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Abstract—Gait pattern planning is an important issue in 

robotic gait rehabilitation. Gait pattern is known to be related to 

gait parameters, such as cadence, stride length, and walking 

speed. Thus, prior before the discussion of gait pattern 

planning, the planning of gait parameters for natural walking 

should be addressed. This work utilizes multi-layer perceptron 

neural network (MLPNN) to predict natural gait parameters 

for a given subject. The inputs of the MLPNN are age, gender, 

body height, and body weight of the targeted subject. The 

MLPNN is trained to output a suitable walking speed and 

cadence for given subject. Two MLPNNs are trained to study 

the efficiency and accuracy in predicting the desired outputs, for 

two different setups. First setup is that the MLPNN is trained 

specifically for slow speed condition only. In second setup, the 

MLPNN is trained for both slow and normal speed conditions. 

The results of the MLPNNs are presented in this paper. The 

efficiency and accuracy of the MLPNNs are discussed.  

I. INTRODUCTION 

PINAL cord injury (SCI) and stroke are the leading cause 

of permanent disability around the world. In United 

States, there are 795,000 new stroke cases [1], and an 

estimated 12,000 new spinal cord injury cases [2] occurring 

each year. Loss of walking ability is a debilitating outcome in 

post-stroke and spinal cord injury, with more than 50% of the 

post-stroke patients demonstrating persistent walking 

deficits, and more than 90% of the SCI patients lose their 

sensory and motor control of the lower limbs. 

The method of suspending a human over a treadmill for 

gait rehabilitation was first reported by Barbeau et al. in year 

1987 [3]. The method is commonly referred to as body weight 

supported (BWS) treadmill training. This is a relatively new 

method that originated from basic science research on the 

neural control of the vertebrate locomotion.  The method is 

developed based on the observation of a spinalized cat that 

can be trained to step with their hind limbs on a treadmill 

when its weight is partially supported [4, 5].  
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Studies have shown that SCI and stroke patients who 

receive BWS treadmill training demonstrate improved EMG 

activation patterns, more natural walking characteristics, 

increment in weight bearing on their legs, and demonstrate 

functional improvement in walking ability. The review of the 

evidences can be found in [6, 7]. 

To maximize therapeutic outcome, it is crucial to induce a 

gait pattern that resembles natural human gait pattern during 

gait rehabilitation [5, 8]. In the context of practicing correct 

kinematic gait patterns in a repetitive manner, little attention 

has been diverted to the study of gait pattern used in various 

gait rehabilitation systems. In manual assisted BWS treadmill 

gait rehabilitation, the therapist moves the patient leg and 

pelvic using visual feedback and “feel”. The assistance 

provided can vary greatly between therapists and between 

training sessions [9].  

In comparison, robotic orthosis found in gait rehabilitation 

systems adopt simplified approach to replicate the leg 

kinematics [10, 11]. Lokomat took a step further by allowing 

the gait pattern to be set according to the patient’s height and 

range of motion of the lower limb joints [12]. The BWS 

apparatus restricted pelvic motion, causes the modification of 

pelvic motion planning. The restricted pelvic motion are 

planned according to the lower limb motions and desired foot 

trajectory [13]. Apparently, most of the motion planning is 

template based, whereby a motion template of subject with 

anatomy parameters similar to the targeted subject is 

required. Template based planning needs a wide range of 

template collection, which is not efficient. 

This work aims to generate a gait pattern for patient, 

without the need of a matching template. In this paper, the 

efficiency and accuracy of using multi-layer perceptron 

neural network (MLPNN) in predicting walking speed and 

stride length for given subject, whereby walking speed can be 

specified by doctor, or physiotherapist is studied.  

The objective of this study is to generate walking speed, 

cadence, and stride length resembling to natural walking, and 

facilitate the gait pattern generation in the context of gait 

rehabilitation. Walking speed, cadence, and stride length are 

crucial parameters to be investigated, as these parameters 

affect gait pattern. The prediction of walking speed, cadence, 

and stride length shall be addressed, prior to the gait pattern 

generation for lower limb and pelvic for our developed 

robotic gait rehabilitation. This work could be useful for other 

researches that need to plan these gait parameters. 

The structure of this paper is as follows. Section II gives 

the overview for the developed robotic gait rehabilitation 

system, NaTUre-gaits, and the details of gait planning for 
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rehabilitation. Section III gives the details on the design of 

MLPNN and design of gait experiment. Section IV presents 

the results of the designed MLPNNs. Section V summarizes 

the key points discussed in this paper and suggest future work 

that will further enhance the current work. 

II. GAIT PLANNING FOR ROBOTIC GAIT REHABILITATION 

There is no proper definition for natural human walking. 

However, there is a common understanding of how walking 

should appear for human. Every individual displays a certain 

personal peculiarities superimposed on the basic pattern of 

bipedal locomotion during walking. There is no definite 

indication of how human walking has to be, but it would be 

able to tell instantly, if someone is not walking naturally. The 

variation between different individuals or within the same 

individual arises from individual personal peculiarities, 

anatomy parameters, changes in the walking speed, and even 

alterations in footwear. 

Since every individual displays variation in gait pattern, 

gait pattern planning plays an important role in robotic gait 

rehabilitation. Patients learn the gait pattern imposed to them 

during the gait rehabilitation. The improper gait pattern 

provides by robot during gait rehabilitation could result in 

unwanted rehabilitation outcome. Thus, it is important that a 

tailored gait pattern is planned for the patient with a 

systematic and logical approach.   

To provide an overview for this work, this section is 

dedicated to the introduction of the robotic gait rehabilitation 

system and the concept of gait pattern generation. 

 

 

A. Introduction to NaTUre-gaits 

Targeted to provide natural walking in gait rehabilitation, 

NaTUre-gaits was prototyped in 2006. The gait rehabilitation 

system (prototype shown in Fig. 1a) is developed to provide 

pelvic and lower limb motion assistance, in the context of 

over ground walking for BWS gait rehabilitation. Four main 

functions outlined for gait rehabilitation: pelvic control, 

active assistance to lower limb, BWS (with minimum 

restriction on pelvic motion during walking), and functional 

over-ground walking have been incorporated in the 

developed prototype. These functions are realized by Robotic 

Orthosis (RO), Mobile Platform (MP), and Parallelogram 

Arm (PA), whereby gait locomotion assistance is provided by 

RO, pelvic motion assistance and BWS is provided by PA, 

and lastly, the functional over-ground walking is achieved 

with MP. 

NaTUre-gaits prototype II has been developed and the 

modules have been tested on healthy human subject and 

preliminary assessed by therapist and doctor (Fig. 1b). 

NaTUre-gaits prototype II is modified to provide the 

complete 3D pelvic motion (prototype I is only capable of 

sagittal plane pelvic motion provision), and redesign the 

mechanism to enhance the safety, rigidity, and functionality. 

B. Overview of Gait Pattern Generation 

Patients re-learn the ability of walking through the process 

of gait rehabilitation. One of the key sensory cues for gait 

rehabilitation is to approximate normal hip, knee, and ankle 

kinematics for walking [8]. Although it is known that normal 

gait pattern is preferred, a proper method to plan normal gait 

pattern is missing.  

In the author’s knowledge, there is no other work focused 

on the predicting/planning of natural gait parameters for 

human. The most relevant research work in this area is 

normalized gait parameters formula highlighted by Inman et 

al. [14]. The formula described a linear relationship between 

stride length, cadence, and body height. The normalized gait 

parameters is given by 

 
_

0.008
_

stride length

cadence body height
=

×
 (1) 

Equation (1) is derived by fitting a straight line to the 

experimental data. The relationship of these parameters may 

not be represented by a simple linear function. The linear 

regression of the experimental data provides a general 

perception towards the relationship. 

GaitGen has been introduced in previous work [15], to 

provide a systematic approach of gait pattern generation for 

robotic gait rehabilitation. The overview of GaitGen is 

depicted in Fig. 2. With the understanding of clinical 

requirement, GaitGen is designed to facilitate the gait pattern 

generation in clinical setting. A gait pattern specifically 

tailored for the patient can be generated with parameters 

obtained from the patient, and with walking speed specified 

by doctor or physiotherapist. Two states of walking speed, 

slow or normal walking speed, are made available for 

selection, since they reflect the actual scenario, as human will 

have their preferences of slow, normal, and fast mode of 

walking. Fast walking speed is not considered, as gait 

rehabilitation usually starts with slow walking speed, then 

progress to normal walking speed. Patient will be discharged 

after rehabilitated to walk at normal walking speed.  

In this work, the stage-I of GaitGen is explored. Stage-I is 

designed to predict natural walking speed, stride length and 

cadence for a given subject, whereby the parameters of the 

Fig. 1.  NaTUre-gaits-II (a) Assembled prototype (b) Trial with 

therapist 
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subject and a specified walking speed state (slow or normal) 

are provided to MLPNN. The stage-II of GaitGen uses the 

stride length and cadence generated, and maps a gait pattern 

accordingly.  

The prediction of stride length and cadence is achieved by 

two processes. First process utilizes artificial neural network 

to predict the desired outputs with the given inputs. The 

desired outputs consist of suitable walking speed and stride 

length (maximum and minimum values are given for these 

outputs) for the targeted subject. 

Doctor or physiotherapist selects the desired walking speed 

from the suggested walking speed given by neural network. 

In the second process, gait parameters calculator computes 

cadence by 

 
2 _

_

walking velocity
cadence

stride length

×
=  (2) 

with the walking speed selected. Stride length will be selected 

from the suggested range by GaitGen if it is not specifically 

specified. 
 

 

 

III. DESIGN OF MLPNN AND EXPERIMENT 

Neural network is an analysis tool commonly used in gait 

data studies over the past 10 years [16], whereby it can extract 

the functional relationship between inputs and outputs. In this 

work, MLPNN is proposed to investigate the relationship 

between the inputs and outputs. Two MLPNNS are created, 

one is trained specifically for slow walking speed, and the 

other is trained for both slow and normal walking speeds in 

one neural network. Subsequently, it is refers to as MLPNN-I 

for the slow speed set, and MLPNN-II for the slow and 

normal speeds set. Two MLPNNs are created to study the 

accuracy of the gait parameters prediction for MLPNN 

trained specifically for slow speed and MLPNN trained for 

combination of slow and normal speed.  

A. Design of Experiment  

Experiment is designed to obtain the required gait 

parameters for the training of the MLPNN. Fifty healthy 

subjects (26 male and 24 female) with no known gait deficit 

are recruited for gait experiment. GAITRite [17] 

(subsequently refers to as mat) is used to record walking 

speed, stride length and cadence of the recruited subjects. 
 

TABLE I 

DIVISION OF EXPERIMENTAL DATA FOR MLPNN 

Set Number of Subject 

Training Set 30 subjects 

Validation Set 10 subjects 

Test Set 10 subjects 

  

Subjects are instructed to walk on the mat at two self paced 

walking speeds: normal walking speed, and slow walking 

speed. The subjects are instructed to walk barefoot, to prevent 

the influence of footwear on the gait parameters. The subjects 

walk six times on the mat, three times for each walking 

speeds. An additional space of 2.5 m is provided at the two 

ends of the mat, to ensure the subject enters the mat at 

rhythmic walking stage. The experimental data of the fifty 

subjects are randomly divided into the subsets as shown in 

Table I. Subjects in the training set are used to train the 

MLPNNs and the trained MLPNNs are validated with 

subjects in the validation set. Finally, the subjects in the test 

set are used to test the performance of the validated MLPNNs.  

B. Selection of MLPNN Inputs 

The objective of this work is to facilitate the gait pattern 

planning for clinical practitioner, the selected parameters 

(inputs) for the MLPNN have to be those parameters, which 

can be measured or can be obtained without much trouble.  

Tall, slender people walk differently from short, stocky 

people. People also alter their manner of walking when 

wearing shoes with different heel heights. A person walks 

differently when exhilarated than when mentally depressed 

[18]. All the above statements described the factors that 

would affect gaits.  

The relationship of gait parameters and human anatomical 

parameters is emphasized by the introduction of the 

normalized gait parameters formula [14]. The formula 

correlates stride length, cadence, and body height with a 

constant index (0.008). Age is also one of the factors affecting 

gait parameters, as older people walk slower than young 

adults [19]. In our previous study, we found out that gender, 

and body height are factors that affect cadence and stride 

length [15].  

Based on literature review and preliminary analysis, we 

hypothesized that these factors: age, body height, weight, and 

walking speed are significantly affecting cadence and stride 

Fig. 2.  Overview of GaitGen 
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length. For this study, we consider only factors that can be 

defined quantitatively. Age, gender, body height, and weight 

can be acquired through measurement and questionnaire. The 

walking speed is specified by doctor or physiotherapist in 

term of state of walking speed: slow or normal mode of 

walking. Descriptive factor (for example, mood) is not 

considered in this work. The effect of shoe is eliminated by 

having all the subjects to walk barefoot during experiment.  

C. Design of MLPNN  

The MLPNNs are designed to have one input layer, one 

hidden layer, and one output layer in this work. The 

optimized number of neurons in the hidden layer is 

determined based on the success rate of the MLPNN.  

The activation function of each neuron in the MLPNNs 

uses the hyperbolic tangent sigmoid transfer function, which 

is a derivative and provides the output to lie in the range of (-1 

≤ y1(n) ≤ 1). The activation function is given by 

 ( ) ( )
( ) ( )

( ) ( )

j j

j j

b n b n

j j j b n b n

e e
y n n a

e e

γ γ

γ γ
ϕ γ

−

−

−
 = = 

+
 (3) 

where 

 ( )jy n  : Desired output at n iteration 

 j
ϕ  : Activation function of neuron j 

 j
γ  : Activation signal of neuron j 

 ,a b  : Constant (1, 1) 

The learning algorithm applied in the MLPNNs is 

Lavenberg-Marquardt (LM) algorithm. 

The inputs of the MLPNNs are age, gender, body height, 

and weight of the subjects. MLPNN-II has one additional 

input, which is state of walking speed (slow or normal). The 

outputs of both MLPNNs are range of walking speed and 

range of stride length. The outputs and the denotation for the 

outputs are summarized in Table II. 
 

TABLE II 

DENOTATION OF MLPNNS OUTPUTS 

Output 

Denotation 

(MLPNN-I) 

Denotation 

(MLPNN-II) 

Max Min Max Min 

Cadence C-Imax C-I min C-IImax C-II min 

Stride length S-I max S-I min S-II max S-II min 

Walking speed v-I max v-I min v-II max v-II min 

 

The success rate of the MLPNN is determined by 

comparing the output of the neural network in each test to the 

corresponding experimental data. If the predicted outputs for 

all subjects in the test set fall within the maximum and 

minimum value of the corresponding parameter of the 

experimental data (acceptable deviation for MLPNN output is 

5% from the maximum and minimum value of the respective 

experimental result), the MLPNN is considered as success for 

that test. 

Both MLPNNs are tested to obtain the optimized number 

of neurons required in the hidden layer. The MLPNNs are 

tested with a variation of 10 to 70 neurons in the hidden layer. 

The tests are carried out with the input parameters taken from 

the subjects in the test set. A total of 122 set of MLPNNs (61 

for each MLPNN) are tested with random starting weight 

factor. The test provides a general indication of the optimized 

number of neurons in the hidden layer.  

The overall success rate of each MLPNN set versus 

number of neurons of the hidden layer in MLPNN is depicted 

in Fig. 3. The success rate converges at approximately 40 

neurons for MLPNN-I and 50 neurons for MLPNN-II. Based 

on the result, the hidden layer of the MLPNN is designed to 

contain 44 and 63 neurons for MLPNN-I and MLPNN-II 

respectively. The neural networks have the highest success 

rate with this number of neurons. 

From the success rate shown in Fig. 3, it is noticeable that 

MLPNN-I has higher success rate compared to MLPNN-II. 

MLPNN-I has four inputs and MLPNN-II has five inputs. 

The additional input in MLPNN-II requires a more 

complicated neural network, thus more neurons in the hidden 

layer are required in order to achieve a high success rate.   

 

 
TABLE III 

INFORMATION OF SELECTED FIVE SUBJECTS IN TEST SET 

Subject Age Gender Body Height Weight 

Subject 1 22 Female 164 49 

Subject 2 48 Male 168 75 

Subject 3 50 Female 150 44 

Subject 4 21 Male 180 75 

Subject 5 17 Male 167 65 
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IV. RESULT AND DISCUSSION 

The MLPNNs are designed and trained with the training 

set, and validated with the validation set. The subjects in the 

test set are used to study the prediction performance of the 

two MLPNNs. The MLPNNs predicted the range for the 

walking speed and stride length. These two desired outputs 

are compared to experimental data, to study the accuracy of 

the MLPNNs. In this session, the results for five subjects 

from the test set will be presented. The results present in this 

work are focused on slow walking speed state. The MLPNNs 

inputs of the five subjects are available in Table III. 

 

 
TABLE IV 

WALKING VELOCITY PREDICTED BY  MLPNNS 

Subject 

vmin 

(cm/s) 

vmax 

(cm/s) 

v-Imin 

(cm/s) 

v-Imax 

(cm/s) 

v-IImin 

(cm/s) 

v-IImax 

(cm/s) 

Subject 1 73.25 79.86 74.37 80.57 72.47 81.70

Subject 2 80.60 90.40 81.13 89.84 80.75 88.24

Subject 3 106.90 116.40 106.57 115.00 105.94 116.97

Subject 4 86.35 96.94 86.14 97.47 85.64 96.97

Subject 5 71.50 78.00 72.53 79.96 69.56 81.74

A. Walking Speed Prediction of MLPNNs 

The MLPNNs provide the range of walking speed as one of 

the outputs. Maximum and minimum values are predicted by 

the MLPNNs for given subject and form the range for 

suggested walking speed. The predicted range of walking 

speed serves as suggestion for the doctor or therapist. A 

suitable walking speed for the subject can be selected from 

the suggested range. The predicted range of walking speed by 

the MLPNNs for the subjects in the test set are plotted in Figs. 

4 and 5 with the maximum and minimum walking speed 

acquired by gait experiment for the subjects.  

B. Stride Length Prediction of MLPNNs 

Stride length generated by MLPNN is used to calculate 

cadence with a selected value of walking speed from the 

suggested range. The stride length predicted by the MLPNNs 

is depicted in Figs. 6 and 7. The stride length outputs are 

plotted with experimental data, Smin and Smax for comparison. 

 

 

 

 
TABLE V 

STRIDE LENGTH PREDICTED BY MLPNNS 

Subject 

Smin 

(cm/s) 

Smax 

(cm/s) 

S-Imin 

(cm/s) 

S-Imax 

(cm/s) 

S-IImin 

(cm/s) 

S-IImax 

(cm/s) 

Subject 1 115.96 118.46 116.15 118.58 116.13 119.88

Subject 2 98.21 101.11 98.38 101.04 98.49 100.43

Subject 3 108.85 117.60 109.50 116.91 110.40 118.07

Subject 4 126.50 139.65 126.59 139.65 126.56 139.28

Subject 5 117.86 122.67 116.96 123.87 113.99 122.05

 

TABLE VI 

MAXIMUM PERCENTAGE OF DEVIATION FOR PREDICTED OUTPUTS 

 Walking speed Stride length 

Subject MLPNN-I MLPNN-II MLPNN-I MLPNN-II 

Subject 1 1.53% 2.31% 0.17% 1.20% 

Subject 2 0.66% 2.38% 0.17% 0.67% 

Subject 3 1.20% 0.89% 0.60% 1.42% 

Subject 4 0.55% 0.83% 0.07% 0.27% 

Subject 5 2.51% 4.80% 0.98% 3.28% 

C. Discussion on the Accuracy of MLPNNs 

With the selected number of neurons in the hidden layer, 

MLPNN-I and MLPNN-II are able to predict acceptable 

value for the desired outputs. The maximum percentages of 

deviation from the experimental value are presented in Table 

VI. In general, MLPNN-II exhibits higher percentage of 

deviation compared to MLPNN-I. The finding shows that 

MLPNN-I is capable of a much accurate outputs prediction 

compared to MLPNN-II. 
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Fig. 7.  S-II min, S-II max predicted by MLPNN-II for five subjects in the 

test set, Exp. Min and Exp. Max refers to Smin and Smax listed in Table V 

Fig. 6.  S-I min, S-I max predicted by MLPNN-I for five subjects in the test 
set, Exp. Min and Exp. Max refers to Smin and Smax listed in Table V 

Fig. 5. v-IImin, v-IImax predicted by MLPNN-II for five subjects in the 

test set, denote by MLPNN-I (min/max). ‘Experimental (min/max)’ 

refers to vmin and vmax listed in Table IV 
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D. Comparison to Experimental Data 

For the purpose of comparison, walking speed and stride 

length are selected from the outputs recommended by 

MLPNNs. Cadence is calculated with (2) using the selected 

walking speed and stride length (average value of the 

predicted maximum and minimum for respective output). The 

computed cadence values are presented in Table VII. 
 

TABLE VII 

COMPUTED CADENCE WITH SELECTED OUTPUTS VALUE FROM MLPNNS 

 Experimental MLPNN 

Subject Cadmin Cadmax MLPNN-I MLPNN-II 

Subject 1 75.80 80.90 79.21 78.39 

Subject 2 98.90 108.50 102.88 101.94 

Subject 3 117.20 119.00 117.44 117.09 

Subject 4 80.90 83.80 82.76 82.43 

Subject 5 72.80 76.90 75.98 76.92 

 

The cadence computed based on MLPNN-I outputs falls 

within the experimental maximum and minimum value. 

Using the MLPNN-II predicted outputs to compute cadence 

resulted in two computed values (subjects 3 and 5) fall out of 

the maximum and minimum value of experimental data. 

However, the deviations are 0.09% and 0.03% respectively. It 

is insignificant, if compared to the standard deviation of the 

experimental data for the subjects. 

V. CONCLUDING REMARKS 

This work utilizes MLPNN to predict the gait parameters 

required for gait pattern planning. Two MLPNNs have been 

designed and trained to predict the desired output for gait 

pattern generation purpose. We have shown that the trained 

MLPNNs have acceptable accuracy in predicting natural gait 

parameters for given subjects, for selected walking speed. 

The naturalness of the gait parameters is confirmed by 

making a comparison to the actual gait parameters recorded 

from the subjects during natural walking. 

This work aims to compare the efficiency and accuracy of 

MLPNNs, specifically trained for one walking speed state, 

and trained for two walking speed states. It has hypothesized 

that MLPNN trained for one walking speed state should be 

more accurate. From the predicted output, we have shown 

that the MLPNN-I is more accurate in the output prediction 

compared to MLPNN-II. It is also noticed that MLPNN-II 

requires more number of neurons in the hidden layer to 

achieve acceptable accuracy in predicting the desired output. 

The developed MLPNNs can be further optimized to 

increase the accuracy of the predicted outputs. The existing 

initial weight factor for MLPNN training is randomly 

selected. The selection of initial weight factor influences the 

accuracy of predicted outputs. Future work is suggested to 

investigate the effects of the initial weight factor. 
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