
3D Path Following with no Bounds on the Path Curvature through

Surface Intersection

Antonio Sgorbissa, Renato Zaccaria

Abstract— The article proposes a new feedback control model
which is suited for path following in a 3 Dimensional Cartesian
space. Differently from other methods in literature, the method
proposed neither requires to compute a projection of the robot’s
position on the path, nor it needs considering a moving virtual
target. In spite of this: i) it guarantees asymptotic stability for
every 3D curve which can be represented through a couple of
intersecting surfaces f1(X, Y, Z) = 0, f2(X, Y, Z) = 0; ii) it
does not put any bounds on the initial position of the vehicle
depending on the path’s curvature.

I. INTRODUCTION

The article proposes a new feedback control model for

path following in the 3 Dimensional Cartesian space. The

model is the extension of a model for 2D path following

which has already been presented in [1]. In this work a

solution is proposed for underactuated vehicles moving in

the 3D space (e.g., Autonomous Underwater Vehicles and

Autonomous Aerial Vehicles). It is important to anticipate

that only kinematics aspects are considered in the paper.

Therefore, even if AUVs are considered in the following as

a possible application scenario, a complete discussion about

dynamic aspects, including hydrodynamic and hydrostatic

forces as well as environmental disturbances such as ocean

currents, would be required for a real world implementation.

For an introduction to the problem of path following for

AUVs and AAVs see [3] or the more recent [4].

Path following has been deeply investigated in the liter-

ature. The assumption in early works dealing with wheeled

vehicles [5][6] is that the vehicle’s forward speed conforms

to a prescribed speed profile, while the controller acts on the

vehicle’s orientation to steer it to the path. To achieve this, the

orthogonal projection of the robot on the path is computed,

and a distance and an angular error are consequently defined.

Next, an asymptotically stable control law is proposed which

minimizes both errors by controlling the vehicle’s orienta-

tion. It is known that these methods require to put a bound

on the initial vehicle configuration: in fact, depending on

the path’s curvature, this point cannot be too far from the

curve in order to guarantee uniqueness of the projection.

The approaches above have been extended to the 3D case for

underwater vehicles [7], by inheriting the major shortcoming

already present in the control strategy for wheeled robots.

A solution to this problem has been initially proposed in

[8]. Path following is achieved by controlling explicitly the

progression rate of a “virtual target” to be tracked along the

A. Sgorbissa, R. Zaccaria are with DIST, University
of Genova, Via Opera Pia 13, 16145, Genova, Italy.
Email:{sgorbiss,renato}@dist.unige.it.

path, thus bypassing the problems that arise when a projec-

tion of the actual vehicle onto that path must be computed.

Since the publication of [8], the approach has been very

popular, and variants with significant improvements have

been proposed, both for wheeled vehicles [11], marine crafts

[9] and AUVs [10][12][13][14]. The integration with path

planning has been proposed in [15]. Approaches based on

the virtual target have the minor drawback that they require

additional computations to determine the target motion rate.

The major contribution of this work is to propose a novel

approach to path following which works both in 2D and 3D,

and solves the problem of the bounded path curvature [5][6].

The method neither requires to compute a projection of the

robot’s position on the path, nor it needs considering a mov-

ing virtual target. In spite of this: (i) it guarantees asymptotic

stability for every 2D curve which can be represented through

its implicit equation in the form f(X,Y) = 0, and for every

3D curve which can be represented through a couple of

intersecting surfaces f1(X,Y,Z) = 0, f2(X,Y,Z) = 0; (ii)

it does not put any bounds on the initial position of the

vehicle depending on the path curvature.

Section II summarizes the basic concepts of path follow-

ing in 2D, outlining differences with the original approach

presented in [1]; specifically, this work refers to the improved

version of the same model proposed in [2]. Section III

describes 3D path following. Simulated results, conclusions

and future works are described in Sections IV and V.

II. PATH FOLLOWING IN 2D

Assume a unicycle robot moving on the XY -plane of

a fixed Cartesian frame. A state vector η = [X,Y, ψ]T is

introduced, where X ,Y , and ψ correspond to the vehicle’s

position and orientation. The state equations that describe

the unicycle kinematics are:

Ẋ = u cosψ

Ẏ = u sinψ

ψ̇ = r.

(1)

Inputs u and r correspond, respectively, to the translational

and the rotational speed. The control law slightly varies

depending on the shape of the path to follow, either it is a

straight line or a generic curve expressed through its implicit

equation in the form f(X,Y) = 0.

A. Straight line

Let D be the signed distance to the line computed in the

current robot position (X,Y), and let ψe be the difference

between the robot orientation and the orientation of the

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4029

Fig. 1. Left: following the straight path f(X,Y) = Y = 0. Right:
following a generic curve f(X,Y) = 0

line. Moreover, assume for simplicity that the path to follow

corresponds to the X-axis of the reference system (Figure 1

on the left), and hence D = Y and ψe = ψ. To guarantee

asymptotic convergence to the path, we let:

u = u(t), lim
t→∞

u(t) > 0

r = K(−uS(D) − Ḋ), K > 0,
(2)

where S(D) is a Cn sigmoid function:

S(D) = D√
1+D2

. (3)

In order to compute equilibrium points, consider the state

equations for (D,ψe) from (1) and (2), by initially assuming

that u = ū > 0 is a constant positive velocity:

Ḋ = ū sinψe
ψ̇e = K(−ūS(D) − Ḋ).

(4)

Equation (4) describes a system which is regular and time–

invariant: the trajectories of the system depend only on initial

conditions. Equilibrium points are given by the solutions of:

0 = ū sinψe
0 = K(−ūS(D) − 0).

(5)

Equilibrium points correspond to the set {(D = 0, ψe =
kπ)|k ∈ Z}, i.e., when the distance from the line is null and

the robot is oriented along the line. In particular, points in

the set {(D = 0, ψe = 2kπ)|k ∈ Z} are stable equilibrium

points, whereas {(D = 0, ψe = (2k + 1)π)|k ∈ Z} are not

(the robot is moving along the line in the wrong direction).

In [2], the asymptotical stability of points in the set

{(D = 0, ψe = 2kπ)|k ∈ Z} is demonstrated. Moreover,

it is shown that the system in (4) globally converges to one

of the points in the set {(D = 0, ψe = 2kπ)|k ∈ Z}, and

that the difference between the vehicle heading in the initial

position and the heading in equilibrium is less than 2π (in

absolute value). These properties are confirmed by observing

trajectories in the plane of phases in Figure 21.

Remark 1. When analyzing the system (4) in the plane

of phases, it is required to compute, for every (D,ψe),
a corresponding vector (Ḋ, ψ̇e) which is tangent to the

trajectory in that point. Since both Ḋ and ψ̇e are proportional

to the velocity u in (4), this means that the norm of (Ḋ, ψ̇e)
depends on u, but its direction does not. This in turn implies

1The analysis has been performed with the pplane Matlab toolbox,
http://math.rice.edu/∼dfield.

ψ ’ = K (− u D/sqrt(1 + D
2
) − u sin(ψ))

D ’ = u sin(ψ)

u = 1
K = 1

−9.42 −6.28 −3.14 0 3.14 6.28 9.42

−10

−5

0

5

10

ψ

D

Fig. 2. Trajectories in the plane of phases.

that trajectories in the plane of phases have the same shape

for every (not necessarily constant) velocity profile u = u(t).
In particular, if u > 0 the vehicle moves towards equilibrium

points at speed u; if u < 0 the vehicle moves backward

away from equilibrium points; if u = 0 the vehicle stops.

If lim
t→∞

u(t) > 0 the system asymptotically converges to a

point in the set {(D = 0, ψe = 2kπ)|k ∈ Z}. �

The instability of equilibrium points in the set {(D =
0, ψe = (2k + 1)π)|k ∈ Z} can be easily proved, but – as

for stability – it is not shown for sake of brevity.

Remark 2. To choose the heading of the vehicle along the

straight line, it is sufficient to invert the sign of the distance

D. This has the effect of switching stable equilibrium points

to unstable, and viceversa. �

B. Generic curve

In the case of a generic curve in the plane, expressed

through its implicit equation f(X,Y) = 0 (Figure 1 on

the right), it is not trivial to express the distance from the

curve in closed form. Even if it does not represent the

Euclidean distance from the curve, a possibility is to use

the function D = f(X,Y) as a distance function. Notice

that Z = f(X,Y) defines a 3D surface in the Cartesian

XY Z-space which, when intersected with the plane Z = 0,

produces the desired path f(X,Y) = 0. When defined in this

way, D has some good properties which make it appropriate

for our purpose: (i) D is a scalar field; (ii) D = 0 when

(X,Y) lies on the curve (by definition); (iii) given that the

gradient of D is not null on the curve, D is positive / negative

depending on which side of the plane (X,Y) is located with

respect to the curve.

Let fX , fY stand for the partial derivatives of f . The

function f must be twice differentiable and ‖∇f‖ =
√

f2
X + f2

Y > 0 in the chosen domain, that is the plane

deprived of a neighbourhood of points where ‖∇f‖ = 0.

The first and second order partial derivatives of D are:

DX = ∂f(X,Y)
∂x

, DY = ∂f(X,Y)
∂Y

,

DXX = ∂2f(X,Y)
∂X2 ,DY Y = ∂2f(X,Y)

∂Y 2 ,

DXY = DY X = ∂2f(X,Y)
∂X∂Y

.

(6)

4030

To guarantee asymptotic convergence to the path, we let:

u = u(t), limt→∞ u(t) > 0,

r = K(−‖∇D‖uS(D) − Ḋ) + ψ̇c,
(7)

where ‖∇D‖ = ‖∇f‖, K > 0, and S(D) is the sigmoid

function in (3). The term ψc is defined as the angle between

the X-axis and the vector (DY ,−DX) normal to ‖∇D‖ in

(X,Y), i.e., tangent to the level curve (Figure 1 on the right).

The angle ψc can be computed as ψc = tan−1 (−DX/DY)
when DY 6= 0, or ψc = cot−1 (−DY /DX) when DX 6= 0.

In both cases:

ψ̇c = (DXDY X−DY DXX)u cosψ+(DXDY Y −DY DXY)u sinψ
‖∇D‖2 .

(8)

By writing kinematics equations for (D,ψ) it follows that:

Ḋ = DXu cosψ +DY u sinψ

ψ̇ = K(−‖∇D‖uS(D) − Ḋ) + ψ̇c.
(9)

Finally, (9) is re–written for (D,ψe), where ψe = ψ−ψc
measures the error between the vehicle heading and the tan-

gent to the level curve in (X,Y). After some computations

(9) becomes (see [1][2] for details):

Ḋ = ‖∇D‖u sinψe
ψ̇e = K(−‖∇D‖uS(D) − Ḋ).

(10)

The system in (10) has the same expression as (4) by

assuming a control input u′ = ‖∇D‖u and therefore it has

the same stable / unstable equilibrium points (see Remark

1): D and ψe tend asymptotically to a point in the set

{(D = 0, ψe = 2kπ)|k ∈ Z}. Obviously, the meaning

of D is different from the straight line case, since now D
represents the value of f in the current position, instead of the

Euclidean distance to the curve. However, this is sufficient

to guarantee that the system reaches an equilibrium state in

which the robot position lies on the path, i.e., f(X,Y) = 0,

and the robot heading is tangent to the path itself.

Differently from other approaches in the literature [5][6]

there are no conditions on the path curvature. One could

argue that, for some curves, it can be necessary to restrict the

workspace to a subset of ℜ2 to meet the constraint ‖∇D‖ >
0 in (8) and (10). However, this constraint is not related to the

path curvature: consider, for example, the sinusoidal profile:

f(X,Y) = Y − a sin(bX) = 0, (11)

for which ‖∇D‖ > 0 is always guaranteed, and whose

maximum curvature in correspondence of {(Y = ±a,X =
1
b
(2kπ± π

2))|k ∈ Z} can be arbitrarily increased by increas-

ing b.
Experiments with a wheeled robot are described in [2].

III. PATH FOLLOWING IN 3D

Kinematics equations must be properly reformulated for

3D path tracking. A notation similar to [4] is adopted, where

η = [X,Y,Z, φ, θ, ψ]T is the vector describing North-East-

Down positions in Earth-Fixed coordinates (n–frame) as well

as Euler angles, and v = [u, v, w, p, q, r]T are the six DOF

generalised velocities in body–fixed coordinates (b–frame).

It is assumed that it is possible to control only the linear

velocity u along the x-axis of the b–frame, as well as its

rotational velocity about the y- and the z-axis of the b–

frame (q and r, referred to as pitch and yaw). This choice

is very common in AUV design for energetic reasons. The

kinematics equations can be written in component form as

follows:

Ẋ = u cosψ cos θ

Ẏ = u sinψ cos θ

Ż = −u sin θ

φ̇ = q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ
cos θ + r cosφ

cos θ
θ 6= ±π

2 .

(12)

In the following, it is assumed also that the AUV is

stabilized in roll by a separate mechanism not described here,

which guarantees that φ̇ = φ = 0. In this case, kinematics

equations can be simplified as follows:

Ẋ = u cosψ cos θ

Ẏ = u sinψ cos θ

Ż = −u sin θ

φ̇ = 0

θ̇ = q

ψ̇ = r 1
cos θ

θ 6= ±π
2 .

(13)

A. Straight line in 3D

Assume now that the path–planner has produced, as the

result of a planning phase, a path to be followed, expressed

as the intersection of two properly chosen surfaces. As in

the 2D case, it is first considered the situation in which the

path is a straight line, i.e., the surfaces are planes in the

3D space, each plane being described through its implicit

equation in the form fi(X,Y,Z) = 0, for (i = 1, 2).
We anticipate however that, by properly defining a distance

function Di for (i = 1, 2), the following discussion is still

valid when fi(X,Y,Z) = 0 are generic surfaces, and the

resulting path is a generic curve in 3D. The straight line

case is described first since it is simpler to be visualized. In

the next subsection, the discussion will be straightfowardly

extended to a generic curve.

In case of two non–parallel planes, the path is a straight

line given by the ∞1 solutions of the following system:

f1(X,Y,Z) = a1X + b1Y + c1Z + d1 = 0
f2(X,Y,Z) = a2X + b2Y + c2Z + d2 = 0.

(14)

Let fiX , fiY , fiZ stand for the partial derivatives of

f . Two distance functions D1 = D1(X,Y,Z) and D2 =
D2(X,Y,Z) are introduced, describing – respectively – the

distance from the first and the second plane. The distance is

4031

taken as a signed value, which is positive on one side of the

plane and negative on the other. That is:

Di = aiX+biY+ciZ+di=0√
a2

i
+b2

i
+c2

i

, (i = 1, 2), (15)

whose partial derivatives are

DiX = ∂Di(X,Y,Z)
∂X

= ai√
a2

i
+b2

i
+c2

i

= fiX

‖∇fi‖

DiY = ∂Di(X,Y,Z)
∂Y

= bi√
a2

i
+b2

i
+c2

i

= fiY

‖∇fi‖

DiZ = ∂Di(X,Y,Z)
∂Z

= ci√
a2

i
+b2

i
+c2

i

= fiZ

‖∇fi‖ .

(16)

where ‖∇fi‖ =
√

f2
iX + f2

iY + f2
iZ is the norm of the

gradient of fi(X,Y,Z).
To simplify the discussion, we define:

D̂1X̂ = D1X cosψ +D1Y sinψ

D̂1Ŷ = −D1Z
(17)

and
D̂2X̂ = D2XD1Z−D2ZD1X

D1Z

D̂2Ŷ = D2Y D1Z−D2ZD1Y

D1Z

.
(18)

It is possible to show that the system described by kine-

matics equations in (13) can be forced to converge to the

straight line defined by the system in (14) by setting control

inputs [u, q, r]T as follows:

u = u(t), lim
t→∞

u(t) 6= 0

q = K1(−‖∇D̂1‖uS(D1) − Ḋ1) + θ̇c
r = K2(−‖∇D̂2‖u cos2 θS(D2) − cos θḊ2) + ψ̇c

D1Z 6= 0, ‖∇D2‖ 6= 0.

(19)

where, for (i = 1, 2), ‖∇D̂i‖ =
√

D̂2
iX̂

+ D̂2
iŶ

, Ki > 0, and

S(Di) is the sigmoid function in (3).

The angle θc is computed as θc = tan−1(−D̂1X̂/D̂1Ŷ)

when D̂1Ŷ 6= 0, or θc = cot−1(−D̂1Ŷ /D̂1X̂) when D̂1X̂ 6=
0; the former condition is guaranteed by the constraint

D1Z 6= 0, see (17) and (19).

The angle ψc is computed as ψc = tan−1(−D̂2X̂/D̂2Ŷ)

when D̂2Ŷ 6= 0, or ψc = cot−1(−D̂2Ŷ /D̂2X̂) when D̂2X̂ 6=
0; one of the two conditions is guaranteed by the constraints

D1Z 6= 0 and ‖∇D2‖ 6= 0, see (18) and (19).

It can be noticed that the constraints D1Z 6= 0 and

‖∇D2‖ 6= 0 guarantee that f1(X,Y,Z) = 0 is not perpen-

dicular to the XY -plane and f2(X,Y,Z) = 0 is not parallel

to the XY -plane.

Remark 4. The equations above are similar to (2). The

pitch q is proportional to the difference between a reference

value −‖∇D̂1‖uS(D1) and the approaching velocity Ḋ1 to

the plane f1(X,Y,Z) = 0 (i.e., the derivative of the distance

D1 with respect to time). Similarly, the yaw r is proportional

to the difference between −‖∇D̂2‖u cos θ(D2) and Ḋ2. The

term ψ̇c in line 3 is reported since it is necessary in case of

generic surfaces, but it can be easily verified from (18) that

it is always null in case of two intersecting planes. �

As anticipated the basic idea is to decouple 3D path track-

ing into two disjoint problems. In particular, by controlling

the pitch in order to converge to the surface f1(X,Y,Z) = 0
and, simultaneously, controlling the yaw in order to converge

to the surface f2(X,Y,Z) = 0, the system is expected to

converge to the desired path, i.e., expressed as the intersec-

tion of the two surfaces.

To show that this is possible, kinematics equations are re–

written for a different state vector [D1,D2, θ, ψ]T , whereas

φ is ignored (as allowed by Remark 3).

Ḋ1 = D1Xu cosψ cos θ +D1Y u sinψ cos θ −D1Zu sin θ

Ḋ2 = D2Xu cosψ cos θ +D2Y u sinψ cos θ −D2Zu sin θ

θ̇ = K1(−‖∇D̂1‖uS(D1) − Ḋ1) + θ̇c
ψ̇ = K2(−‖∇D̂2‖u cos θS(D2) − Ḋ2) + ψ̇c

θ 6= ±π
2 ,D1Z 6= 0, ‖∇D2‖ 6= 0.

(20)

Initially consider only line 1 and 3 in the system above,

and re–write them by using (17):

Ḋ1 = D̂1X̂u cos θ + D̂1Ŷ u sin θ

θ̇ = K1(−‖∇D̂1‖uS(D1) − Ḋ1) + θ̇c.
(21)

Assume that ψ is given: (21) corresponds to the situation

that the AUV, with a fixed yaw, tends to converge to the

surface defined by f1(X,Y,Z) = 0 by controlling only the

pitch. For D1 to be in equilibrium, it must necessarily hold:

0 = D̂1X̂u cos θ + D̂1Ŷ u sin θ. (22)

In particular, as long as D1Z 6= 0, this yields:

sin θ =
−D̂

1X̂

D̂
1Ŷ

cos θ = D1X cosψ+D1Y sinψ
D1Z

, (23)

and finally:

θ = tan−1
(

−D̂
1X̂

D̂
1Ŷ

)

+ kπ. (24)

It is necessary to verify if, when ψ is given, the vehicle

moves on a plane (X̂, Ŷ) perpendicular to the XY -plane

(Figure 3) until it lies on the surface f1(X,Y,Z) = 0, i.e.,

until it reaches an equilibrium which depends on ψ (through

the term D̂1X̂) as stated in (24). Let us define X̂ and Ŷ the

main axes of such plane, where X̂ lies along the axis of nodes

and Ŷ lies along −Z in the pitch–yaw–roll representation.

It holds the following relationships between the vehicle’s

Fig. 3. A vehicle moving on the plane (X̂, Ŷ) with fixed ψ.

4032

configuration in (X,Y,Z) and the corresponding position

and orientation (X̂, Ŷ , θ̂) in the (X̂, Ŷ) plane:

X = X̂ cosψ

Y = X̂ sinψ

Z = −Ŷ
θ = θ̂.

(25)

From (25) it can be derived that:

∂D1

∂X̂
= ∂D1

∂X
∂X

∂X̂
+ ∂D1

∂Y
∂Y

∂X̂
= D̂1X̂

∂D1

∂Ŷ
= ∂D1

∂Z
∂Z

∂Ŷ
= D̂1Ŷ ,

(26)

which means that D̂1X̂ and D̂1Ŷ in (21) are the partial

derivatives of D1 with respect to X̂ and Ŷ . That is, (21)

states that the vehicle moves on the plane (X̂, Ŷ) like a

unicyle with speed u. By re–writing kinematics equations

for (D1, θe), where θe = θ − θc, this yields after some

computations (similarly to the 2D case shown in [2]):

Ḋ1 = ‖∇D̂1‖u sin θe
θ̇e = K1(−‖∇D̂1‖uS(D1) − Ḋ1).

(27)

The equation above has the same form as (10) by as-

suming a control input u′ = ‖∇D̂1‖u, which means that

the vehicle converges asymptotically to equilibrium points

{(D1 = 0, θe = 2kπ|k ∈ Z)}, while moving on the (X̂, Ŷ)
plane, exactly as it has been shown for the 2D case. The

set {(D1 = 0, θe = 2(k + 1)π|k ∈ Z)} describes unstable

equilibrium points. Convergence is guaranteed as long as

lim
t→∞

‖∇D̂1(X(t), Y (t), Z(t), ψ(t))‖ 6= 0: a sufficient con-

dition for this to happen is D1Z 6= 0.

Remark 4. The equation above implies that, for every ψ,

the vehicle tends to lie on the surface f1(X,Y,Z) = 0. The

term θ̇c in (21) guarantees convergence however ψ varies in

time. �

Consider now lines 2 and 4 of kinematics equations in

(20). Assume that θ, after a transient behaviour, guarantees

that the vehicle lies on the surface f1(X,Y,Z) = 0. By

substituting (23) into lines 2 and 4 of (20) and by collecting

terms, the system becomes after some computations:

Ḋ2 = D̂2X̂u cos θ cosψ + D̂2Ŷ u cos θ sinψ

ψ̇ = K2(−‖∇D̂2‖u cos θS(D2) − Ḋ2) + ψ̇c.
(28)

which corresponds to the situation that the AUV, with a pitch

which lies on the surface f1(X,Y,Z) = 0, tends to converge

to the surface defined by f2(X,Y,Z) = 0 by controlling only

the yaw (i.e., symmetrical to the previous case). For D2 to

be in equilibrium, it must necessarily hold:

0 = D̂2X̂u cos θ cosψ + D̂2Ŷ u cos θ sinψ, (29)

which can be solved for ψ since we assumed θ 6= ±π/2,

D1Z 6= 0, and ‖∇D2‖ 6= 0. For example, when D2Y 6= 0, it

can be computed:

ψ = tan−1
(

−D
2X̂

D
2Ŷ

)

+ kπ. (30)

An analogous expression can be computed when D2X 6= 0.

By considering a plane (X̂, Ŷ) which corresponds to

the (X,Y) plane, the following relationship holds between

(X,Y,Z) and the projection of the vehicle’s position and

orientation (X̂, Ŷ , ψ̂) on (X̂, Ŷ), given that the vehicle lies

on the surface f1(X,Y,Z) = 0:

X = X̂

Y = Ŷ
∂Z

∂X̂
= ∂Z

∂D1

∂D1

∂X
= D1X

D1Z

∂Z

∂Ŷ
= ∂Z

∂D1

∂D1

∂Y
= D1Y

D1Z

ψ = ψ̂.

(31)

From (31) it can be derived:

∂D2

∂X̂
= ∂D2

∂X
∂X

∂X̂
+ ∂D2

∂Z
∂Z

∂X̂
= D̂2X̂

∂D2

∂Ŷ
= ∂D2

∂Y
∂Y

∂Ŷ
+ ∂D2

∂Z
∂Z

∂Ŷ
= D̂2Ŷ ,

(32)

which means that D̂2X̂ and D̂2Ŷ are the partial derivatives

of D2 with respect to X̂ and Ŷ respectively. That is, (28)

says that the projection of the vehicle’s on the plane (X̂, Ŷ)
moves like a unicyle with velocity u cos θ.

By re–writing kinematics equations for (D2, ψe), where

ψe = ψ − ψc, this finally yields:

Ḋ2 = ‖∇D̂2‖u cos θ sinψe
ψ̇e = K2(−‖∇D̂2‖u cos θS(D2) − Ḋ2).

(33)

The equation above has the same form as (10) by assum-

ing a control input u′ = ‖∇D̂2‖u cos θ. This means that

the vehicle converges asymptotically to equilibrium points

{(D2 = 0, ψe = 2kπ|k ∈ Z)}, while its projection moves

on the (X̂, Ŷ) plane, exactly as it has been shown for the 2D

case. On the opposite, {(D2 = 0, ψe = 2(k + 1)π|k ∈ Z)}
are unstable equilibrium points. Convergence is guaranteed

as long as lim
t→∞

‖∇D̂2(X(t), Y (t), Z(t))‖ 6= 0: a sufficient

condition for this to happen is D1Z 6= 0 and ‖∇D2‖ 6= 0.

Remark 5. By considering (26) and (33) together it can

be observed that the whole system has 4 equilibrium points

for θe, ψe ∈ [−π, π), of which only (θe = 0, ψe = 0) is

stable. However, due to the non–univocity of Euler angles

to represent the vehicle’s configuration, the same heading

of the vehicle can now be represented with 2 different

configurations (θ, ψ) and (θ+π, ψ+π). To put the additional

constraint θ ∈ (−π
2 ,+

π
2) thus avoiding singularities, it

is sufficient to properly choose the signs of the distance

functions D1 and D2. �

B. Generic curve in 3D

As it is is done in the 2D case, it is possible to extend

the system to a generic curve expressed as the intersection

of two generic surfaces f1(X,Y,Z) = 0, f2(X,Y,Z) = 0
by setting:

Di = fi(X,Y,Z), (i = 1, 2), (34)

whose partial derivatives are

DiX = ∂fi(X,Y,Z)
∂X

,DiY = ∂fi(X,Y,Z)
∂Y

,DiZ = ∂fi(X,Y,Z)
∂Z

.
(35)

4033

The system described by (13) can be forced to converge to

the curve defined by f1(X,Y,Z) = 0, f2(X,Y,Z) = 0 by

setting control inputs [u, q, r]T as in (19). In fact, the whole

discussion above can be extended to the case of generic

surfaces, by properly using the expression of D which has

just been given. The reader can easily verify that, in the

previous discussion, the assumption that f1(X,Y,Z) = 0,

f2(X,Y,Z) = 0 define two planes has been used only

to build the distance functions D1 and D2, and to help

to visualize a vehicle that converges to the two surfaces

separately. All of the equations from (17) to (33) can be

reconsidered by assuming two generic surfaces.

Remark 6. The terms θ̇c and ψ̇c in (19) take into accout

the curvature of the surfaces. In particular: θ̇c guarantees that

the vehicle, after a transient behaviour, lies on f1(X,Y,Z) =
0 however ψ varies in time; ψ̇c guarantees that a vehicle

lying on f1(X,Y,Z) = 0, after a transient behaviour, lies on

f2(X,Y,Z) = 0. Notice also that, in experiments, we let the

vehicle converge to both surfaces at the same time: that is, it

is not necessary that the vehicle must move along the plane

(X̂, Ŷ) shown in Figure 3 until it reaches f1(X,Y,Z) = 0,

and later it moves towards f2(X,Y,Z) = 0.

Remark 7. As in 2D, there are no conditions on the path

curvature. The constraints that have been put on partial

derivatives D1Z 6= 0, and ‖∇D2‖ 6= 0 provide hints to

choose the surfaces to describe the path. However, it can

be easily verified that these constraints do not limit the

curvature of the path: as an example, consider a couple of

surfaces which have a similar expression as in (13), e.g.,

f1(X,Y,Z) = Z − a1 sin(b1X) = 0 and f2(X,Y,Z) =
Y − a2 sin(b2X) = 0, whose maximum curvature can be

arbitrarily increased by increasing b1 and b2. �

IV. SIMULATED EXPERIMENTS

The system has been implemented and tested in the

Matlab/Simulink environment, by using the Virtual Reality

Toolbox for visualization. This Section describes simulated

experiments which have been performed in the simulated

submarine world shown in Figure 4, by introducing errors to

simulate the presence of sea currents which affect the vehicle

position and orientation. Since only kinematics is simulated,

experiments do not aim at emulating the behaviour of a real

AUV. Instead, they have the only purpose of validating the

properties of the proposed control law.

Consider for example Figure 5: the path is composed of

three different path segments, generated by the corresponding

surfaces. In the first segment of the path, two intersecting

planes allow to specify the heading as well as the immersion

depth. In the second segment, a plane defines the heading

whereas a cylinder defines the immersion depth by adhering

to the profile of the canyon. In the third segment, a torus

defines the immersion depth, whereas a cylinder defines the

steering radius. Figure 4 shows snapshots taken during one

of these experiments: to model the AUV we took inspiration

from the Hydroid Remus2. The AUV moves with a constant

2http://www.hydroidinc.com/

Fig. 4. Experiments in a simulated submarine world.

linear speed ū = 1m/sec, and has bounded pitch, yaw and

turning radius.

For all experiments the distances D1 and D2 are recorded

and plotted: an example is shown in Figure 6. It can be seen

that D1 and D2 converge to zero. It is also possible to notice

that, when switching from path segment 1 to path segment

2, the absolute values of D1 and D2 temporarily increase.

This is an effect of the bounded turning radius, and the fact

that the path is not C1 in the switching point: in fact, when

switching to the second segment, the vehicle has a big error

in orientation, which forces it to temporarily diverge from

the path. However, D1 and D2 tend asymptotically to zero in

subsequent simulation steps, thus guaranteeing convergence

to the reference path.

More than 100 simulations have been performed with

different start configurations, as well as different paths ex-

pressed as the intersection of planes, cylinders, and toruses.

In all simulated experiments, the convergence to the path is

guaranteed after a transient behavior, yielding a negligible

positioning error which validates theory.

V. CONCLUSIONS AND DISCUSSION

The article has proposed a new feedback control model

that allows path tracking in a 3 Dimensional Cartesian space,

which relies on the general idea that a 3D path can be

Fig. 5. Planning a path in a simulated submarine world.

4034

Fig. 6. Plot of D1 and D2.

represented as the intersection of two properly chosen sur-

faces. The approach offers many advantages, among which

the possibility to re–use simple control laws that have been

designed for 2D path following of non–holomic vehicles. In

particular, the law proposed for path following [1][2] differs

from all approaches in the literature, since neither it requires

to compute a projection of the vehicle’s position on the path

[5][6], nor it simulates the motion of a virtual target [8][11].

In spite of this, it does not put any bounds on the initial

position of the vehicle depending on the path curvature.

The way adopted for representing curves in 3D is not new

in the autonomous vehicles literature, even if it is usually

limited to intersecting planes [16]. Specifically, this appears

to be particularly efficient when considering path planning (a

problem that is not considered here, see [17]), which can be

consequently handled in two decoupled steps: at every step,

a constraint is added, choosing among a set of parameterized

planning primitives [18] expressed as geometrical surfaces in

the 3D Cartesian Space. For example, assume that a path is

required which keeps an AUV as close as possible to the

marine soil [19] while moving along a given direction, e.g.,

to monitor submarine cables. In the first step, a surface which

guarantees that the vehicle maintains the proper distance

from the marine soil can be computed, by possibly taking

into account the slope and the topology of the soil, the

desired immersion depth, etc. In the second step, another

surface which determines the desired heading is computed:

this can be a plane, or a curved surface if a steering path is

required. The intersection of the two surfaces defines a path

which is guaranteed not to collide with obstacles while, at

the same time, it heads towards the final destination.

The proposed approach is also suited for a hybrid scheme

in which some constraints are specified manually by the

user through low–bandwidth acoustic communication (e.g.,

the heading), whereas other constraints are automatically

provided by the path planner (e.g., to avoid collision with the

marine soil). In addition, the control law adopted is suitable

for real–time obstacle avoidance, since in most case it is

possible to avoid sensed obstacles by locally modifying only

one of the two surfaces (see [20] for the 2D case).

These latter aspects will be considered in future works.

REFERENCES

[1] A. Sgorbissa, R. Zaccaria, A Minimalist Feedback Control for Path
Tracking in Cartesian Space, Proc. of the 2009 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, St. Louis, MO, USA, 2009.

[2] Angelo Morro, Antonio Sgorbissa, Renato Zaccaria,
Path Following for Unicycle Robots with Arbitrary Path
Curvature, Technical Report, 2010. Available online:
http://www.robotics.laboratorium.dist.unige.it/index.php?section=5

[3] Kaminer, I., A. Pascoal, E. Hallberg and C. Silvestre, Trajectory
tracking for autonomous vehicles: An integrated approach to guidance
and control. J. of Guidance, Control, and Dynamic Syst. 21(1), 29–38.

[4] Breivik, M. and T.I. Fossen, Guidance Laws for Autonomous Under-
water Vehicles. Chapter 4, In ”Intelligent Underwater Vehicles. I-Tech
Education and Publishing (A. V. Inzartsev, Ed.), Vienna, January 2009.

[5] A. Micaelli and C. Samson, Trajectory tracking for unicycle-type and
two-steering-wheels mobile robots, Institut National de Recherche en
Informatique, et en Automatique, Rapport de Recherche 2097, 1993.

[6] C. Canudas de Wit, H. Khennouf, C. Samson, and O.J. Sørdalen,
Nonlinear control design for mobile robots, Recent trends in mobile
robots, Y.F. Zheng Editor., World Scientific Series in Robotics and
Automated Systems, Singapore, 1993.

[7] P. Encarnacão, A. Pascoal, 3D path-following for autonomous under-
water vehicles. Proc. of the 39th IEEE Conf. on Decision and Control,
CDC 2000. Sydney, Australia, 2000.

[8] G. Casalino, M. Aicardi, A. Bicchi, A. Balestrino, Closed loop steering
and path-following for unicycle-like vehicles: a simple lyapunov
function based approach. IEEE Robotics and Automation Magazine
2 (1), 2735, 1995.

[9] M. Aicardi, G. Casalino, G. Indiveri, P. Aguiar, P. Encarnacão, A.
Pascoal. A planar path-following controller for underactuated marine
vehicles. Proc. of the Ninth IEEE Mediterranean Conf. on Control and
Automation, MED 2001. Dubrovnik, Croatia.

[10] L. Lapierre, D. Soetanto, Nonlinear path-following control of an AUV,
Ocean Engineering 34 (2007) 17341744.

[11] D. Soetanto, L. Lapierre, A. Pascoal, Nonsingular path-following con-
trol of dynamic wheeled robos with parametric modeling uncertanity.
Proc. of the 11th Int. Conf. on Advanced Robotics, ICAR 2003,
Coimbra, Portugal.

[12] G. indiveri, A. A. Zizzari, Kinematics Motion Control of an Under-
actuated Vehicle: a 3D Solution with Bounded Control Effort. In:
Proc. of the IFAC Workshop on Navigation, Guidance and Control
of Underwater Vehicles, IFAC NGCUV 2008, Killaloe, Ireland, 8 –
10 April 2008.

[13] L. Lapierre, B. Jouvencel, Robust Nonlinear Path-Following Control
of an AUV, IEEE J. of Oceanic Engineering, Volume: 33, Issue: 2,
pp. 89 - 102, 2008

[14] Y. Wang, W. Yan, B. Gao, R. Cui, Backstepping-based path following
control of an underactuated autonomous underwater vehicle, Int. Conf.
on Information and Automation, ICIA ’09, pp. 466 - 471, 2009.

[15] O. Calvo, A. Sousa, A. Rozenfeld, G. Acosta, Smooth path planning
for autonomous pipeline inspections, 6th Int. Multi-Conf. on Systems,
Signals and Devices, 2009. SSD ’09, Page(s): 1 - 9, 2009.

[16] S. van der Zwaan, M. Perrone, A. Bernardino, J. Santos-Victor, Control
of an Aerial blimp based on visual input, 8th Int. Symp. on Intelligent
Robotic Systems - SIRS200 - Reading, UK, July 2000.

[17] C. Pêtrès, Y. Pailhas, P. Patrón, Y. Petillot, Jo. Evans, and D. Lane,
Path Planning for Autonomous Underwater Vehicles, IEEE Trans. on
Robotics, Vol. 23, No. 2, April 2007

[18] S. Fleury, P. Soures, J.P. Laumond, R. Chatila, Primitives for smooth-
ing mobile robot trajectories IEEE Int. Conf. on Robotics and Au-
tomation, Atlanta (USA), 2-6 Mai 1993, pp.832-839, IEEE Trans. on
Robotics and Automation, Vol.11, N. 03, pp.441-448, Juin 1995.

[19] C. Silvestre, R. Cunha, N. Paulino, and A. Pascoal, A Bottom-
Following Preview Controller for Autonomous Underwater Vehicles,
IEEE Trans. on Control Systems Technology, Vol. 17, No. 2, March
2009

[20] A. Sgorbissa, A. Villa, A. Vargiu, R. Zaccaria, A Lyapunov-Stable,
Sensor-Based Model for Real-Time Path-Tracking among Unknown
Obstacles, Proc. of the 2009 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, St. Louis, MO, USA, 2009.

4035

