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Abstract— Often, electronics and packages must be prevented
from damages resulting from awkward falls. The goal of this
paper is to explore how actuators and control can be used
to reorient bodies during free fall. It is well known that
motion of a free-falling body or a set of interconnected bodies
is characterized by the principle of conservation of angular
momentum. The governing angular momentum equations are
nonholonomic, i.e., are non-integrable rate equations.

In this paper, we assume that the falling system consists of
twin bodies interconnected by a hinge joint. One of the twin
bodies is designated as the primary body which needs to be
reoriented during fall. The secondary body is connected to the
primary body by a hinge joint, similar to a protective cover on a
cell phone. The relative angle between the twin bodies is actively
controlled. In addition, two rotors are mounted on the primary
body with axes orthogonal to the axis of the hinge between the
twin bodies. The goal of this study is to use the framework of
differential flatness to compute trajectories for the hinge joint
and the two rotors so that the twin bodies achieve prespecified
orientations at the end of the free fall.

I. INTRODUCTION

Thousands of dollars are lost each year in accidents

when electronic components fall on the ground. To prevent

these damages, manufacturers use a variety of innovative

packing materials that provide soft cushion during landing.

We believe that packaging industries and electronic designs

can benefit by innovative methods using which the posture

of falling bodies can be actively modulated by onboard

actuators.

It is well known that a falling cat is capable of reorienting

its body with its flexible musculoskeletal system and the tail.

A cat always lands on the ground on four limbs. In the past,

robot cats have been investigated by researchers, including

Kawamura et al [1]. A robot cat designed by them consisted

of a front and a rear body. The rear body was connected to

the front body by a flexible backbone, which was actuated

to initiate twisting motion during fall. Yamafuji et al also

employed a flexible backbone for posture control of a mobile

robot with articulated twin legs [2], [3].

Chen and Sreenath studied modeling and controllability of

a coupled rigid body by assuming zero angular momentum

condition [4]. Based on Ritz approximations, Chris Fernan-

des et al developed a simple algorithm for near optimal

nonholonomic motion planning of a falling cat [5]. Weng

and Nishimura investigated the twisting motion of a falling

robot cat with two torque inputs around its waist by applying

iterative error learning [6].

Based on Lagrange-Euler formulation, Yang et al studied

the landing posture control of a 5-DOF twin-body system,

which is a simplified model of a cellular phone. Two con-

trollers, a PD controller and an input-output linearization

with computed torques, were applied to achieve the desired

final landing posture [7]. Yang et al also conducted research

on the landing posture control of a generalized twin-body

system [8],[9]. In these studies, the degrees-of-freedom of

the system is larger than the number of independent inputs.

As a result, instead of controlling the orientation of the

falling body, they control the relative orientation between

the bodies. However, since their system is not fully feedback

linearizable, it is not possible to guarantee that the system

can reach a final point in the state space via a continuous

trajectory.

Apart from research on free falling objects, there are stud-

ies which employ the principle of conservation of angular

momentum during motion. For example, Guo et al presented

a prototype model of an underwater fish-like micro robot

[10], which possess a body posture adjuster to facilitate the

swimming motion. Agrawal et al have investigated point-

to-point maneuvers of free-floating space robots using the

theory of differential flatness [11].

This study proposes a novel approach to posture control

of a system containing twin free-falling bodies. The system

is designed to be differentially flat through proper inertia

distribution within the system. This allows the free falling

twin-body to attain a pre-determined landing posture. The

paper is organized as follows. The model of twin free-falling

bodies is described in Section II. The underlying structure

of the governing equations is highlighted in this section.

Differential flatness of the falling twin bodies for the chosen

inertia distribution is proved in Section III. The trajectory

planning and optimization are illustrated in Section IV. In

order to remove the effects of initial error, a PD controller is

designed and implemented in Section V. Finally, conclusions

and discussions are drawn at the end of the paper.

II. MODEL OF A FREE-FALLING TWIN BODY

A. Geometry of the System

A schematic of the system is shown in Fig. 1. The

primary body is numbered as body 0 and the basis vectors

(x̂0, ŷ0, ẑ0) are attached to it rigidly. These basis vectors

constitute the frame F0. This frame coincides with the

inertial frame in the zero configuration. Two rotors, labeled
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as bodies 1 and 2, are mounted on body 0 with axes along

x̂0 and ẑ0, respectively. It is assumed that the center of mass

of body 1 is on x̂0 and the center of mass of body 2 is on

ẑ0. The secondary body, rotor 3, is labeled as body 3 and is

hinged to body 0 along the axis ŷ0. It is assumed that the

center of mass of body 3 lies on ŷ0.

The orientation of body 0 in the inertial frame is described

by a body-fixed rotation sequence 1-2-3 with angles ψ, θ,

and φ. The relative orientations of rotors 1 and 2 along their

respective axes are denoted by θ1 and θ2, while the relative

orientation of body 3 with respect to 0 is labeled as θ3.

Given the specific body-fixed rotation sequence, the angular

velocity of the body 0 is given by the following equation:

F0ω0 =





ω01

ω02

ω03



 =





cos θ cosφ sinφ 0
− cos θ sinφ cosφ 0

sin θ 0 1









ψ̇

θ̇

φ̇





(1)

The inertial angular velocity of bodies 1, 2, 3 have the

following expressions in F0

F0ω1 =F0 ω0 + θ̇1x̂0

F0ω2 =F0 ω0 + θ̇2ẑ0
F0ω3 =F0 ω0 + θ̇3ŷ0 (2)

Fig. 1. A schematic of the twin free-falling bodies.

B. Angular Momentum Equations

The center of mass of the system is denoted as C∗. With

the given assumptions of center of mass for bodies 0-3, the

center of mass C∗ is a fixed point on body 0. The total

angular momentum HC∗
for the system, consisting of 0, 1,

2, and 3, about C∗ can be written as

HC∗
=

3
∑

i=0

Ii · ωi + rC∗Ci
×mi

d

dt
rC∗Ci

, (3)

where Ii is the inertia dyadic of body i, ωi is the angular

velocity, and d
dt
rC∗Ci

is the velocity of the center of mass of

body i. In general, a vector rC∗Ci
= αi1x̂0+αi2ŷ0+αi3ẑ0,

where αi1, αi2, αi3 are constants specific to a body i. Hence,

d

dt
rC∗Ci

=F0 ω0 × (αi1x̂0 + αi2ŷ0 + αi3ẑ0) (4)

In the absence of external forces and moments, the angular

momentum of the system around the system center of mass

C∗ remains inertially fixed. For example, if the system

was released from rest, HC∗ = 0. On expressing HC∗
in

the coordinate frame F0 and equating to zero, one obtains

the following form of the governing angular momentum

equations

A





ω01

ω02

ω03



+B





θ̇1
θ̇2
θ̇3



 = 0, (5)

where A and B are constant matrices. On solving for

(ω01, ω02, ω03)
T from Eq. (5) and substituting in Eq. (1),

the governing equations of motion can be expressed in the

following form

ψ̇ = f̄11(θ, φ)θ̇1 + f̄12(θ, φ)θ̇2 + f̄13(θ, φ)θ̇3

θ̇ = f̄21(θ, φ)θ̇1 + f̄22(θ, φ)θ̇2 + f̄23(θ, φ)θ̇3

φ̇ = f̄31(θ, φ)θ̇1 + f̄32(θ, φ)θ̇2 + f̄33(θ, φ)θ̇3 (6)

It is important to point out that the form of Eq. (6) is

possible if and only if the following two conditions are met:

(i) the matrix A is invertible, and (ii) the determinant of

matrix in Eq. (1) is nonzero, i.e., cos θ 6= 0 or θ 6= π/2 or

3π/2.

C. Problem Statement

The initial orientation of the twin body is described by

the four variables ψ(t0), θ(t0), φ(t0), and θ3(t0) and a final

orientation ψ(tf ), θ(tf ), φ(tf ), and θ3(tf ) before hitting the

ground at time tf is prescribed. The control inputs are the

two rotor speeds θ̇1, θ̇2 and the hinge speed θ̇3. The statement

of the problem is to choose trajectories of θ1(t), θ2(t), θ3(t)
such that the four orientation variables ψ(t), θ(t), φ(t), and

θ3(t) transfer from their initial values at t0 to the given values

at tf .

A few quick notes about this problem are: (i) the governing

equations are under-actuated, i.e., the three speeds θ̇1, θ̇2
and θ̇3 are required to manipulate four variables ψ(t), θ(t),
φ(t), and θ3(t), (ii) The governing equations (6) are non-

holonomic, i.e., are non-integrable, (iii) The relative angle of

the twin body θ3 does not explicitly appear in the governing

equations (6) since it was assumed that the center of mass

of twin body 3 lies on the axis ŷ0. It will be shown later

that this condition is critical to solving the problem via the

differential flatness theory, (iv) The falling duration tf − t0
is characterized by the initial distance of the system center

of mass C∗ from the ground, since this point has free-fall. It

is possible that the actual falling time may be smaller than

tf − t0 as it will be dictated by the actual shape and size of

the twin body.
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III. STRUCTURE OF ANGULAR MOMENTUM EQUATIONS

Eq. (6) can be rewritten in the following form

ψ̇ = f11(θ, φ)u1 + f12(θ, φ)u2 + f13(θ, φ)u3

θ̇ = u1

φ̇ = u2

θ̇3 = u3, (7)

on making the following subsititution f̄21(θ, φ)θ̇1 +
f̄22(θ, φ)θ̇2 + f̄23(θ, φ)θ̇3 = u1, f̄31(θ, φ)θ̇1 + f̄32(θ, φ)θ̇2 +
f̄33(θ, φ)θ̇3 = u2 and θ̇3 = u3. The functions f11(θ, φ),
f12(θ, φ), f13(θ, φ) are a results of the above input trans-

formation. A condition that needs to be satisfied in order to

carry out this input transformation is f̄21f̄32 − f̄31f̄22 6= 0.

Some salient features of these governing equations are:

fij(θ, φ) are independent of the base angle ψ and the

momentum wheel rotation angles θ1 and θ2. The intuitive

justifications for these are: (i) the first coordinate ψ is a

cyclic coordinate, hence it does not appear in the equation,

(ii) Due to symmetry of the two rotors along the axis,

the angular momentum equations remain unaffected by the

angular position of these wheels, (iii) The same argument

holds for the variable θ3.

A. Differential Flatness

A driftless system with 4 states and 3 inputs is differen-

tially flat if and only if it is controllable. For the system

given by Eqs. (7), the controllability condition formally is to

check if the dimension of

< X1, X2, X3, {[Xi, Xj ] , i, j = 1, . . . , 3} > (8)

is equal to 4, where [Xi, Xj ] denotes Lie bracket of two

vector fields. The vector fields X1, X2, X3 are

X1 =









f11(θ, φ)
1
0
0









, X2 =









f12(θ, φ)
0
1
0









,

X3 =









f13(θ, φ)
0
0
1









.

Due to the special structure of the vector fields, it is

differentially flat if and only if there exists i, j such that

∂f1j(θ, φ)

∂xi
−
∂f1i(θ, φ)

∂xj
6= 0, (9)

where (x1, ..., x4) = (ψ, θ, φ, θ3). This is a straightforward

verification.

B. Choice of Flat Outputs and Diffeomorphism

Assuming that the system is controllable, a way to obtain

the flat outputs is to consider a ‘one prolongation’ of the

two inputs u1 and u2. It should be noted that differential flat

outputs are not unique. The prolonged system has the form

ψ̇ = f11(θ, φ)u1 + f12(θ, φ)u2 + f13(θ, φ)u3

θ̇ = u1

φ̇ = u2

θ̇3 = u3

u̇1 = w1

u̇2 = w2 (10)

This new system with 6 states and 3 inputs w1, w2, and u3
should be static feedback linearizable. A sufficient condition

to show this property is to choose three flat outputs y1, y2,

y3 whose relative degrees together add to the order of this

prolonged system, in this case 6. A choice of linearizing

outputs for the system (10), possessing this property, is

y1 = θ, y2 = φ,
y3 = ψ − f13(θ, φ)θ3.

(11)

Differentiation of these outputs with respect to time gives

ẏ1 = u1, ẏ2 = u2, ÿ1 = w1, ÿ2 = w2 (12)

ẏ3 = ψ̇ − ḟ13(θ, φ)θ3 − f13(θ, φ)θ̇3

= f11(θ, φ)u1 + f12(θ, φ)u2 − ḟ13(θ, φ)θ3

= [f11 −
∂f13(θ, φ)

∂θ
θ3]u1 +

[f12 −
∂f13(θ, φ)

∂φ
θ3]u2 (13)

Hence, ẏ3 can be differentiated once more before the

inputs w1, w2, u3 appear in its expression. On differentiating

ẏ3 once more, the three outputs can be written as follows:





ÿ1
ÿ2
ÿ3



 =





1 0 0
0 1 0
λ1 λ2 λ3]









w1

w2

u3



+





0
0
λ4





(14)

where

λ1 = f11 −
∂f13
∂θ

θ3
λ2 = f12 −

∂f13
∂φ

θ3

λ3 = −[∂f13
∂θ

u1 +
∂f13
∂φ

u2]

λ4 = ḟ11u1 + ḟ12u2 − θ3[
d
dt
{∂f13

∂θ
}u1 +

d
dt
{∂f13

∂φ
}u2]

The relative degree of all three outputs is 2. In order

to achieve an input transformation, the (3, 3) element of

the decoulping matrix should be nonzero, i.e., ∂f13
∂θ

u1 +
∂f13
∂φ

u2 6= 0 at every point on the trajectory. The three

outputs together have the relative degree of 6, the order of the

system (10). Hence, y1, y2, and y3 provide the three outputs

that will statically feedback linearize the system (10). The

static feedback linearized system is described by three double

integrator plants.
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TABLE I

INITIAL AND FINAL PHYSICAL STATES VALUES IN DEGREE/SEC OR

DEGREE

Variable Initial Final

t 0 sec 0.8 sec
(ψ, θ, φ, θ3) (30, 20, 20, 5) (0, 0, 0, 10)

(ψ̇, θ̇, φ̇, θ̇3) (∗, 0.0573, 0.0573, 0.0573) (∗, 0.0573, 0.0573, 0.0573)

(ψ̈, θ̈, φ̈, θ̈3) (∗, 0, 0, 0) (∗, 0, 0, 0)

The diffeomoprphism has the following expressions in

terms of outputs and their derivatives.

θ = y1, φ = y2

θ3 = −
ẏ3 − f11(y1, y2)ẏ1 − f12(y1, y2)ẏ2

[∂f13(y1,y2)
∂y1

ẏ1 +
∂f13(y1,y2)

∂y2
ẏ2]

(15)

ψ = y3 + f13(y1, y2)θ3(y1, y2, ẏ1, ẏ2, ẏ3) (16)

This diffeomorphism is valid if the denominator of Eqn. (15)

is different from 0. This is consistent with the nonzero

condition of Eq. (9).

IV. TRAJECTORY PLANNING AND OPTIMIZATION

Given the initial orientation of the twin body ψ(t0), θ(t0),
φ(t0), θ3(t0), the final orientation ψ(tf ), θ(tf ), φ(tf ), θ3(tf )
is selected so that the free-falling twin bodies can land on the

ground safely. Trajectory planning is performed to provide

continuous motion between the two points before hitting the

ground at time tf .

The method outlined in Section III is illustrated using

the model shown in Fig. 1 with the design assumptions.

The bodies 1, 2 and 3 are cylinders. We modify the mass

distribution of body 3 to place its center of mass oon the axis

ŷ0. The mass and geometric parameters are: body 0 length

0.32m, width 0.22m, and height 0.012m. The lengths of

rotors 1, 2 and 3 are 0.12m, 0.012m and 0.22m respectively.

The radii of rotors 1 and 3 are 0.006m and for rotor 2 is

0.06m. The mass of body 0 is 0.8kg, while the masses of

rotors 1, 2 and 3 are 0.2kg, 0.1kg and 0.3kg respectively.

These parameters and the inertia matrices were selected

based on a typical laptop.

The initial and final values of the planned state variables

are given in Table I. These were arbitrarily chosen to show

that the presented methodology can steer the system from

the initial states to the desired final states. Note that the

initial and final values marked with a ‘∗’ , e.g.
.

ψ cannot be

independently prescribed due to the nonholonomic constraint

given in Eq. (6). Therefore they are not listed in Table I.

For this specific case, ψ̇(t0) = 0.0019, ψ̇(tf ) = 0.0052,

ψ̈(t0) = 3.47× 10−6, ψ̈(tf ) = 2.49× 10−6.
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Fig. 2. Desired trajectory of the angles of the twin body between a start
and end postures: ψ(t), θ(t), φ(t), and θ3(t).

The underlying planning method is to use Eq. (11) to

transform the given initial and final conditions in the flat-

space. Then, smooth polynomials are used to connect these

points in the flat output space. Finally, the planned trajec-

tories in the flat output space are then transformed back to

the original space via Eqs. (15) and (16). Note that the

start and final values of Euler angles as well as angular

velocities are selected to be different from zero to avoid

singularities. In order to address geometric or saturation

constraints, an optimization is performed within the family of

admissible trajectories connecting the initial and final points.

For example, in the problem posed in Fig. 1, we assume that

θ3 is limited to (0, π/2) and all angular speeds are limited

to 60rad/sec.
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Fig. 3. Desired trajectory of the rotor speed : θ̇1(t), θ̇2(t) and θ̇3(t).

In our example, we choose the admissible class of flat

output trajectories as yk(t) = pk1(t) + t3(t− tf )
3pk2(t),

pk1(t) =
5
∑

i=0

αkit
i and pk2(t) =

4
∑

i=0

βkit
i, and tf = 0.8.

With this choice, pk1(t) ensures that the flat output trajectory

passes through the start and final values at the given end

times. pk2(t) is a polynomial with free parameters that

can be optimized to satisfy auxiliary constraints. Note that

t3(t− tf )
3 and its two derivatives are zero at start and

end times. The free parameters in p2(t) do not change

the specified end conditions of the trajectory. To ensure θ3
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to be within limits, the planning problem was formulated

numerically as a nonlinear optimization problem and solved

by a SQP-based routine ‘fmincon’ available in MATLAB.

Trajectory planning and optimization results are shown in

Figs 2-3.

As seen in these simulations, the twin-body system can

be steered by these rotors to move from their initial to

the prescribed final posture. Additionally, θ3 satisfies the

specified limits.

V. CONTROLLER DESIGN

This section focuses on the issue of controller design via

differential flatness. Since the three flat outputs y1, y2, y3
satisfy Eq. (15), via an input feedback





ÿ1
ÿ2
ÿ3



 =





1 0 0
0 1 0
λ1 λ2 λ3









ω1

ω2

ω3



+





0
0
λ4





=





v1
v2
v3





(17)

the system becomes three double integrator plants. On defin-

ing ei = yid− yi, i = 1, 2, 3, the control laws can be chosen

in the form

vi = ÿid +Kviėi +Kpiei, i = 1, 2, 3 (18)

where the control gains Kvi and Kpi are chosen to ensure

stability. Simulations are shown in Figs. 4-7 for Kvi = 40
and Kpi = 400, i = 1, 2, 3. These results show that this

controller can remove any initial errors successfully.
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Fig. 4. Response of the controller to initial errors: ψ(t)
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Fig. 5. Response of the controller to initial errors: θ(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Time t (sec)

E
u
le

r 
A

n
g
le

 Φ
 (

d
e
g
re

e
)

Φ Desired

Φ Real

Fig. 6. Response of the controller to initial errors: φ(t)
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VI. CONCLUSIONS

This study examined posture control of a system of

free-falling twin bodies using the framework of differential
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flatness. The motivation is to capture the physics of falling of

common electronic devices with the twin body model, such

as laptops and cell phones. These systems are described by

four degrees-of-freedom to account for full three dimension

orientation during falls. We assume that the system possesses

three actuators to control the orientation. In this study, a

special mass distribution was assumed within the system

that allowed the system to be dynamically feedback lineariz-

able, via one prolongation of two inputs. A diffeomorphism

between the state space and flat output space was built

using governing angular momentum conservation equations.

Trajectory planners and controllers were developed to steer

the system from an initial posture to a final posture while

satisfying auxiliary constraints with initial errors. In the near

future, we propose to experimentally verify these results.
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