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Abstract— This paper describes a software system integration
of daily assistive robots. Several tasks related to cleaning and
tidying up rooms are focused on. Recognition and motion
generation functions needed to perform daily assistance are
developed, and these functions are used to design various
behaviors involved in daily assistance. In our approach, the
robot behaviours are divided into simple units which consist of
3 functions as check/plan/do, it provides us with high reusable
and flexible development environment. Because sequential task
execution can be achieved only after functions about failure
detection and recovery, we also try to implement such functions
in keeping with this approach. In addition to using simple be-
havior unit, multilayer error handling is effective. Experiments
doing several daily tasks with handling daily tools showed the
effectiveness of our system.

I. INTRODUCTION

In daily environments, various types of furniture and tools
exist for human lives. Daily assistive robots are expected
to work by handling such daily things to achieve helpful
assistance. This paper describes a software integration and
shows an application; “cleaning and tidying rooms” by a
robot in daily environments.

In general, daily routine works include various object
manipulations. Because recent robots have many of DOFs
like a human, it can be said that such robot has sufficient
potential to replace housekeepers in chores. However, a
wealth of recognition and manipulation skills is also needed
to the robot. The purpose of this research is to develop
highly integrated software system which permits a robot to
achieve plenty of daily works. In our system, 3D geometrical
simulator is centered and essential functions of environment
recognition and motion generation are combined by the sim-
ulator. In addition, hierarchical task management framework
for failure recovery is also introduced.

This research copes with “tidying and cleaning rooms”
task which includes some chores as follows:

• Carry a tray on a table to a kitchen,
• Correct clothes in rooms and put them into a washer

machine,
• Clean a floor by using a broom.

Because these tasks need several manipulation skill such
as dual arm manipulation, soft object manipulation, doors
opening, button pressing and so on, good examples of daily
assistance can be shown through their implementation.
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This paper is organized as follows: Section II describes
related works and our approach. Section III to VI introduces
our integrated system and explains each functions. Section
VII explains the task description and failure recovery system.
Section VIII describes experimental results, and section IX
concludes this paper.

II. RELATED WORKS AND OUR APPROACH

Daily assistive robots have been developed over sev-
eral decades. Researchers have evaluated their control sys-
tem, intelligent system or teaching system with applying
their method to a single daily task in real environment
[5],[7],[9],[16]. In the viewpoint of system integration,
Petersson[15] et. al. developed a mobile manipulator system
which could pick an instructed object up, convey, and hand
it to a person.

In recent years, daily assistance by using humanoid robots
becomes an active area of robotics research[1],[12]. Sugano
et. al. presented assistance behavior by using a human symbi-
otic robot which has object manipulation skills[19]. We also
have developed daily assistive robots provided perception,
learning and motion planning skills. Several daily tasks or
cooperative working etc. were implemented[14].

Generally speaking, effective daily assistance can be
achieved by a single robot which has several abilities for
daily tasks execution. Additionally, daily tasks should be
performed continuously. For instance, “Cleaning and Tidying
up rooms” aimed in this paper includes several series of
works, and housekeepers carry out them one after another.
Despite this fact, few robotics researches related to daily
assistance have reported such sequential task execution. Our
purpose is to develop and to proof an integrated system
which can perform various tasks existing daily life.

III. SYSTEM INTEGRATION FOR BEHAVIOR GENERATION

We aim to build an integrated software system for a robot
which has plenty of degrees of freedom like a human. This
section describes the basic policy.

A. Previous knowledge

Manipulation targets satisfy following conditions:
• 3D geometrical model is given in advance. If the object

has articular structure, the information is also added to
the model.

• The pose of a target object is given in advance. How-
ever, a certain level of error is permitted because it is
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Fig. 1. A Daily Assistive Robot

assumed that the robot estimates and corrects the error
automatically.

• The robot has the basic knowledge of its manipulation
target. This means that the robot knows what features
can be used to recognize the target and which sensors
should be used for effective recognition.

Although this policy indicates that environmental models are
given, It is predicted that manufacturer will provide robots
with these model data in the future.

B. A daily assistive robot

Fig. 1 shows a daily assistive robot in our use. Upper body
consists of 2 arms with 7 joints and a head with 3 joints, and
a waist with 1 joint. End-effectors equip 3 fingers and each
finger has 2 joints. In order to grasp an object with palm,
these fingers are fixed without locating to diagonal pair. The
lower body is realized though a wheeled mobile platform
with two active wheels and 4 passive wheels. (See Table.I)

On the other hand, this robot mounts a stereo camera
(STH-MDCS3 made by VIDERE Design Inc.) on the head,
and a LRF (Laser RangeFinder, LMS200 made by SICK
Inc.) on the wheelbase. Force sensors are also equipped on
the wrists and shoulders.

To develop robot system for achieving tasks as previously
indicated, behavior generation functions constituted from
mobility, dual arm manipulation and dextrous handling are
needed. Meanwhile, recognition functions constituted from
environment recognition, self monitoring and positioning
should also be satisfied.

C. Software system overview

Fig. 2 indicates an integrated system. Recognition func-
tions and motion generation functions are densely combined
with 3D geometrical simulator. The simulator provides 3D
shape and appearance with the recognition functions, and
also provides handling information with the motion genera-
tion functions.

TABLE I
SPECIFICATION OF IRT DAILY ASSISTIVE ROBOT

Deimension H 1550 mm x W 500 mm x D 650
mm

Weight 130 kg
Head Neck 3 DOF (Yaw-Pitch-Roll)
Arms 7 DOF (Shoulder Pitch-Roll-Yaw),

(Elbow Pitch), (Wrist Yaw-Pitch-
Yaw)

Hands 3 Fingers (Each of fingers has 2 pitch
joints)

Waist 1 DOF (Pitch)
Mobile Platform Two wheeled mobile base (Tred 500

mm, Wheel Diameter 170 mm)

Fig. 2. Software Architecture

Meanwhile, a different layer is implemented to observe
and to manage the robot state in realtime. For instance,
collision checking of wheelbase by using LRF, measuring
of joints load and so on. These functions drew upon plugin
system described in [8]

“Pose” described in this paper means the state of combin-
ing its position and direction.

IV. ENVIRONMENT RECOGNITION

It is assumed that the handled targets while tidying and
cleaning are 5 series of objects as follows: tray, chair,
washing machine broom and cloth. Because former 4 objects
can be regarded as solid objects, 3D geometrical models are
used to recognize their poses. On the other hand, in the case
of soft object as a cloth, the role of recognition function
is to find the target in daily environments, and to detect its
existing position.

A. Pose estimation based on a geometrical model

External sensors the robot equips are a stereo camera on
the head and a LRF on the wheelbase. Pose estimation of
large size furniture such as a chair and a washing machine
uses both of these sensors. On the other hand, the stereo
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Fig. 3. Pose estimation of a table and a chair. Wireframe models illustrated
as dark-red lines show candidates of target objects. Red wireflame models
at lower figures show pose estimation results.

camera is only used in the case of a tray, which cannot be
observed by LRF. The matching procedure is as follows:
firstly, 3D geometrical model is virtually placed in a simula-
tor world, and its appearance is projected to an image which
is captured by the stereo camera. By matching the projected
model with several types of image features, the degree of
estimation accuracy is evaluated. We apply particle filter to
this estimation process according to following rules:

p(xt|Zt−1) =

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1, (1)

This equation indicates prior probability which is calculated
from an object pose xt, a sensor measurement zt. We denote
Zt = {zi, i = 1, ...n}.

The posterior probability p(xt|Zt) can be calculated obey-
ing Bayes rule as follows:

p(xt|Zt) ∝ p(zt|xt)p(xt|Zt−1), (2)

where p(zt|xt) denotes the likelihood at each time.
In addition to LRF data, because the estimation needs

easily extractable image features like edges, line segments
and colors, this method is suitable to recognize the pose
of patternless furniture. Fig. 3 shows examples of pose
estimation.

B. Cloth recognition based on wrinkly features[17]

A recognition approach without 3D geometrical model is
needed to find clothes because they have a soft body. So we
take an approach to find wrinkles in images. Our method
involves image leaning to define the wrinkly features.

In the learning process, gabor filtering is first applied
to several images which capture clothes placed on daily
environment. Next, we crop partial images including cloth
region. On the other hand, background regions are also
cropped randomly. 20 bins of histograms are calculated from
these regions, a vector of discriminant function is calculated
by following equation:

Fig. 4. Cloth detection based on wrinkly features in an image

L(w, h,α) =
1

2
|w|2 −

n∑
i=1

αi{ti(wt
ixi − h)}, (3)

L(·) denotes Lagrange function. w and h are parameters of
discriminant function. xi denotes ith data for learning.

In the recognition process, an image is divided to 3
regions; (1) the region which can obviously be judged as
a wrinkle region, (2) non-wrinkle region, (3) unclear region.
These are calculated by using following equation:

y = wtxj − h, (4)

the region belonging (3) is segmented by using graphcut[3]
with regarding region (1) and (2) as seeds. Fig. 4 shows an
example of a shirt detection.

This process results to judge whether clothes exist or not
in the front of the robot. Moreover, because of using stereo
camera, 3D position of the cloth is calculated.

C. Attention area extraction and change monitoring

For successful object manipulation, one of the effective
ways is to visually confirm the object while doing the
manipulation. Two type of functions are provided to estimate
manipulation state. One uses specific color extraction, and
the other uses differentiation between two images. Extracted
regions through these methods are classified, their shapes and
areas are utilized to judge whether or not the manipulation
is well.

V. MOTION GENERATION

A. Upper body motion

In order to detect gazing and handling points, coordinates
embedded in a 3D object model are referred. Jacobian-based
inverse kinematics is calculated based on these coordinates.
Especially, we utilize SR-inverse[11] which has a good track
record in stability around singular point.

The equation to calculate angle velocities θ̇ is as follows:

θ̇ = J#
w ẋ+ (I− Jw

#J)y (5)
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Fig. 5. Wheelbase motion

where J# is a SR-inverse of J, and J#
w is a multiplication

result of J# and weight matrix W. The diagonal matrix W
is determined from following eq. [4]:

wi =

∣∣∣∣∣ (θmax − θmin)
2
(2θi − θmax − θmin)

4 (θi − θmax)
2
(θi − θmin)

2

∣∣∣∣∣ (6)

In the equation(6), wi is replaced on 1/(1 + wi) when the
value becomes smaller than pervious value. In reverse case, it
replaced on 1. Such arrangement plays a role in making small
weights when joint angles next to angle limits. y indicates
an optimization function for avoiding self collision by using
redundant degrees of freedom.

B. Wheelbase motion
Because we focus on doing several types of chores by a

single robot, the robot has to shift its position where each
task is performed. The wheelbase is controlled based on line
trajectory tracking. Fig. 5 shows an example of navigation.
Basically the trajectory of the platform is determined from
a set of coordinates which are discretely allocated on the
floor. The initial direction of the robot is the same as x
axis of the initial coordinates. The controller outputs velocity
v and angular velocity ω with considering relative pose of
coordinates. In this case, the robot first goes back at interval
′A′ in Fig. 5 and after that, goes in the goal coordinates via
remained coordinates.

Initial wheelbase poses of every task are previously de-
fined on an environment map. When the robot moves to
an initial position of another task, or retry a task from the
beginning, the motion generator provides the robot with a
set of coordinates to shift toward target pose.

VI. LOCALIZATION AND STATE MONITORING

A. Wheelbase localization
Wheelbase localization is achieved by using LRF (Laser

RangeFinder) mounted on the wheelbase. Environment map
was generated by SLAM in advance, a present robot pose is
calculated by means of scan matching[6].

In the map generation phase, we apply SLAM approach
which combines ICP algorithm based on scan matching[2]
and GraphSLAM[10]. Because this map is represented as
dozens of reference scan and robot positions, ICP algorithm
can be used to match between input scan and reference scans

Fig. 6. Task structure in case of chair manipulation

in the localization phase. However, this matching is subject to
fail when the wheelbase rotates steeply. In order to eliminate
such mismatching, the information of odometory changes
from time t− 1 to t is added to the scan matching.

B. State monitoring
When the robot performs object manipulation, its state

such as load to joints should be observed to detect manipu-
lation failure. From this reason, monitoring functions are kept
in good working order. For instance, (i)load monitoring using
force sensors in arms, (ii)difference monitoring between joint
angles of a present pose and that of reference pose. To ensure
a collision-free navigation, collision risk of a wheelbase is
also checked by using LRF.

VII. BEHAVIOR DESCRIPTION OF DAILY ASSISTIVE
TASKS

To achieve various daily assistance by a life-sized robot,
unified framework of behavior description is needed. More-
over, the framework should eliminate task failures. This
section describes the policy to which we apply.

A. Basic configuration

A manipulation behavior consists of “approach” and “ma-
nipulation”. The approach part has a role in finding its
manipulation target and going near to it. Meanwhile, the
manipulation part has a role in confirming the pose of the
target, planning robot motion and executing it. Now we call
the smallest description of behavior “behavior unit” which is
a set of recognition, motion generation and motion execution.
That is, daily assistive tasks are represented as approach
phase and manipulation phase, and each tasks consists of
several behavior units.
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Fig. 7. Task structure including standard failure recovery

Fig. 6 shows an example of behavior description in the
case of chair handling. The advantage of this framework is
that each of the behavior units can specifically be reused
as the situation demands. For instance, when a hand which
grasps a chair is isolated while pulling it, the error imme-
diately detected by means of state monitoring such as force
load to the wrist or joint angles of fingers. In such case, the
task can be continued by transit function from behavior unit
12. to 7., see Fig. 7

B. Classification of failures

The word “Failure” in this paper means the condition that
the result of sensor measurement is different from assumed
one, and the fact adversely affects task execution. Because
cleaning and tidying needs to perform several number of
sub-tasks continuously, it is not approvable to stop the
execution when one failure is detected. From this reason,
failure detection and recovery are absolutely necessary.

There are many type of failures and many ways to recover
from it. Examples in our task are that a cloth hangs out of
a washing tab, or a broom lies down on a floor because the
robot failed to grasp it. In order to establish basic structure
for error recovery, we classify observed failures to 3 groups
from the viewpoint of the levels of recovery intractableness.

• (A) Failures observed before manipulation : This
occurs while approaching or at the beginning of object
manipulation. One of the examples is that the robot
cannot plan its handling pose because of wheelbase
positioning error after it approaches to manipulation
target.

• (B) Failures observed after manipulation, without
almost no changes of the manipulation target : This
failure occurs in a manipulation part and it is observed
by checking sensing data whether or not the data is
similar to the assumed one. If the robot can recover a

Fig. 8. Experimental Environment

failure just by recalling the same behavior units again,
it is classified to this group.

• (C) Failures with changing the manipulation condi-
tion significantly : Although this failure is observed
by the same way as (B), the way of recovery is differ
from (B) because simply behavior repetition does not
make sense in this case. For instance, if the robot tries
to grab a broom propped against a wall but drops it
down, picking up motion is newly needed.

C. The procedure of failure detection and recovery

Fig. 7 shows state transition diagram with nodes for failure
recovery. In the case of failures classified to (A), the system
should find failures at “check” function or “plan” function,
and calls the “check” function again. If an adequate result
cannot be acquired through this process, a behavior unit
which has already been called is used again. In the case of
(B), recovery is achieved with moving from “do” function
to “check” function in the same behavior unit. If it cannot,
a behavior unit which has already been called is used as the
same case as (A).

On the other case (C), a completely different behavior unit
is called first. If the behavior succeeded, the system returns
a process to a behavior which was originally executed. For
instance, the robot finds a cloth which gets out of washing
tab, a new motion is inserted to pick the cloth up. Next,
original behavior unit for putting the cloth into the washer
is called again.

Although failures described above can be found at “check”
and “planning” functions, there is another type of failures.
For instance, if the robot unexpectedly finds an abnormal
state that force measurements go down while grabbing a
manipulation target, it should be judged as a fail at that
moment. Such sudden failures in the middle of running a
function are managed “state monitoring & error handling”
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Fig. 9. An experiment

layer which runs in parallel with main routine. A detected
failure is coped as an error in the system, this layer interrupt
main process and insert adequate functions to recover the
error.

In addition this layer plays a part to prevent unnecessary
iteration of same recovery routine. It manages how many
iterations occur in one recovery process, and if the number
of iterations is over a predefined threshold, it calls a function
to rework the task fundamentally.

VIII. EXPERIMENTS

A. Settings

Fig. 8 shows an experimental environment. The size of
room was 5m × 8m. A set of furniture including a table,
chairs and shelves was placed on the room, and some home
electrical appliances as a frig and a washing machine were
also equipped. Tasks imposed to a robot were (i) to carry a
tray, (ii) to collect clothes and (iii) to clean a floor.

1) Carry a tray: The robot stands a front of a table
(described Fig. 8, P ) in the beginning, pick the tray
up, move to point Q and put it on a kitchen.

2) Collect a cloth: The robot moves to the point R, finds
a cloth placed on a back of a chair. After picking it
up, put the cloth into the washing machine placed on
the point S

3) Sweep a floor: The robot grabs a broom which is
propped up against the washing machine, and move to
the point R. it sweeps under the table after removing
the chair, and then, moves around the room with
sweeping as shown in upper figure at Fig. 8.

An environment map for self localization was generated in
advance. A person who moved around the room pushed the
robot from behind, scan matching was performed by using
LRF data.

B. Implementation of doing chores
Basically, behavior units required to perform these tasks

consisted of functions described in section IV, V and VI. As
illustrated in Fig. 6, each manipulation task basically forms
the following structure: “check” function finds manipulation
target and returns relative coordinates between the robot and
the target. “plan” function plans the robot motion based
on the coordinates and geometrical model of the target,
and returns pairs of robot pose stream and its execution
time. “do” function executes the pose stream with running
monitoring functions in parallel.

The action sequence needed for tidying and cleaning task
was divided into 14 behavior units, 2 units for carrying a
tray, 5 units for correcting a cloth and remained 7 units for
sweeping a floor. Because the sweep task included a sub task
to move a chair for cleaning under the table, it needed much
behavior units.

In addition to the integrated software system based on
geometrical simulator, the behavior unit framework permitted
us to design simple programming on task level. Fig. 9 shows
the outline of the tidying and cleaning experiment. A task
execution took about 8 minutes. If some failures occurred,
the time increased depending on its recovery.

C. Examples of failure detection and recovery
Fig. 10 shows an example of failure recovery with washer

handling. In this case, the door of the washer tab was not
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Fig. 10. Failure Detection in washer door opening

Fig. 11. Failure Recovery by picking up a cloth

opened because the robot could not push the button on
the washer normally. This was a failure classified to (B)
described section VII.B. One of the methods to achieve
secure manipulation is to observe effects on the target object
after or in the middle of the manipulation. Visual functions
which judged whether or not the washer door was opened.
Whenever the robot found a trouble in the pushing, the
task was retried from button recognition stage. If the retries
successively failed, error handling layer caught an error and
called a behavior unit of approach part. It means that the
robot started over the task by changing its wheelbase pose.

Fig. 11 shows another example in the case of cloth
handling. The figure indicates the condition that the robot
could not pick up a cloth and dropped it down. This can
be detected by gazing its hand or observing joint angles of
fingers. Because it cannot be recovered only doing same
motion again, the failure was classified to (C) described
section 5.3. In this case, a novel motion but combining with
basic behaviors was applied to find and to pick up the cloth.

IX. CONCLUSIONS

This paper described a software system integration of
daily assistive robots. Several tasks related to cleaning and
tidying up rooms are focused on. Simple task description was
adopted to apply our software system which includes a plenty
of recognition and motion generation functions. We also tried
to detect and recover some failures based on the system.
Experiments doing several daily tasks with handling daily
tools showed the effectiveness of our system integration.

Future works, we try to develop more applicable functions
to find failures automatically. In addition, it is predicted that

automatic behavior unit generation is needed because there
were worrying processes to divide a task into behavior units
by manual. More feasible motion planner was also needed.
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