



Abstract— One of the major costs and inhibitors to practical
robotics research is the time required for the creation of the
embedded systems that implement the discrete event control in
experimental robot systems. Using a standardized system
architecture can reduce this time, but is often not feasible due
to the rapidly varying requirements present in robotics
research, and the considerable cost associated with
implementing a full-blown standard. This often results in short-
term ad-hoc solutions with low reusability and therefore high
long-term cost to robotics labs.

By utilizing the flexibility offered by reconfigurable
electronics, in the form of Field Programmable Gate Arrays
(FPGAs), we have arrived at an architecture for low-level
control, which is flexible enough to bridge the traditional gaps
between size, performance, topology, reusability, high-level
integration, and ease of use. Several iterations, have led us to
our current implementations: TosNet, which is optimized
toward rapid prototyping in experimental modular robotics,
and µTosNet, which has been optimized for simpler
experiments and teaching. In this paper we present the overall
concept and its background, as well as the two TosNet
frameworks, examples of applications, and thoughts on
dissemination and future work.

I. INTRODUCTION

ONTROL systems for experimental robots follow the
overall trends in the automation industry, and their

architectures have undergone the same migration from
monolithic to modular and distributed, as seen in other areas
of computer control, from factory automation to peripherals
of Personal Computers (PCs). Modular and distributed
architectures have many potential benefits with regard to
aspects such as reusability and the possibility of a tight
integration into modular mechanical units. The ultimate
vision is to arrive at “plug-and-play” devices that can be
aggregated into a complete custom, robotic system, as easily
as connecting a keyboard and mouse to a PC.

An abundance of high- and low-level architectures and
technologies for interfacing computers to the outside world
have been defined over time, each representing a
compromise between technical and economical parameters
(such as performance, price, ease-of-use, flexibility, physical
size, robustness, intended life-span, compatibility, possible
topologies, acceptance from others, etc). The more

Manuscript received March 10, 2010.

S. Falsig and A. S. Soerensen are with the The Maersk McKinney
Moeller Institute, University of Southern Demark, Odense, Denmark
(phone: +45 65 50 35 93; e-mail: {sifa, anss}@mmmi.sdu.dk).

successful of these are those that are optimized with respect
to segments of customers with relatively uniform and static
overall requirements, e.g.: Personal computers (PCI, USB,
etc), Automotive (CAN), Factory automation (DeviceNet),
Aerospace (VME), Laboratory and plant control (LabView),
etc. In experimental robotics however, we are faced with
different requirements from project to project, and no single
architecture therefore seems to fit very well. On the
contrary, changing technical demands and possibilities, as
well as the need for compatibility with external project
partners, make it necessary to constantly embrace new
technologies and to find ways to deal with the ensuing
Babylonian confusion.

As there is a considerable workload associated with
adopting a new standardized architecture, this is impractical
to do whenever a new project comes along. In our lab, this
has led to many ad-hoc solutions over time, with much
redundant work being done due to the resulting lack of
compatibility between projects. Another problem is that
experts from the many different disciplines typically
involved in robotics research (electronics, robotics, control,
mathematics, etc.), employ different approaches to deal with
systems integration. These range from using full-custom,
(locally) optimal solutions with low reusability, over sub-
optimal standardized solutions imposing arbitrary
restrictions on the system, to simply avoiding interacting
with the physical world altogether. These approaches are
hard to combine and inhibit interdisciplinary robotics
research.

The advent of configurable, digital integrated circuits, like
Field Programmable Gate Arrays (FPGAs), has allowed us
to challenge these conventional dynamics of controller
architectures. Today, FPGAs can be used to create complex
digital systems containing I/O, processor, memory and
communication components all in a single chip, while
allowing us to specify, adjust and change any detail in the
components or the system without any physical changes to
the electronics – hardware can thus be developed using tools
and workflows resembling those known from software
development. As we have focused on modular control of
industrial robotics, we have used this “System on a Chip”
(SoC) technology to develop a networked “Controller Node
on a Chip” architecture, where much of the conventional
controller functionality is specified as separate and reusable
modules in a hardware description language (in our case
VHDL). The code is then synthesized and implemented into

An FPGA based approach to increased flexibility, modularity and
integration of low level control in robotics research

Simon Falsig and Anders Stengaard Soerensen, The Maersk McKinney Moeller Institute, University
of Southern Denmark

C

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 6119

a bit-file that can be loaded into the FPGA, thereby
configuring it with the specified modules (we will use the
term FPGA “gateware” to describe this configuration).

We have already demonstrated the use of FPGAs for
flexible I/O in the EU project DockWelder [1]-[4], and a
similar approach is also described in [5]. Our first
implementation of the FPGA-based TosNet embedded
communication network is reported in [6]. Our approach is
similar to the wireless sensor network node architecture
described in [7] and [8], with regard to the use of FPGAs for
abstracting different devices to a common interface, and the
modular board design employed, which allows a number of
standard modules to be combined with application specific
sensor and network modules.

II. GOALS

The main goals of our work are three-fold:
1) Reduce the development time of experimental robotic

controllers to arrive faster and cheaper at fully working
demonstrations of new technology and concepts.

2) Increase the reusability of experimental systems and
components, thus increasing the life-span and utilization
of these, and reducing the amount of redundant work.

3) Ease the use of interacting with experimental low-level
controllers, to open experimental robotics up to a wider
audience, and to allow high-level developers a tighter
integration with the physical robots, without involving
them in the low-level particulars of embedded systems.

One of the means of arriving at goals 1 and 2 in
particular, will be the creation of a library containing
template circuit layouts and associated VHDL code that can
be reused across projects. With such a library, many regular
nodes could be created by copy-pasting and combining
existing entries.

The stated goals are hard to formalize and evaluate
quantitatively, but a place where we expect to see a definite
effect, is in the quality and usefulness of master thesis
projects. Here, even small reductions in development time
have a high ratio to the typical Danish project timeframe of
four months. We thus hope that our master thesis students
will be able to contribute more to long term research
projects, while still arriving at something that actually works
on its own during their project.

In the case of the third goal, we hope to see an increased
amount of cooperation internally at our department, where
there has traditionally been a severe mental and practical
barrier between the groups working on actual hardware
systems through low-level programming (VHDL/C/C++),
the more abstract software researchers working in Java, C#
and similar, and the robot motion and kinematics researches
working with mathematics.

III. DEFINITION AND STRUCTURE OF A NODE

We define a node as a device that abstracts and maps the
functionalities and interfaces of one or more application

specific device(s) (actuators, sensors, robots, processing
units, etc) in a modular, robotic system into a general form,
and presents these to other nodes in the system over a
common network.

On a conceptualized level, a node in a distributed system
will need to perform the following tasks:
1) Processing: The necessary operations involved in the

data flow of the node. This might simply be moving
data between I/O systems and the system network
interface, but can also involve more high-level
functions.

2) I/O system: Interfaces the signals to and from the
outside world to the processing domain.

3) Signal conditioning: Electronics that will interface the
I/O system to the sensors and actuators of the robot.

4) System network interface: Will make the node a part
of the network chosen for the system. Strictly, this is a
special case of I/O and signal conditioning, but for
clarity, it will be treated separately and as a single
block.

A block diagram of these tasks can be seen in fig. 1.

Fig. 1. Conceptualized block diagram of the tasks in a node.

IV. THE NODE-ON-CHIP CONCEPT

FPGA technology has allowed us to develop a node
architecture based on a single FPGA chip, where any
combination of network stacks, processing units, and I/O
components can be implemented independently of each
other, and simply run in parallel. The only limitation comes
from the amount of resources available in the used FPGA
chip. This is in contrast to a microcontroller-based solution,
where new software modules will almost always have direct
influence on the possible timing performance of existing
modules, as only one module (or thread) can be executing at
any one point in time. Implementing for instance numerous
timing-critical device interfaces is thus much easier to do on
an FPGA, where they simply run in parallel, than on a
microcontroller, where they will need to share the processor.
As we need to create flexible I/O, another advantage of
FPGAs is the very fine granularity of the timing. External
pins can be controlled directly on each clock edge, typically
at speeds up to 50-100 MHz. Doing this on a
microcontroller would require a faster clock speed (to allow
for necessary additional instructions in between I/O
operations), and most probably some mucking about with

Signal
conditioning
(power elec.,
filters, etc)

I/O system
(analog to

digital conv.,
UART, etc)

Processing
(data flow,

resampling,
control, etc)

System
network
interface

Device(s)

System
network

6120

low-level assembly code.
FPGAs thus have some clear advantages with regard to

I/O. The projects in [1]-[5], [7], [8] also all use the FPGA
for I/O, although with an additional microcontroller for
certain processing and communication tasks. However, with
recent advances in the available resources on FPGA chips, it
is perfectly possible to implement most of these tasks
directly in the FPGA. This may or may not include a
softcore processor, such as the highly configurable Xilinx
MicroBlaze, for those tasks that are simply better suited for
a processor than for an FPGA. By keeping as much as
possible inside the FPGA, the boards can also be made
simpler, and developers only need to use a single set of
software tools (in our case Xilinx ISE/EDK).

Compared to microcontrollers, the availability of FPGAs
with on-chip support for signal conversion and conditioning
is very limited though. To our knowledge, the Actel Fusion
[9] is the only mixed-signal FPGA-series available
currently, and is therefore hardly of practical use for a
generic system, when considering the broad array of I/O
solutions used in our field. The signal conditioning, and
often part of the node I/O system (e.g. an A/D converter
chip) will thus need to be placed as external components.
The logical interfaces to these will then be placed in an
FPGA part of the I/O system.

A node in a Node-on-Chip system will therefore typically
consist of an FPGA chip attached to some device-dependent
electronics, and some static support electronics (power
supply, network components, status LEDs, etc). Due to the
required extra electronics, the Node-on-Chip name aims
more at being an architectural term, describing the
implemented functionality of the on-chip system, rather than
the actual placement of the hardware contents.

Fig. 2. The various node parts employed in a Node-on-Chip, including
how the conceptualized blocks of fig. 1 fit in.

As seen on fig. 2, the various node parts are grouped into

four separate categories, described in the following sections.

A. FPGA module

The heart of our node architecture is a generic, reusable
FPGA module, containing the FPGA chip, some form of I/O
connectors, and a power supply. By providing only the most

necessary components it is possible to create rather compact
modules, usable for a wide range of applications.

The major reason for having a generic, separate module
for the FPGA and its power supply is to enable students and
developers without insight into high-speed electronics and
advanced soldering, to take advantage of the architecture by
concentrating on the application specific interfaces. It also
allows us to more or less “mass-produce” the rather
advanced multi-layer FPGA boards, while developers and
students will only need to create boards for the, often
simpler, device-specific external interface electronics.

The external components of the network interface can be
deferred to a separate module in order to create an even
more generic FPGA board. This will allow experiments with
different networks and ease reuse of the board across
projects that are not using the Node-on-Chip concept.

B. External device interface

The parts of the interfaces to application specific devices
that cannot be implemented inside the FPGA chip will need
to be attached as external interface electronics. This could
include power electronics and analog signal and signal
conditioning components. These are typically implemented
on application-specific, custom-made printed circuit boards
(PCBs), on to which the FPGA module can be mounted.

Even though the specific combination of these
components is unique for each different application, a lot of
subsystem circuit designs and PCB layouts for the individual
support components can be reused. It is thus possible to
create a library of these to go along with the library of
associated VHDL modules. With a reasonable library of
common I/O functions, application specific I/O boards can
be designed and created fast and efficiently.

If space is not critical, a generic I/O board with a broad
selection of commonly used I/O and power components can
be used, e.g. in teaching or simple test setups.

C. Internal device interface

The main purpose of a node is to interface to one or more
application specific devices. As much as possible of this
functionality is created by specifying it in VHDL, and
implementing it as gateware modules inside the FPGA.

Possible hardware interfaces could include simple data-
conversion or -transfer functionality such as PWM signal
generators for motor control, and Serial Peripheral Interfaces
(SPI) for interfacing to external analog support components.
However, more advanced modules, such as complete high-
level network protocol stacks, high-level motor drive control
systems, and even soft-core processors are also possible.

As these hardware interfaces are specified as VHDL code,
there is an obvious possibility of reuse. We hope to arrive at
a library of VHDL modules, containing highly-optimized
versions of often-used device interfaces. This is similar to
the work described in [8], although not limited to just low-
level interfaces to sensors and actuators. With such a library,
creating the device interface part of a specific node could in

System network interface

N
et

w
o

rk

in
te

rf
ac

e

In
t.

 d
ev

ic
e

in
te

rf
ac

e

I/O system
(external part)

Signal
conditioning

I/O system (FPGA part)

Processing unit(s)

FPGA module

Various

Node

S
ys

te
m

ne

tw
or

k

D
ev

ic
e(

s)

External
device

interface

FPGA gateware

Static support
electronics

6121

many cases be reduced to choosing and connecting the right
blocks in a VHDL editor.

D. Network

The network needs to be able to easily connect the nodes
to each other, while also providing an easy-to-use interface
to the hardware modules inside the FPGA.

For the Node-on-Chip concept, we have settled on using a
shared memory model (fig. 3), where each node is assigned
some memory in a common, shared memory space. The
system network is then used to provide the implementation
of this memory block, and to keep it updated across all
attached nodes. The complete shared memory space is
available to all nodes, and can be used for process variables,
various commands, and, with a higher level protocol, even
transfer of larger blocks of data. It will be up to the chosen
network system to manage access control and similar.

Another important aspect is the need for an easy-to-use
interface between the network nodes and applications on a
PC. The minimum requirement is that the PC interface needs
to provide direct access to the full shared memory block of
the system. It will be up to the specific Node-on-Chip
implementation to provide options for this, as it will more or
less boil down to which interfaces (e.g. USB- or Ethernet-
enabled components) are made available to the FPGA.

Fig. 3. A conceptual diagram of the shared memory model employed in
the Node-on-Chip architecture. All nodes operate on the same memory
space, through the network. Each node is assigned a memory space for
its own registers, and has read access to the registers of the other nodes.

V. NODE-ON-CHIP FRAMEWORKS

We have created two implementations of the Node-on-
Chip concept. These implementations, or frameworks, each
provide a standard FPGA module, a system network
implementation, and various applications and components to
help interface to a standard PC.

The two created frameworks are named after the networks
they use, and are called the TosNet framework and the
µTosNet framework. When the frameworks are referenced,
the full name (e.g. “The TosNet framework”) will be used,
while the network name for itself, or appended with
“network”, (e.g. “The TosNet network” or just “TosNet”)
will always reference the network itself.

The reason for choosing these networks over other, more
established networks such as CAN-bus, Ethernet Powerlink
and similar is due to TosNet being focused on ease of use, a

small footprint (both physical and in the FPGA), and with a
completely FPGA-based implementation of the protocol
stack. Also, TosNet directly implements the shared memory
model specified in the architecture, and can thus be used
without further modification. Other networks would need to
be implemented as FPGA gateware, with an extra layer of
abstraction implementing the shared memory model.

We realize that having two different frameworks may
seem slightly contradictory to the stated goals and context;
however, the two frameworks are so similar, that
components and applications created for one framework can
be ported to the other with only a minimum of modification,
and both will thus be able to use components from the same
VHDL and circuit libraries. Being able to support multiple
compatible frameworks, each with its own advantages, has
proven to be an asset in our practical work. µTosNet is very
attractive for small projects with short timeframes, e.g. small
educational projects, whereas TosNet is better suited for
more advanced projects with longer timeframes.

A. The TosNet framework

As implied by the name, the TosNet framework is built
around a revised version of the TosNet network, developed
in [6]. It provides a completely FPGA-based, isochronous
protocol, operating at 10 Mbps, with support for up to 15
nodes connected in a ring. It directly implements the shared
memory model of the architecture, by giving each node a
local copy of the memory block, and can keep these updated
with cycle-frequencies typically in the area of 4-10 kHz
(depending on the number of attached nodes and allocated
registers). The physical layer uses optical Toslink
components, providing a cheap, noise-immune, and easy-to-
use interconnect. The revised version features a redesigned
physical layer, addressing some of the problems discovered
with the original version described in [6].

The standard FPGA module for this framework is based
on a Xilinx Spartan3AN 400 kilo-gate FPGA, which
provides plenty of space for both the implementation of the
TosNet network (uses about 30% of the available resources),
and for device-specific hardware interfaces. It is mounted on
a small board (45 mm x 49 mm) and equipped with I/O
connectors on both top and bottom, thus making it stackable.
In addition to this, two different standard expansion modules
for the top connectors, using the same form factor as the
FPGA module, are also available. The simpler of the two top
modules carries a USB-to-UART converter, while the other,
more advanced top module, carries an Ethernet-enabled, and
user-programmable microcontroller unit (the ARM-9 based
Digi Connect ME 9210), connected to the FPGA through an
SPI interface. Both also provide the necessary Toslink
components and some pin-headers for easily accessible I/O.

The top modules can be used to create so-called gateway
nodes, allowing a PC to communicate with nodes on the
TosNet network over a serial COM port (through USB) or
Ethernet, respectively. ASCII and binary-based generic

Node 1

Node 2

Node 3 Node 3 registers

Node 2 registers

Node 1 registers

Low
address

High
address

Shared memory
space

N
et

w
or

k

6122

Fig. 4. A block diagram of a typical application of the TosNet
framework. For simplicity, the FPGA modules only show the FPGA
gateware parts, whereas the static support electronics are implied.

protocols are available for this, making communication with
high-level software very simple. In the case of the Ethernet
unit, creating an application specific gateway protocol is
possible, as this can rather easily be programmed into the
microcontroller in the C or C++ languages. A PC-mountable
PCI Express based gateway (based on the Xilinx
Spartan3PCIe Starter kit) is also available, allowing direct
access to the shared memory block of the gateway node,
through a simple memory array in user-space applications.

A block diagram of an example application of the TosNet
framework can be seen in fig. 4, and the FPGA module and
the two top modules can be seen in fig. 5.

B. The µTosNet framework

Inspired by the ease with which the TosNet framework
allows communication between low-level hardware devices
and high-level PC applications, the µTosNet network was
created. It is meant to be used in simple, cost-critical
applications that do not need to be distributed across several
nodes, and which have rather basic requirements with regard
to FPGA resources. This includes being used in introductory
FPGA courses, to provide students with an easy-to-use PC
interface for their hardware designs.

The standard FPGA module provided in this framework
uses a Xilinx Spartan3AN 50 kilo-gate FPGA, which can
use simpler PCBs and is much cheaper than the 400 kilo-
gate version, but lacks the necessary resources to hold the
full TosNet network implementation. The board is aimed at
introductory courses, and thus has a pin-header allowing it
to be mounted directly in a bread-board, which can
dramatically speed up the creation of simple experimental
setups. An add-on board provides access to an optional
USB-to-UART converter and a Digi Connect ME 9210.

Inside the FPGA, the µTosNet network provides a
reduced, single-node shared memory block, a simplified
version of the full TosNet memory interface to this, and
either a UART (converted to USB through the USB-to-

Fig. 5. The hardware modules created for the two frameworks, shown
 alongside a standard Compact Disc for size reference. The three left-
 most modules are from the TosNet framework, whereas the two boards
 to the right are from the µTosNet framework.

UART converter) or SPI (converted to Ethernet through the
Digi Connect ME 9120) interface, to use for communicating
with an attached PC. The framework only supports a single
connection from the board to the PC, and it is thus not
directly possible to interconnect multiple nodes. However,
several nodes can be connected to and controlled from the
same PC if necessary. The simplified memory interface
shields new users from some of the more advanced features
of the full TosNet, such as double buffering of the shared
memory, while still making it easy to transition FPGA
components between the two frameworks.

The FPGA module and the add-on board (without the
Digi Connect ME 9210 unit though) can be seen in fig. 5.

VI. RESULTS

As it is hard to formalize concepts such as ease-of-use and
flexibility, we have employed an informal and pragmatic
approach in the evaluation of these important aspects. This
has been done so far by focusing on using the Node-on-Chip
concept and its associated frameworks for as many projects
as possible in order to gather experience and get inputs from
colleagues and students outside the embedded world. We are
employing a four-phased approach to achieve this:
1) Internal development and evaluation: Demonstration

and test within our own group, by using and
reinstrumenting old robotic systems out of circulation.

FPGA module

FPGA module

Ethernet

TosNet

SPI

MCU

Gateway node

Node

D
ev

ic
e(

s)

G
at

ew
ay

pr

ot
oc

ol

Ethernet-
enabled

controller

Device
specific

hardware

Various

H
W

in

te
rf

ac
e

G
at

ew
ay

in

te
rf

ac
e

S
ha

re
d

m
em

or
y

N
e

tw
o

rk

in
te

rf
ac

e

S
ha

re
d

m
em

or
y

N
e

tw
o

rk

in
te

rf
ac

e

Switches/LEDs

PWM signals

SPI interface

Digital signals GPIO interface

ADC controller

PWM generator

FPGA module

D
ev

ic
e(

s)

Part of framework

Application-specific

From VHDL library

From circuit library

Power electronics

A/D converter

Level changer

Sensors

Actuators

Custom board
Node

N
e

tw
o

rk

in
te

rf
ac

e

S
ha

re
d

m
em

or
y

TosNet TosNet

6123

2) Evaluation with fellow non-embedded researchers:
Using our framework in research projects, discussing
the results with a broader group of robotic researchers.

3) Integration into courses and student projects: By
teaching our robotics students to use the architecture
and frameworks in their work.

4) Making the technology available to others: By utilizing
the FPGA-focused, online, open-source site OpenCores
[14], we hope to broaden the use of and contributions to
our Node-on-Chip concept and frameworks.

The MiniVGT [6] and CATO [10], [11] robots fall under
the internal evaluation category, and mainly served as initial
tests and demonstrations of both the TosNet network, and, in
retrospect, the application of the Node-on-Chip concept.
Both robots are interfaced to Microsoft Robotics Developer
Studio, to provide a very high-level environment for
controlling them. For CATO, it was also possible to directly
reuse several VHDL and software modules from the
MiniVGT, showing a potential of fulfilling our goals
regarding reduced development time and increased reuse.

The RoboTrainer [12] is a clear example of the ease with
which we can now instrument robotic systems, and thus also
a demonstration of our goal regarding ease of use. Using
µTosNet, all the custom electronics present in the setup
(quadrature encoder, motor driver and A/D converter) were
interfaced to a small PC command-line utility in about half a
day. Similarly, a software engineer from our institute,
previously unfamiliar with both concept and frameworks,
was able to create a high-level application with a graphical
userinterface for the setup in a matter of hours.

We are currently evaluating another interdisciplinary
project, where the TosNet framework has been interfaced to
a Panasonic Scara robot, various tool-devices and the
RobWork software framework [13]. The initial impression is
rather close to what is shown in fig. 4: framework contents
were easily and quickly reused from previous projects,
allowing us to focus on the implementation of the FPGA
interface to the robot and the RobWork software.

At the time of writing, we have just completed the first
master level course incorporating the framework. As hoped,
the students found it easy to use, and were generally
impressed with how easy low-level hardware could be
interfaced to PC applications. Detailed results and other
aspects of using in particular µTosNet in teaching are
described in [15]. Furthermore, we expect 5-10 students to
use the framework during their master thesis projects in
2010.

We have just begun the fourth phase, and are currently in
the process of deploying the frameworks to OpenCores.
Initially, µTosNet will be deployed to get to know the online
environment, whereas TosNet will follow later.

VII. CONCLUSION

 Our FPGA-based Node-on-Chip architecture and
frameworks for distributed control have demonstrated many

advantages in relation to experimental robotics. The goals of
the work have been to reduce the time spent creating
hardware- and network interfaces, increase the amount of
reuse between projects, and ease the use of low-level
hardware systems. To some extent all these goals have been
met by the TosNet and µTosNet frameworks, and we are
hoping to see further evidence of this as the technologies are
employed in future projects.

Apart from increasing the size of our VHDL and circuit
component libraries, planned extensions currently include:
1) New FPGA modules using Xilinx Spartan6 devices.
2) A further layer of abstraction on top of the TosNet

network, providing better support for easy configuration
from high-level applications.

ACKNOWLEDGMENT

The authors thank Carsten Albertsen, University of
Southern Denmark, for help with board design and creation.

REFERENCES
[1] A. S. Soerensen, “Modular control of industrial mechanics,” Ph.D.

dissertation, The Maersk McKinney Moeller Institute for Production
Technology, University of Southern Denmark, Odense, 2003.

[2] A. S. Soerensen, H. G. Petersen, O. G. Jakobsen and N. J. Jacobsen,
“A development of parallel robotic modules for long reach
applications,” in Proc. of the 32nd International Symposium on
Robotics, Seoul, 2001.

[3] A. S. Soerensen and H. G. Petersen, “A development of modular
robots for flexible robotics manufacturing units,” in Proc. of the 33rd
International Symposium on Robotics, Stockholm, 2002.

[4] A. S. Soerensen, et al., “Implementation of a practical reconfigurable
manipulator system based on hybrid parallel and sequential elements,”
in Proc. International Conference on Intelligent Manipulation and
Grasping, Genova, 2004, pp. 404-409.

[5] Z. Salcic, “PROTOS – A microcontroller/FPGA-based prototyping
system for embedded applications,” Microprocessors and
Microsystems, vol. 21, pp. 249-256, 1997.

[6] S. Falsig and A. S. Soerensen, “TosNet: An easy-to-use, real-time
communications protocol for modular, distributed robot controllers,”
in Proc. 2009 2. International Conference on Robot Communication
and Coordination, Odense, 2009, pp. 1–6.

[7] J. Portilla, A. de Castro, E. de la Torre, T. Riesgo, “A modular
architecture for nodes in wireless sensor networks,” J. Universal
Comp. Sci., vol. 12, pp. 328-339, March 2006.

[8] J. Portilla, A. de Castro, A. Abril, T. Riesgo, “Rapid prototyping for
multi-application sensor networking,” SPIE Optoelectronics and
optical communications, [Online]. Available:
http://spie.org/x17547.xml?ArticleID=x17547

[9] Actel (2010). Actel Fusion Mixed Signal FPGA [Online]. Available:
http://www.actel.com/products/fusion

[10] S. Falsig (2009, October 2nd). Cato [Online]. Available:
http://robolab.tek.sdu.dk/mediawiki/index.php/CATO

[11] A. S. Soerensen, “Practical AGV construction and sensor-integration,”
Master thesis, The Maersk McKinney Moeller Institute for Production
Technology, University of Southern Denmark, Odense, 1999.

[12] S. Falsig (2010, February 24th). RoboTrainer [Online]. Available:
http://robolab.tek.sdu.dk/mediawiki/index.php/RoboTrainer

[13] The RobWork Team (2010). RobWork.org [Online]. Available:
http://www.robwork.org

[14] The OpenCores Team (2010). OpenCores.org [Online]. Available:
http://www.opencores.org

[15] A. S. Soerensen and S. Falsig, “A system on chip approach to
enhanced learning in interdisciplinary robotics,” to appear in Proc. of
the 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, 2010.

6124

