
• deduce the matrix Γ̃n = ∑

B
b=1 WH (kb)C̃n(kb)W(kb)

end

ONLINE, do
begin

for each detection+localization time t; /* TIME LOOP */
do

for each frequency bin kb; /* BINS LOOP */
do

• compute the FFTs X̃τ (kb) of x(.) over J non-overlapping
groups of time snapshots indexed by τ1, . . . ,τJ ∈ ]t−1, t]
• deduce the estimates C̃x(kb) , 1

J ∑
J
j=1 Xτ j (kb)XH

τ j
(kb) and

Γ̃z(kb) = WH (kb)C̃x(kb)W(kb) at time t
end
• deduce the focalized array covariance matrix Γ̃z = ∑

B
b=1 Γ̃z(kb)

• from the generalized eigenvalues l1 ≥ . . .≥ lQ and corresponding
eigenvectors Ũ1, . . . , ŨQ of (Γ̃z, Γ̃n), do

begin
• compute the AIC or MDL criteria for each number d of
hypothesized sources within {0, . . . ,Q−1} along formulae
(14)–(15) with N replaced by Q therein
• detect the number of sources as
d̂ = argmind∈{0,...,Q−1}(AIC(d) or MDL(d))
• deduce the projector Π̃N , ∑

Q
i=d̂+1

ŨiŨ
H
i and isolate the

source bearings as the argmax of
h̃broadband(θ ,k0) , 1

VH (θ ,k0)W(k0)Π̃N WH (k0)V(θ ,k0)
end

end
end

1980



#04 #12 #20 #28 #36
Fig. 1. Broadband beamspace MUSIC pseudo-spectra—in dB— vs (azimuth, range) under the assumption of a single source (top) or after AIC-based
source detection (bottom). Pseudo-spectra iso-levels are drawn, the “hot” values tending to the peaks. #XX index the time snapshots.

Fig. 2. Estimate histograms with AIC-based detection.
S1@62◦ (left) and {S1@62◦,S2@118◦} (right) utter spoken messages.

VI. CONCLUSION AND OPEN PROBLEMS

A source detection method has been proposed, based on
the introduction of AIC or MDL criteria within a coherent
beamspace broadband MUSIC scheme. This method consists
in minimizing over the hypothesized source numbers some
mathematical expressions which only depend on the gener-
alized eigenvalues of the matrix pencil made up with the
focalized beamspace covariance and focalized noise covari-
ance matrices. It is well-suited to robotics, because of its low
complexity, its ability to cope with fully correlated sources,
and its need of no prior threshold setting. Its implementation
on the EAR sensor [17] has proved to perform well. The
integration of the whole detection-localization scheme in the
HARK software [18] is planned, as well as its hardcoding
on the EAR FPGA unit.

As has been explained above, selecting either the AIC
or MDL criterion depends on the preferred statement of
the detection problem. Theoretically, MDL-based schemes
almost surely detect the right number of sources in the
large-sample limit (J −→+∞), while the MAICE tends to
overestimate it, see [19] for more details.

To conclude, a trustworthy source detection method can
enable a better exploitation of the outputs from localization
algorithms. For instance, if localized sources are fewer in
number than detected ones, then at least two sources emit
from the same azimuth. Contrarily, if more sources are lo-
calized than their true number, then some estimated bearings
come from false alarms and can be safely ignored.
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