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Abstract— One of the major costs and inhibitors to practical 
robotics research is the time required for the creation of the 
embedded systems that implement the discrete event control in 
experimental robot systems.  Using a standardized system 
architecture can reduce this time, but is often not feasible due 
to the rapidly varying requirements present in robotics 
research, and the considerable cost associated with 
implementing a full-blown standard. This often results in short-
term ad-hoc solutions with low reusability and therefore high 
long-term cost to robotics labs. 

By utilizing the flexibility offered by reconfigurable 
electronics, in the form of Field Programmable Gate Arrays 
(FPGAs), we have arrived at an architecture for  low-level 
control, which is flexible enough to  bridge the traditional gaps 
between size, performance, topology, reusability, high-level 
integration, and ease of use. Several iterations, have led us to 
our current implementations: TosNet, which is optimized 
toward rapid prototyping in experimental modular robotics, 
and µTosNet, which has been optimized for simpler 
experiments and teaching. In this paper we present the overall 
concept and its background, as well as the two TosNet 
frameworks, examples of applications, and thoughts on 
dissemination and future work. 

I. INTRODUCTION 

ONTROL systems for experimental robots follow the 
overall trends in the automation industry, and their 

architectures have undergone the same migration from 
monolithic to modular and distributed, as seen in other areas 
of computer control, from factory automation to peripherals 
of Personal Computers (PCs). Modular and distributed 
architectures have many potential benefits with regard to 
aspects such as reusability and the possibility of a tight 
integration into modular mechanical units. The ultimate 
vision is to arrive at “plug-and-play” devices that can be 
aggregated into a complete custom, robotic system, as easily 
as connecting a keyboard and mouse to a PC.  

An abundance of high- and low-level architectures and 
technologies for interfacing computers to the outside world 
have been defined over time, each representing a 
compromise between technical and economical parameters 
(such as performance, price, ease-of-use, flexibility, physical 
size, robustness, intended life-span, compatibility, possible 
topologies, acceptance from others, etc). The more 
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successful of these are those that are optimized with respect 
to segments of customers with relatively uniform and static 
overall requirements, e.g.: Personal computers (PCI, USB, 
etc), Automotive (CAN), Factory automation (DeviceNet), 
Aerospace (VME), Laboratory and plant control (LabView), 
etc. In experimental robotics however, we are faced with 
different requirements from project to project, and no single 
architecture therefore seems to fit very well. On the 
contrary, changing technical demands and possibilities, as 
well as the need for compatibility with external project 
partners, make it necessary to constantly embrace new 
technologies and to find ways to deal with the ensuing 
Babylonian confusion.  

As there is a considerable workload associated with 
adopting a new standardized architecture, this is impractical 
to do whenever a new project comes along. In our lab, this 
has led to many ad-hoc solutions over time, with much 
redundant work being done due to the resulting lack of 
compatibility between projects. Another problem is that 
experts from the many different disciplines typically 
involved in robotics research (electronics, robotics, control, 
mathematics, etc.), employ different approaches to deal with 
systems integration. These range from using full-custom, 
(locally) optimal solutions with low reusability, over sub-
optimal standardized solutions imposing arbitrary 
restrictions on the system, to simply avoiding interacting 
with the physical world altogether. These approaches are 
hard to combine and inhibit interdisciplinary robotics 
research. 

The advent of configurable, digital integrated circuits, like 
Field Programmable Gate Arrays (FPGAs), has allowed us 
to challenge these conventional dynamics of controller 
architectures. Today, FPGAs can be used to create complex 
digital systems containing I/O, processor, memory and 
communication components all in a single chip, while 
allowing us to specify, adjust and change any detail in the 
components or the system without any physical changes to 
the electronics – hardware can thus be developed using tools 
and workflows resembling those known from software 
development. As we have focused on modular control of 
industrial robotics, we have used this “System on a Chip” 
(SoC) technology to develop a networked “Controller Node 
on a Chip” architecture, where much of the conventional 
controller functionality is specified as separate and reusable 
modules in a hardware description language (in our case 
VHDL). The code is then synthesized and implemented into 
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a bit-file that can be loaded into the FPGA, thereby 
configuring it with the specified modules (we will use the 
term FPGA “gateware” to describe this configuration).  

We have already demonstrated the use of FPGAs for 
flexible I/O in the EU project DockWelder [1]-[4], and a 
similar approach is also described in [5]. Our first 
implementation of the FPGA-based TosNet embedded 
communication network is reported in [6]. Our approach is 
similar to the wireless sensor network node architecture 
described in [7] and [8], with regard to the use of FPGAs for 
abstracting different devices to a common interface, and the 
modular board design employed, which allows a number of 
standard modules to be combined with application specific 
sensor and network modules.  

II. GOALS 

The main goals of our work are three-fold: 
1) Reduce the development time of experimental robotic 

controllers to arrive faster and cheaper at fully working 
demonstrations of new technology and concepts.  

2) Increase the reusability of experimental systems and 
components, thus increasing the life-span and utilization 
of these, and reducing the amount of redundant work. 

3) Ease the use of interacting with experimental low-level 
controllers, to open experimental robotics up to a wider 
audience, and to allow high-level developers a tighter 
integration with the physical robots, without involving 
them in the low-level particulars of embedded systems. 

One of the means of arriving at goals 1 and 2 in 
particular, will be the creation of a library containing 
template circuit layouts and associated VHDL code that can 
be reused across projects. With such a library, many regular 
nodes could be created by copy-pasting and combining 
existing entries. 

The stated goals are hard to formalize and evaluate 
quantitatively, but a place where we expect to see a definite 
effect, is in the quality and usefulness of master thesis 
projects. Here, even small reductions in development time 
have a high ratio to the typical Danish project timeframe of 
four months. We thus hope that our master thesis students 
will be able to contribute more to long term research 
projects, while still arriving at something that actually works 
on its own during their project. 

In the case of the third goal, we hope to see an increased 
amount of cooperation internally at our department, where 
there has traditionally been a severe mental and practical 
barrier between the groups working on actual hardware 
systems through low-level programming (VHDL/C/C++), 
the more abstract software researchers working in Java, C# 
and similar, and the robot motion and kinematics researches 
working with mathematics. 

III. DEFINITION AND STRUCTURE OF A NODE 

We define a node as a device that abstracts and maps the 
functionalities and interfaces of one or more application 

specific device(s) (actuators, sensors, robots, processing 
units, etc) in a modular, robotic system into a general form, 
and presents these to other nodes in the system over a 
common network.  

On a conceptualized level, a node in a distributed system 
will need to perform the following tasks: 
1) Processing: The necessary operations involved in the 

data flow of the node. This might simply be moving 
data between I/O systems and the system network 
interface, but can also involve more high-level 
functions.  

2) I/O system: Interfaces the signals to and from the 
outside world to the processing domain. 

3) Signal conditioning: Electronics that will interface the 
I/O system to the sensors and actuators of the robot. 

4) System network interface: Will make the node a part 
of the network chosen for the system. Strictly, this is a 
special case of I/O and signal conditioning, but for 
clarity, it will be treated separately and as a single 
block. 

A block diagram of these tasks can be seen in fig. 1. 

Fig. 1.  Conceptualized block diagram of the tasks in a node. 

IV. THE NODE-ON-CHIP CONCEPT 

FPGA technology has allowed us to develop a node 
architecture based on a single FPGA chip, where any 
combination of network stacks, processing units, and I/O 
components can be implemented independently of each 
other, and simply run in parallel. The only limitation comes 
from the amount of resources available in the used FPGA 
chip. This is in contrast to a microcontroller-based solution, 
where new software modules will almost always have direct 
influence on the possible timing performance of existing 
modules, as only one module (or thread) can be executing at 
any one point in time. Implementing for instance numerous 
timing-critical device interfaces is thus much easier to do on 
an FPGA, where they simply run in parallel, than on a 
microcontroller, where they will need to share the processor. 
As we need to create flexible I/O, another advantage of 
FPGAs is the very fine granularity of the timing. External 
pins can be controlled directly on each clock edge, typically 
at speeds up to 50-100 MHz. Doing this on a 
microcontroller would require a faster clock speed (to allow 
for necessary additional instructions in between I/O 
operations), and most probably some mucking about with 
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low-level assembly code.  
FPGAs thus have some clear advantages with regard to 

I/O. The projects in [1]-[5], [7], [8] also all use the FPGA 
for I/O, although with an additional microcontroller for 
certain processing and communication tasks. However, with 
recent advances in the available resources on FPGA chips, it 
is perfectly possible to implement most of these tasks 
directly in the FPGA. This may or may not include a 
softcore processor, such as the highly configurable Xilinx 
MicroBlaze, for those tasks that are simply better suited for 
a processor than for an FPGA. By keeping as much as 
possible inside the FPGA, the boards can also be made 
simpler, and developers only need to use a single set of 
software tools (in our case Xilinx ISE/EDK). 

Compared to microcontrollers, the availability of FPGAs 
with on-chip support for signal conversion and conditioning 
is very limited though. To our knowledge, the Actel Fusion 
[9] is the only mixed-signal FPGA-series available 
currently, and is therefore hardly of practical use for a 
generic system, when considering the broad array of I/O 
solutions used in our field. The signal conditioning, and 
often part of the node I/O system (e.g. an A/D converter 
chip) will thus need to be placed as external components. 
The logical interfaces to these will then be placed in an 
FPGA part of the I/O system.  

A node in a Node-on-Chip system will therefore typically 
consist of an FPGA chip attached to some device-dependent 
electronics, and some static support electronics (power 
supply, network components, status LEDs, etc). Due to the 
required extra electronics, the Node-on-Chip name aims 
more at being an architectural term, describing the 
implemented functionality of the on-chip system, rather than 
the actual placement of the hardware contents.  

Fig. 2.  The various node parts employed in a Node-on-Chip, including 
how the conceptualized blocks of fig. 1 fit in. 

 
As seen on fig. 2, the various node parts are grouped into 

four separate categories, described in the following sections. 

A. FPGA module 

The heart of our node architecture is a generic, reusable 
FPGA module, containing the FPGA chip, some form of I/O 
connectors, and a power supply. By providing only the most 

necessary components it is possible to create rather compact 
modules, usable for a wide range of applications.  

The major reason for having a generic, separate module 
for the FPGA and its power supply is to enable students and 
developers without insight into high-speed electronics and 
advanced soldering, to take advantage of the architecture by 
concentrating on the application specific interfaces. It also 
allows us to more or less “mass-produce” the rather 
advanced multi-layer FPGA boards, while developers and 
students will only need to create boards for the, often 
simpler, device-specific external interface electronics. 

The external components of the network interface can be 
deferred to a separate module in order to create an even 
more generic FPGA board. This will allow experiments with 
different networks and ease reuse of the board across 
projects that are not using the Node-on-Chip concept.  

B. External device interface 

The parts of the interfaces to application specific devices 
that cannot be implemented inside the FPGA chip will need 
to be attached as external interface electronics. This could 
include power electronics and analog signal and signal 
conditioning components. These are typically implemented 
on application-specific, custom-made printed circuit boards 
(PCBs), on to which the FPGA module can be mounted. 

Even though the specific combination of these 
components is unique for each different application, a lot of 
subsystem circuit designs and PCB layouts for the individual 
support components can be reused. It is thus possible to 
create a library of these to go along with the library of 
associated VHDL modules. With a reasonable library of 
common I/O functions, application specific I/O boards can 
be designed and created fast and efficiently. 

If space is not critical, a generic I/O board with a broad 
selection of commonly used I/O and power components can 
be used, e.g. in teaching or simple test setups. 

C. Internal device interface 

The main purpose of a node is to interface to one or more 
application specific devices. As much as possible of this 
functionality is created by specifying it in VHDL, and 
implementing it as gateware modules inside the FPGA.  

Possible hardware interfaces could include simple data-
conversion or -transfer functionality such as PWM signal 
generators for motor control, and Serial Peripheral Interfaces 
(SPI) for interfacing to external analog support components. 
However, more advanced modules, such as complete high-
level network protocol stacks, high-level motor drive control 
systems, and even soft-core processors are also possible. 

As these hardware interfaces are specified as VHDL code, 
there is an obvious possibility of reuse. We hope to arrive at 
a library of VHDL modules, containing highly-optimized 
versions of often-used device interfaces. This is similar to 
the work described in [8], although not limited to just low-
level interfaces to sensors and actuators. With such a library, 
creating the device interface part of a specific node could in 
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many cases be reduced to choosing and connecting the right 
blocks in a VHDL editor.  

D. Network 

The network needs to be able to easily connect the nodes 
to each other, while also providing an easy-to-use interface 
to the hardware modules inside the FPGA.  

For the Node-on-Chip concept, we have settled on using a 
shared memory model (fig. 3), where each node is assigned 
some memory in a common, shared memory space. The 
system network is then used to provide the implementation 
of this memory block, and to keep it updated across all 
attached nodes. The complete shared memory space is 
available to all nodes, and can be used for process variables, 
various commands, and, with a higher level protocol, even 
transfer of larger blocks of data. It will be up to the chosen 
network system to manage access control and similar. 

Another important aspect is the need for an easy-to-use 
interface between the network nodes and applications on a 
PC. The minimum requirement is that the PC interface needs 
to provide direct access to the full shared memory block of 
the system. It will be up to the specific Node-on-Chip 
implementation to provide options for this, as it will more or 
less boil down to which interfaces (e.g. USB- or Ethernet-
enabled components) are made available to the FPGA.  

Fig. 3.  A conceptual diagram of the shared memory model employed in 
the Node-on-Chip architecture. All nodes operate on the same memory 
space, through the network. Each node is assigned a memory space for 
its own registers, and has read access to the registers of the other nodes. 

V. NODE-ON-CHIP FRAMEWORKS 

We have created two implementations of the Node-on-
Chip concept. These implementations, or frameworks, each 
provide a standard FPGA module, a system network 
implementation, and various applications and components to 
help interface to a standard PC. 

The two created frameworks are named after the networks 
they use, and are called the TosNet framework and the 
µTosNet framework. When the frameworks are referenced, 
the full name (e.g. “The TosNet framework”) will be used, 
while the network name for itself, or appended with 
“network”, (e.g. “The TosNet network” or just “TosNet”) 
will always reference the network itself. 

The reason for choosing these networks over other, more 
established networks such as CAN-bus, Ethernet Powerlink 
and similar is due to TosNet being focused on ease of use, a 

small footprint (both physical and in the FPGA), and with a 
completely FPGA-based implementation of the protocol 
stack. Also, TosNet directly implements the shared memory 
model specified in the architecture, and can thus be used 
without further modification. Other networks would need to 
be implemented as FPGA gateware, with an extra layer of 
abstraction implementing the shared memory model. 

We realize that having two different frameworks may 
seem slightly contradictory to the stated goals and context; 
however, the two frameworks are so similar, that 
components and applications created for one framework can 
be ported to the other with only a minimum of modification, 
and both will thus be able to use components from the same 
VHDL and circuit libraries. Being able to support multiple 
compatible frameworks, each with its own advantages, has 
proven to be an asset in our practical work. µTosNet is very 
attractive for small projects with short timeframes, e.g. small 
educational projects, whereas TosNet is better suited for 
more advanced projects with longer timeframes. 

A. The TosNet framework 

As implied by the name, the TosNet framework is built 
around a revised version of the TosNet network, developed 
in [6]. It provides a completely FPGA-based, isochronous 
protocol, operating at 10 Mbps, with support for up to 15 
nodes connected in a ring. It directly implements the shared 
memory model of the architecture, by giving each node a 
local copy of the memory block, and can keep these updated 
with cycle-frequencies typically in the area of 4-10 kHz 
(depending on the number of attached nodes and allocated 
registers). The physical layer uses optical Toslink 
components, providing a cheap, noise-immune, and easy-to-
use interconnect. The revised version features a redesigned 
physical layer, addressing some of the problems discovered 
with the original version described in [6]. 

The standard FPGA module for this framework is based 
on a Xilinx Spartan3AN 400 kilo-gate FPGA, which 
provides plenty of space for both the implementation of the 
TosNet network (uses about 30% of the available resources), 
and for device-specific hardware interfaces. It is mounted on 
a small board (45 mm x 49 mm) and equipped with I/O 
connectors on both top and bottom, thus making it stackable. 
In addition to this, two different standard expansion modules 
for the top connectors, using the same form factor as the 
FPGA module, are also available. The simpler of the two top 
modules carries a USB-to-UART converter, while the other, 
more advanced top module, carries an Ethernet-enabled, and 
user-programmable microcontroller unit (the ARM-9 based 
Digi Connect ME 9210), connected to the FPGA through an 
SPI interface. Both also provide the necessary Toslink 
components and some pin-headers for easily accessible I/O. 

The top modules can be used to create so-called gateway 
nodes, allowing a PC to communicate with nodes on the 
TosNet network over a serial COM port (through USB) or 
Ethernet, respectively. ASCII and binary-based generic  
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Fig. 4.  A block diagram of a typical application of the TosNet 
framework. For simplicity, the FPGA modules only show the FPGA 
gateware parts, whereas the static support electronics are implied. 

 
protocols are available for this, making communication with 
high-level software very simple. In the case of the Ethernet 
unit, creating an application specific gateway protocol is 
possible, as this can rather easily be programmed into the 
microcontroller in the C or C++ languages. A PC-mountable 
PCI Express based gateway (based on the Xilinx 
Spartan3PCIe Starter kit) is also available, allowing direct 
access to the shared memory block of the gateway node, 
through a simple memory array in user-space applications.  

A block diagram of an example application of the TosNet 
framework can be seen in fig. 4, and the FPGA module and 
the two top modules can be seen in fig. 5. 

B. The µTosNet framework 

Inspired by the ease with which the TosNet framework 
allows communication between low-level hardware devices 
and high-level PC applications, the µTosNet network was 
created. It is meant to be used in simple, cost-critical 
applications that do not need to be distributed across several 
nodes, and which have rather basic requirements with regard 
to FPGA resources. This includes being used in introductory 
FPGA courses, to provide students with an easy-to-use PC 
interface for their hardware designs. 

The standard FPGA module provided in this framework 
uses a Xilinx Spartan3AN 50 kilo-gate FPGA, which can 
use simpler PCBs and is much cheaper than the 400 kilo-
gate version, but lacks the necessary resources to hold the 
full TosNet network implementation. The board is aimed at 
introductory courses, and thus has a pin-header allowing it 
to be mounted directly in a bread-board, which can 
dramatically speed up the creation of simple experimental 
setups. An add-on board provides access to an optional 
USB-to-UART converter and a Digi Connect ME 9210.  

Inside the FPGA, the µTosNet network provides a 
reduced, single-node shared memory block, a simplified 
version of the full TosNet memory interface to this, and 
either a UART (converted to USB through the USB-to-  
 

Fig. 5.  The hardware modules created for the two frameworks, shown 
 alongside a standard Compact Disc for size reference. The three left-
 most modules are from the TosNet framework, whereas the two boards 
 to the right are from the µTosNet framework.  

 
UART converter) or SPI (converted to Ethernet through the 
Digi Connect ME 9120) interface, to use for communicating 
with an attached PC. The framework only supports a single 
connection from the board to the PC, and it is thus not 
directly possible to interconnect multiple nodes. However, 
several nodes can be connected to and controlled from the 
same PC if necessary. The simplified memory interface 
shields new users from some of the more advanced features 
of the full TosNet, such as double buffering of the shared 
memory, while still making it easy to transition FPGA 
components between the two frameworks. 

The FPGA module and the add-on board (without the 
Digi Connect ME 9210 unit though) can be seen in fig. 5. 

VI. RESULTS 

As it is hard to formalize concepts such as ease-of-use and 
flexibility, we have employed an informal and pragmatic 
approach in the evaluation of these important aspects. This 
has been done so far by focusing on using the Node-on-Chip 
concept and its associated frameworks for as many projects 
as possible in order to gather experience and get inputs from 
colleagues and students outside the embedded world. We are 
employing a four-phased approach to achieve this: 
1) Internal development and evaluation: Demonstration 

and test within our own group, by using and 
reinstrumenting old robotic systems out of circulation. 
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2) Evaluation with fellow non-embedded researchers: 
Using our framework in research projects, discussing 
the results with a broader group of robotic researchers. 

3) Integration into courses and student projects: By 
teaching our robotics students to use the architecture 
and frameworks in their work. 

4) Making the technology available to others: By utilizing 
the FPGA-focused, online, open-source site OpenCores 
[14], we hope to broaden the use of and contributions to 
our Node-on-Chip concept and frameworks. 

The MiniVGT [6] and CATO [10], [11] robots fall under 
the internal evaluation category, and mainly served as initial 
tests and demonstrations of both the TosNet network, and, in 
retrospect, the application of the Node-on-Chip concept. 
Both robots are interfaced to Microsoft Robotics Developer 
Studio, to provide a very high-level environment for 
controlling them. For CATO, it was also possible to directly 
reuse several VHDL and software modules from the 
MiniVGT, showing a potential of fulfilling our goals 
regarding reduced development time and increased reuse. 

The RoboTrainer [12] is a clear example of the ease with 
which we can now instrument robotic systems, and thus also 
a demonstration of our goal regarding ease of use. Using 
µTosNet, all the custom electronics present in the setup 
(quadrature encoder, motor driver and A/D converter) were 
interfaced to a small PC command-line utility in about half a 
day. Similarly, a software engineer from our institute, 
previously unfamiliar with both concept and frameworks, 
was able to create a high-level application with a graphical 
userinterface for the setup in a matter of hours. 

We are currently evaluating another interdisciplinary 
project, where the TosNet framework has been interfaced to 
a Panasonic Scara robot, various tool-devices and the 
RobWork software framework [13]. The initial impression is 
rather close to what is shown in fig. 4: framework contents 
were easily and quickly reused from previous projects, 
allowing us to focus on the implementation of the FPGA 
interface to the robot and the RobWork software. 

At the time of writing, we have just completed the first 
master level course incorporating the framework. As hoped, 
the students found it easy to use, and were generally 
impressed with how easy low-level hardware could be 
interfaced to PC applications. Detailed results and other 
aspects of using in particular µTosNet in teaching are 
described in [15]. Furthermore, we expect 5-10 students to 
use the framework during their master thesis projects in 
2010.  

We have just begun the fourth phase, and are currently in 
the process of deploying the frameworks to OpenCores. 
Initially, µTosNet will be deployed to get to know the online 
environment, whereas TosNet will follow later.  

VII. CONCLUSION 

 Our FPGA-based Node-on-Chip architecture and 
frameworks for distributed control have demonstrated many 

advantages in relation to experimental robotics. The goals of 
the work have been to reduce the time spent creating 
hardware- and network interfaces, increase the amount of 
reuse between projects, and ease the use of low-level 
hardware systems. To some extent all these goals have been 
met by the TosNet and µTosNet frameworks, and we are 
hoping to see further evidence of this as the technologies are 
employed in future projects. 

Apart from increasing the size of our VHDL and circuit 
component libraries, planned extensions currently include: 
1) New FPGA modules using Xilinx Spartan6 devices. 
2) A further layer of abstraction on top of the TosNet 

network, providing better support for easy configuration 
from high-level applications. 
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