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Abstract— 3D data collected by a laser scanner has great
potential for robotic applications. Exact geometrical models of
the environment surrounding the robot can be created from
these point clouds. But, before creating any model, the 3D
point cloud has to be segmented and depending on the size
and quality of the point cloud, this can be a very challenging
task. This article describes a robust 3D scan segmentation
technique, which is capable of segmenting a 3D point cloud
in a short amount of time. The results of the segmentation are
used to assist a teleoperator to manoeuvre a robot through an
unknown environment. Our segmentation approach copes with
indoor and outdoor environments, using only a minimum of
assumptions, which makes it very robust. A 3D visualisation
illustrates the segmentation results in a clear and user-friendly
way.

Index Terms— rotating laser scanner, 3D data segmentation,
3D point cloud, traversability map, 3D visualisation, teleoper-
ation tasks

I. INTRODUCTION

Laser scanners are widely used in the field of industrial
applications and robotics. They are able to gather precise
distance information in a very short amount of time and can
be used in almost any environmental condition. In the field
of mobile robotics, they are typically used to detect obstacles
[1], navigate [2] and for various other tasks. However, many
applications, for instance manipulation tasks [3], require
three-dimensional information about the environment. By
mounting such a fast 2D laser scanner onto a rotating or nod-
ding platform, it is possible to extend the two-dimensional
scan lines by a third dimension. In order to maintain the
high precision of the 2D scans, it is necessary to detect the
rotational or nodding movement of the scanner very exactly.
With such a system, it is possible to collect a precise 3D
point cloud, where the position of each point represents the
distance of a reflecting object in the scanned environment.
Fig. 1 shows a typical example for such a 3D point cloud.
There are no real surfaces in point clouds and depending on
the density, number of points and size of the points in the
visualisation it can be difficult to interpret it correctly.

On the one hand, the correct interpretation of a point
cloud is a challenging task, especially if this has to be
done in reasonable time. But on the other hand, it is worth
accepting this challenge, because a point cloud can be used
to create good geometrical models. 3D point clouds have the
great potential of extending the capabilities and therefore the

autonomy of robotic systems. For example, they are used to
navigate through narrow doors and small corridors. Object
and especially plane detection is a key task when dealing
with robot navigation. Planes are so important, because they
can be found in almost all application scenarios for mobile
robots.

Fig. 1. Typical point cloud of a stairway.

Several different approaches on plane detection in 3D
point clouds can be found in literature. In many cases the
well-known Random Sample Consensus (RANSAC) method
and the Iterative Closest Point (ICP) algorithm are used to
detect features such as planes in 3D point clouds (e.g. [4]).
The RANSAC method is also used by Schnabel et al. [5]
to detect simple shapes such as tori, planes, cylinders or
spheres. In a later work, they extend their approach by adding
topology graphs to their initial found shapes and perform a
constrained subgraph matching with known topology graphs
of shapes such as windows or roofs [6]. In the work of Yang
and Foerstner [7] a point cloud is divided into small blocks,
before again using RANSAC on them in order to detect
planes. Region growing methods can also be used to find
planes in 3D point clouds. Haehnel et al. [8] find planes
by using such a region growing algorithm to calculate the
planes’ equations with the least squares method. Surmann
et al. [9] detect line segments in every scan line of a 2D
laser scanner mounted on a nodding platform using standard
Hough transform. Afterwards, they merge the line segments
to planar structures. Other authors, like A. Sabov and J.
Kruger, also use a line segmentation followed by a line
combination algorithm to segment range camera images into
planar surfaces [10].

Besides creating 3D point clouds and extracting objects
from these, laser scanners are often used to create traversabil-
ity maps. These maps can then be used for autonomous
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navigation of mobile robots (e.g.[11],[12]).
In this paper we will present an approach to segment a

3D point cloud into traversable planes, including passable
doorways, obstacles and walls. First, we extract line seg-
ments from each scan line. These line segments are then
used to estimate multiple plane equations. After finding the
ground planes, a 2D traversability map is created by moving
the bounding box of the robot along the ground planes.
Based on the traversability map, a 3D visualisation of the
segmentation results is created in the original point cloud.
Due to the unknown application scenario, we have minimised
our assumptions with the target of creating a very robust
segmentation algorithm, which can cope with any kind of
indoor or outdoor environment. Because our results are used
to help a teleoperator to navigate in an unknown scenario,
it is very important to present the segmentation results in
a user-friendly way (3D visualisation) and in a reasonable
short amount of time.

In Section II, we will present the real world setup and
our 3D scan segmentation approach. Experimental results,
showing the computation time and segmentation quality of
our approach, will be given in Section III. We will summarise
and present future work in Section IV.

II. APPROACH

The 3D point clouds we are considering are created by
a commercial 2D laser scanner (SICK LMS200), which is
mounted on a rotating platform. A rotary feed through with
slip-ring is used to transmit the power and data between
the laser scanner and a PC in an environmentally sealed
box. This box includes several DC-DC converters and an
UCoM (Universal Controller Module) [13], controlling the
movement of the rotating platform. The left part of Fig. 2
shows the rotating SICK laser scanner (RoSi), which was
developed at our institute. Each point ~x = (x,y,z)T of the 3D
point cloud can be determined as follows [14]:

xi = cosβ · cosαi ·di (1)
yi = sinβ · cosαi ·di (2)
zi = sinαi ·di (3)

where αi is the measurement angle and di is the distance of
one point in a single scan line. The angle β is the rotational
angle of the rotating platform. By changing the rotational
velocity β̇ the number of scan lines per full revolution and
therefore the density of the point cloud is also changed.
The laser scanner itself scans at a rate of 37.5 Hz and
has a viewing angle of 180 degrees. We are only using
the half of each scan line with a resulting viewing angle
of 90 degrees. This is sufficient to capture the entire scene
with one revolution. The RoSi system is operating with an
angular resolution of 0.5 degrees and is therefore receiving
180 points per half scan line. Depending on the rotational
velocity β̇ , the number of points in a RoSi point cloud varies
from approx. 20000 to 80000. The amount of reflected light
is used to measure a grey-scale value for each point. This

remission value is attached to each point and adds important
extra information to the point cloud [14]. It can be used
to differentiate between surfaces with different reflectivity
values. However, surfaces creating a total internal reflection
or transparent objects can not be measured.

Fig. 2. (left) RoSi: Rotating SICK laser scanner system, (right) LMF:
radiation-tolerant teleoperated service robot.

The RoSi system is carried by the LMF [15], a robot which
is operated by the KHG [16]. The LMF (see right part of
Fig. 2) is a radiation-tolerant robot, which was developed by
CYBERNETIX, France, with the ability to operate inside
a nuclear power plant. The LMF body is a two tracked
platform, that is able to climb up and down stairs at 45
degrees and turn around with a diameter of 1.2 m. It is able
to manipulate a object with a mass of 100 kg and resist a very
high radiation. The LMF can be equipped with heavy-load
hydraulic or electrical master-slave manipulation arms.

Our 3D scan segmentation problem is specified as follows.
Given a point cloud, which was collected by the RoSi system,
we want to support the operator of the LMF while working
in an unknown scene by displaying the areas, which are
traversable for the LMF. Because the RoSi system is carried
by an arm of the LMF, we cannot assume a fixed orientation
or position of the scanning system. In this article the LMF
will follow a “scan-and-stop” strategy, therefore we will
not address any problems originated from a movement of
the platform. It is necessary to segment the captured point
cloud in a small amount of time, in order to not disturb the
workflow of the operator. The results have to be displayed in
an user-friendly and clear way. This visualisation is supposed
to give the operator a better spatial feeling for the scene and
simplify decisions concerning the navigation of the LMF, e.g.
if a doorway is passable for the robot. The next subsections
will give some details on the developed algorithm.

A. Line detection
Each 3D point cloud consists of several scan lines. We

rotate every scan line by its given angle β around the Z-axis
in the Cartesian coordinate system (that is, the rotational axis
of the RoSi system):

~x′T :=
(
x′ y′ z′

)
=~xT ·

cosβ −sinβ 0
sinβ cosβ 0

0 0 1

 (4)

y′ =−sinβ · x+ cosβ · y (5)
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This rotation of a scan line is shown in Fig. 3. Inserting
equations (1)-(2) in (5) we can see that the Y-coordinate y′

is always zero:

y′ =−sinβ · (cosβ · cosα ·di)+ cosβ · (sinβ · cosα ·di)

= cosα ·di · (sinβ · cosβ − sinβ · cosβ )

= 0

Every 3D scan line is considered as a single 2D images
by choosing the X- and Z-coordinate as the 2D coordinate
axes (U- and V-coordinate). Then we use a standard Hough
transform on these images to find single line segments in
every scan line (see Fig. 4). These line segments are given by
their start and end points. Now, the found line segments are
transformed back into 3D space by adding the Y-coordinate
with y = 0 again. Finally, the start and end points of every
line segment are rotated back using equation (4) with the
inverted angle −β .

Fig. 3. Rotation of a scan line around the Z-axis, which is the rotational
axis of the RoSi system.

Fig. 4. (left) Rotated 3D scan line as 2D image, (right) found line segments
with Hough transform.

B. Line clustering
The line clustering algorithm iterates through all found line

segments of one point cloud. By comparing the Euclidean
distances between the start and end points of two line
segments and their angle α , it is possible to find similar
line segments. By using the direction vectors of the line
segments ~m and ~n in three-dimensional space, we can easily
calculate their angle α by using the dot product (indicated
by ∗):

~m∗~n = ‖~m‖·‖~n‖·cosα

⇐⇒ α = arccos(
~m∗~n
‖~m‖·‖~n‖

)

Because each plane consists of a set of similar lines, it
is possible to find these planes using line clustering (see
Fig. 5). Here, the scan lines of the RoSi system lie very
close to each other and all meet at the centre of rotation.
By adapting the definition of similarity this approach can be
transferred to other point clouds, e.g. collected by a nodding
platform. If the algorithm finds enough similar lines, a least
squares plane equation is estimated. Then the rest of the line
segments are no longer compared to each other, but to the
plane equation. This minimises the possible drift, which can
occur when only comparing the line segments to each other.
The plane is refitted every time the number of new additional
similar line segments reaches a threshold value.

Fig. 5. Line clustering: Due to the scan lines created by the rotating
scanner, a plane has a number of very similar line segments (blue, red,
green line). With the help of such similar line segments it is possible to
find the corresponding planes.

C. Plane generation and validation

If the number of line segments exceeds a threshold value
(in our case 25), the start and end points of all similar
line segments are used to calculate the final plane equation.
Because the lines corresponding to one plane fulfil the
similarity definition of the line clustering algorithm, the
number of outlier points is very small. In this case, a
least squares estimation for the plane equation is able to
determine a very exact equation. It can still happen, that
the line clustering algorithm finds planes, which are not
really existent in the point cloud. The validation of a plane
equation in a noisy point cloud is a difficult task [8] and the
environment of teleoperation tasks in contaminated areas can
vary strongly. This is why our approach can only use few
assumptions and we cannot eliminate any planes in advance
by referring to usual indoor geometrical structures. But it is
still necessary to validate the plane equations received by
the line clustering algorithm. Therefore, we have developed
a fast and robust plane validation technique. We create a
discrete grey-scale image corresponding to the actual plane
and its supporting points (see Fig. 6). As supporting points
we consider points with distances to the plane, which are
smaller than a threshold value. Each pixel represents a region
(in our case approx. 0.2 x 0.2 m) of a plane. The grey-scale
value of each pixel is related to the number of supporting
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points lying in this region. More supporting points make a
pixel brighter. If the size of a area with enough supporting
points exceeds a threshold size, the plane can be assumed
to be existent in the real 3D point cloud. Otherwise the
plane is deleted. With the help of typical image processing
algorithms, this is calculated in a very fast and efficient way.
When segmenting indoor environments, nearly all planes
have a big number of supporting points. Even if the tested
plane does not exist in the point cloud, the plane will cross
several walls and other real planes, creating many supporting
points at these crossings. This is why we do not only consider
the number of supporting points, but also their spreading.

Fig. 6. Fast and robust plane validation technique: Find areas of a minimum
size with enough supporting points (green surrounded area).

D. Traversability check

Next, we need to find the ground planes among all real
planes. Only planes with a slope smaller than the maximum
drivable slope of the LMF (45 degrees) are possible ground
planes. In this way we can remove all planes belonging to
walls. The ceiling is removed by assuming that the scanner’s
position is higher than the ground. The found ground planes
are then used to create a traversability map. First obstacle
and walls are detected. The traversability algorithm iterates
through all points and if the distance of a point to the
ground plane is smaller than the maximum height of the
robot, the position of the corresponding point is marked
in the traversability map. Depending on the exact distance,
it is marked as a probably passable obstacle (orange) or
as an impassable wall (red). If the point is a supporting
point of the ground plane and if there is no obstacle or
wall already marked in the map, the map is marked as
traversable (green) at this position. After creating this basic
map with respect to the height of the robot, it is then used to
check the traversability according to the x- and y- dimension.
A bounding box with different kinds of orientations is
moved along the 2D traversability map, marking those parts
of the map, which are traversable and not. This is done
with the help of image processing algorithms, because the
traversability map is represented as a standard colour image.
Problems occur at narrow doors. Due to discretisation errors,
it is hard to determine if the robot can pass a doorway, which
is nearly the size of the robot. We solved this problem by
inserting an intermediate discretisation step. First, we create
a rather rough map with a rough discretisation. Then we
enlarge the bounding box of the robot by half a discretisation
step and create a second rough map. The parts of the two
maps that differ are then analysed with a more precise map
with a smaller discretisation. This is how we are able to find
narrow passages with a size close to size of the robot.

TABLE I
EXPERIMENTAL RUNTIME RESULTS

scan no. points in scan drawn triangles av. time (sec)
1 14400 approx. 49000 8.4
2 24480 approx. 77000 9.2
3 26460 approx. 75000 9.0
4 70200 approx. 213000 16.8
5 72900 approx. 277000 12.8
6 75420 approx. 133500 10.8
7 75600 approx. 134600 10.2
8 76140 approx. 282000 14.2

E. Visualisation

The 2D traversability map, which is mainly used for
calculations, is also provided to the teleoperator. It gives a
quick overview of the actual scene. The 2D traversability
map is then transferred into the 3D point cloud. This more
precise 3D visualisation gives a better spatial feeling for the
real environment than the 2D map.

A standard 2D Delaunay triangulation is used to display
the traversable parts of the 3D point cloud. The colours of
the 3D visualisation correspond to the colours of the 2D
traversability map. Impassable walls are approximated by
red cuboids and obstacles are represented by several small
cubes. In this way all sorts of objects can be approximated.
The obstacles are highlighted in orange. The drivable parts
(green) of the ground planes are triangulated using a De-
launay triangulation. As all supporting points of a drivable
area lie roughly on a plane, we can use the 2D triangulation
instead of a complex 3D triangulation, achieving a worst-
case complexity of O(n logn) instead of O(n3) [17]. Using
rotation and projection of the 3D points which both lie in
O(n) we can get an approximated 3D triangulation using a
fast 2D Delaunay triangulation.

III. RESULTS AND EXPERIMENTS

The described 3D scan segmentation algorithm was devel-
oped for teleoperation tasks. Therefore, the runtime has to
be in an acceptable range. Depending on the received point
cloud and complexity of the scene, we achieved a runtime
considerably smaller than one minute on an Intel Core 2
Quad 2.66 GHz. Table I shows the measured runtime results
for 5 randomly picked point clouds. The runtime results were
averaged over 5 runs.

Fig. 7. (left) Collected point cloud of a garage with open door, (right)
created 2D traversability map for the smallest configuration of the robot.

With the point clouds collected by the RoSi system our
3D segmentation algorithm has a runtime smaller than 20
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seconds. Table I also shows that the runtime is not directly
proportional to the size of the point cloud. Although scan
no. 1 only has approx. one-fifth of the size of scan no. 7,
the runtime difference is very small (approx. 2 seconds). The
number of triangles created for the 3D visualisation only has
a small influence on runtime. This is obvious, when compar-
ing the runtimes of scan no. 4 and 5. Our analyses have
shown that the number of line segments and planes found
in the point cloud have the biggest influence on the runtime.
The LMF is using a “scan-and-stop” strategy, therefore the
achieved runtime fulfils the teleoperation requirements for
the LMF.

Hundreds of scans of all kind of indoor and outdoor
scenarios have been used to evaluate the developed 3D
segmentation algorithm. The following figures will illustrate
some of the results. Fig. 7 shows the collected point cloud
of a garage with a truck standing in it and an open door. The
door has a width of approx. 0.9 m and can be seen as a kind
of a benchmark for this algorithm. The LMF has a width of
0.85 m in its smallest configuration. The 2D traversability
map created for the smallest configuration is presented on
the right side of Fig. 7. This map shows that the robot is
able to pass through the doorway. The corresponding 3D
visualisation can be found in Fig. 8. The way through the
door is coloured in orange, because it was found with the
intermediate discretisation step, meaning that the passage is
very narrow and the operator of the LMF has to be careful
passing this door.

Fig. 8. Rotated 3D visualisation of segmentation results for the garage
point cloud.

Then the configuration of the robot is changed. Now, the
robot is wider, because one of its arms was moved. The 2D
traversability map indicates that the robot can no longer drive
through the door (see left part of Fig. 9). The 3D visualisation
(right part of Fig. 9) shows this by removing the orange way
through the door.

The LMF can also change its height. With this configura-
tion there is no visible change on the 2D traversability map,
but an obvious change in the 3D visualisation (see Fig. 10).
Now, the doorway is too low for the robot and it is visualised
as a part of the impassable wall.

Fig. 11 illustrates the segmentation results for a different
kind of point cloud. Here, the scene shows a hallway with a
slope and some stairs on the right side. In this point cloud, the
segmentation algorithm found more than one ground plane

Fig. 9. (left) 2D traversability map for robot with wider configuration
- robot cannot pass door anymore, (right) 3D visualisation of the left
traversability map showing the open door, which cannot be passed.

Fig. 10. (left) same 2D traversability map for robot with higher con-
figuration - robot can also not pass door, (right) 3D visualisation of the
traversability map showing that the doorway is now visualised as impassable
wall.

and many obstacles, which probably can be passed by the
robot. The traversability check is able to cope with ground
planes having different kind of slopes. Both planes were
classified as traversable (green). The stairs, which are part
of these obstacles, are marked orange. In these cases the
operator has to be careful when driving over the obstacles.
The 3D visualisation in Fig. 12 shows the same scene from a
different perspective. The ability to change the perspective is
a major advantage of a 3D visualisation. Here, we can also
see, that the drivable ground plane is not drawn completely
up to the walls. The reason is that we are using the centre
of the robot to calculate the traversability map. In this way
the thickness of a way through a passage illustrates how
narrow a passage is. These are only some of many other
interesting results. For instance, the segmentation of very
dense or sparse point clouds also works very well.

Fig. 11. (left) 2D traversability map of a hallway with two ground planes,
(right) 3D visualisation of the traversability map.

Walls and obstacles made of transparent material like glass
create no points in the RoSi point clouds. Therefore, we
have no possibility to segment these transparent objects. In
some rare cases our approach is not able to find a ground
plane. This happens when the point cloud contains very few
ground points. Then, the line clustering algorithm is not able
to find enough line segments on the ground plane or the plane
validation algorithm removes the plane, because there were
not enough supporting points. In these cases, the algorithm
delivers no results. But in most cases, after moving the LMF
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Fig. 12. Rotated 3D visualisation of the traversability map of the hallway
showing the two found ground planes.

or the arm of the robot a little, the algorithm is able to find
the ground plane again and shows correct results.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This work has presented a 3D scan segmentation approach,
which is able to segment a point cloud in traversable and
non-traversable parts. It can easily be transferred to many
other systems and other application scenarios, because only
very few assumptions have been made. Therefore, it is not
limited to applications in radioactive facilities.

Hundreds of different scans have been evaluated, with
very good results. Although the segmentation algorithm had
some problems with a few scans, we never visualise false
results. If the scan segmentation is not able to deliver correct
results, this is recognised and nothing is shown in the 3D
visualisation. This is an important aspect, when working in
hazardous environments. Our approach can cope with indoor
and outdoor environments, with multiple ground planes and
with many kinds of different point clouds (sparse, dense,
rotated, etc.). The segmentation results are visualised in
less than 20 seconds. So, the developed approach is robust
and reasonable fast at the same time. Summing up, the
presented 3D scan segmentation approach is able to support
a teleoperator with a clear 3D visualisation of the traversable
areas in a very effective way.

B. Future Works

Our future work will concentrate on segmenting our point
clouds into more types of objects. Now, we are only using
three types: drivable floor, probably passable obstacle and
impassable wall. We are planning on adding at least two
more types: stairways and doors. The LMF is able to drive
up stairways and we want to find these stairways. We are
also working on an assisted door pass manoeuvre based
on a more detailed door detection (orientation, door frame
thickness, etc.). The traversability check is the slowest part
of the 3D segmentation. We are working on an improved
traversability check. Besides this we are still improving
the runtime performance of the algorithm by splitting the
calculations into multiple tasks and then using more than
just one core of the CPU. Then the plane detection results
could be visualised before the traversability results in less

than one second. Until now, the visualisation of the walls
and obstacles is only approximating. Soon, we will replace
this approximation by a fast and more detailed visualisation.
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