
CRAM — A Cognitive Robot Abstract Machine
for Everyday Manipulation in Human Environments

Michael Beetz, Lorenz Mösenlechner, Moritz Tenorth
Intelligent Autonomous Systems Group

Department of Informatics, Technische Universität München
Boltzmannstr. 3, D-85748 Garching
{beetz,moesenle,tenorth}@cs.tum.edu

Abstract— This paper describes CRAM (Cognitive Robot
Abstract Machine) as a software toolbox for the design, the
implementation, and the deployment of cognition-enabled au-
tonomous robots performing everyday manipulation activities.
CRAM equips autonomous robots with lightweight reasoning
mechanisms that can infer control decisions rather than re-
quiring the decisions to be preprogrammed. This way CRAM-
programmed autonomous robots are much more flexible, reli-
able, and general than control programs that lack such cognitive
capabilities. CRAM does not require the whole domain to
be stated explicitly in an abstract knowledge base. Rather, it
grounds symbolic expressions in the knowledge representation
into the perception and actuation routines and into the essential
data structures of the control programs. In the accompanying
video, we show complex mobile manipulation tasks performed
by our household robot that were realized using the CRAM
infrastructure.

I. INTRODUCTION

We investigate autonomous robot control systems that
enable robots to perform complex everyday manipulation ac-
tivities in human living environments. Such control systems
are, for instance, needed for autonomous household robots.
The design, implementation, and deployment of robot control
systems for such complex applications is a challenging and
intense programming task that requires powerful software
tools. To respond to these needs, a number of middle-ware
software libraries that support the development of distributed
modular control systems have been developed. These middle-
ware systems include ROS [1], Player [2], Yarp [3], and
Orocos [4]. There is, however, a lack of powerful software
tools that enable programmers to effectively and efficiently
implement higher-level capabilities such as learning, knowl-
edge processing, and action planning into the robot control
programs to produce more flexible, reliable and efficient
behavior.

Such cognitive mechanisms are needed because a robot
which performs everyday manipulation tasks must continu-
ally decide which actions to perform and how to perform
them. Even the seemingly simplest tasks such as picking up
an object from a table require complex decision making. The
robot must decide where to stand in order to reach the object,
which hand(s) to use, how to reach for it, which grasp type to
apply, where to grasp, how much grasp force to apply, how
to lift the object, how much force to apply to lift it, where to
hold the object, and how to hold it. The decision problems
are even more complex because many decisions depend on

the task context, which requires the robot to take many more
factors into account to achieve the best performance, or at
least a performance that is good enough.

Cognitive architectures [5] have been proposed as an
answer to this need. However, general-purpose cognitive
architectures such as the 3T architecture [6] or Icarus [7]
have not yet demonstrated to be capable of improving the
robot problem-solving performance. More recent cognitive
architectures including the RobotCub [8] and the Paco+ [9]
architectures have been successfully applied to autonomous
robot control but are tailored to specific paradigms such as
developmental robotics or the acquisition and use of object-
action complexes.

In this paper, we propose CRAM (Cognitive Robot Ab-
stract Machine) as a software toolbox for the design, the
implementation, and the deployment of cognition-enabled
autonomous robots performing everyday manipulation ac-
tivities. CRAM provides a language for programming
cognition-enabled control systems. This language includes
data structures, primitive control structures, tools and li-
braries that are specifically designed to enable and support
mobile manipulation as well as cognition-enabled control.
The CRAM toolbox facilitates the implementation of com-
plex control programs that make decisions based on world
percepts as well as acquired knowledge. It provides tools for
integrating first-order reasoning in the control programs and,
on the other hand, reason about the control programs.

The backbones of CRAM are the CRAM Plan Lan-
guage (CPL) and the knowledge processing system
KNOWROB [10]. CPL is a very expressive behavior specifi-
cation language for autonomous robots that enables them to
not only execute their control programs, but also to reason
about and manipulate them — even during their execution.
This becomes possible since CPL provides key aspects of
the robot’s control program as persistent first-class objects.
That is, these aspects (like object specifications, failure
descriptions, or decisions the robot needs to take) are not
only compiled pieces of code, but exists as objects that can
be inspected, queried and reasoned about. That allows the
control program to analyze automatically why it failed to
achieve a goal, or when it had wrong beliefs about the world.

KNOWROB [10], the second backbone of CRAM is a
knowledge processing system particularly designed for au-
tonomous personal robots that provides CPL with the knowl-

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1012

edge required for taking decisions. KNOWROB is a first-order
knowledge representation based on description logics and
provides specific mechanisms and tools for action-centric
representation, for the automated acquisition of grounded
concepts through observation and experience, for reasoning
about and managing uncertainty, and for fast inference —
knowledge processing features that are particularly necessary
for autonomous robot control.

While CRAM is a research endeavor that is still in its
early stages, there are already a number of contributions it
makes to cognition-enabled control of autonomous robots.
Some of the concepts of the plan language CPL were
already proposed in the context of its predecessor language
RPL [11], but CPL is particularly designed to control real
physical robots. Therefore, the system has been revised
and improved to support feedback loops of at least 10Hz.1

Another key feature is the tight coupling between CPL and
the data structures generated, updated, and used by the lower-
level control modules. That means that in contrast to layered
architectures that need to abstract away from these low-level
data structures, in CPL they are still available to the complete
program and can be used for decision making. This way the
plan-based controller can use much more detailed, accurate,
and realistic models of robot control where needed.

Similar properties hold for KNOWROB. KNOWROB can
include information from data structures used by lower-level
control modules into its belief state. To this end, program-
mers define how the truth value of particular predicates can
be computed on demand from the respective data structures.
We call this kind of predicates computable predicates.

CRAM is designed to be lightweight, standard, and con-
figurable. Lightweight implementation means that the code
for the implementation should be very concise. We achieve
this by using and extending the Common Lisp language
and by using existing Lisp compilers rather than building
a plan language with its own interpreter, as it has been done
for RPL. As a consequence, the kernel of CPL is roughly
only 3000 lines of code. CRAM is based on Common
Lisp and Prolog, both standardized languages for which free
compilers and a big variety of text books, tutorials and other
documentation exist. Thirdly, we have realized CRAM such
that only a small kernel is needed and the system can easily
be configured and extended with additional functionality if
needed. This way, a programmer has to satisfy restrictions
and coding conventions only for those components that are
needed. For example, plans can be written in a simpler way
and do not have to contain annotations that would allow a
reasoner to reconstruct goals, the structure of sub-plans and
the belief state if the robot is not supposed to reason about
the course of action anyways.

The remainder of this paper is organized as follows. We
start with discussing an example plan realized in CRAM.
The following section describes the CRAM system, includ-
ing the plan language, the knowledge processing system, and
the high-level reasoning module. Afterwards, we introduce

1Voluntary human action control supposedly runs in feedback loops of
about 10Hz.

some extensions to CRAM for realizing robots performing
everyday manipulation tasks and list some further extension
modules that provide additional cognitive capabilities.

II. CRAM PLANS

Before we come to the different components of the
CRAM system, let us first show how a system engineer can
program cognition-enabled control programs using CRAM.
Below is an example plan for picking up the object ?obj.
(def-goal (achieve (object-in-hand ?obj))

(with-designators
(pickup-place ...)
(grasp-type ...)
(pickup-reaching-traj ...)
(lift-trajectory ...)

(when (and (holds-bel (object-in-hand ?curr-obj) now)
(obj-equal ?curr-obj ?obj))

(succeed (object-in-hand ?obj)))
(at-location pickup-place

(achieve (arm-at pickup-reaching-traj))
(achieve (grasped grasp-type))
(achieve (arm-at lift-trajectory))
(succeed (object-in-hand ?obj))

The first thing to notice is that we specify an achievement
goal with the desired world state (object-in-hand ?obj) as
the argument, instead of writing a procedure declaration of
the form pick-up (?obj). Explicitly representing the desired
world state has several advantages: A state like (object-
in-hand ?obj) cannot only have achievement routines, but
also routines for perception (perceive (object-in-hand ?obj)),
belief (holds-bel (object-in-hand ?obj)), or other goals like
communication, prevention or maintenance of the respective
state. With this mechanism, plans can check whether the
robot already believes a goal to hold before it tries to achieve
it. The robot can also validate that a routine was successful
by perceiving the state after the achievement was completed.

A second important aspect is that not only the goal, but
also many control decisions, including complex reasoning,
are turned into first-class objects, i.e. entities that parametrize
the plan and that can be queried, analyzed, and reasoned
upon. In the code, these decisions are specified in the with-
designators construct. The decisions are described by the a
set of constraints that need to be met, essentially a set of
attribute-value pairs. These descriptions are only resolved at
the very last moment when the decision actually needs to
be taken. This allows the system to base the decision on all
information that can be gathered until the code that needs
to take the decision gets executed. For example, the action
parameter pickup-reaching-traj is initially specified as:
(a hand-trajectory

(purpose (pick-up ?obj))
(type motion-plan)
(objective (minimize torque)))

which refers to a motion trajectory computed by the motion
planner with the optimization criterion minimum torque. If
the robot, at a later point in time, sees the object and notices
that it is a glass filled with a fluid, it adds an additional
motion constraint (motion-constraint keep-obj-upright). Then,
right before the robot intends to reach for the object, it
passes this abstract trajectory specification to the motion
planner in order to get an executable specification for the

1013

Fig. 1. Overview of the CRAM system. The CRAM kernel consists of the CPLplan language and the KNOWROB knowledge processing system. Both
are tightly coupled to the perception and actuation components. CRAM is realized in a highly modular way and can be extended with plug-ins providing
additional cognitive capabilities.

reach. Please note that the resolution of a designator is
not heuristics-based but tightly integrated the KNOWROB
knowledge processing kernel. For instance, to get a three-
dimensional pose for the location (a location (on table)) we
query the semantic environment map to find all objects that
are a table and calculate a location that matches the current
context. Realizing control decisions as persistent first-class
objects enables the robot to collect context information that
affect the respective decision, and then make the decision
in a maximally informed manner right before it is needed.
Besides trajectories, we represent objects and locations as
similar first-class objects.

Another interesting property of this plan is that it is
“universal” [12]. It specifies how to achieve the object being
at its destination for various contexts: If the object is grasped,
the plan only signals success; if the robot does not already
have the object in its gripper, it has to pick it up first, etc.

III. CRAM SYSTEM ARCHITECTURE

Figure 1 gives an overview of the CRAM system. CRAM
is built using the ROS middle-ware [1], i.e. the different
building blocks are realized as ROS nodes and available as
open-source software from the public tum-ros-pkg repository
(http://tum-ros-pkg.sourceforge.net/).

Plans written in the CRAM plan language CPL (Sec-
tion III-A) specify concurrent, sensor-guided, reactive be-
havior: They specify how the robot is to respond to sensory
events, changes in the belief state and detected plan failures.
The belief state is continually updated with information on
performed actions and with data from passive perception
mechanisms. The plan can also query the KNOWROB rea-
soner III-B to infer the knowledge necessary for informed
control decisions and to determine parameterizations for
context-dependent action execution. The CRAM kernel can
be extended with optional modules providing additional
cognitive capabilities. Extensions can add to both CPL and
KNOWROB and contribute additional knowledge, program
code for specialized inference, or both. On a more abstract
level, the CPL plans themselves become entities the robot

can perform reasoning on, which is done in the COGITO
layer explained in Section IV.

A. CPL — the CRAM Plan Language

The way programs are written looks at a first glance very
similar to classical architectures such as BDI architectures.
There are, however, many modifications that are tailored to
autonomous manipulation robots, as well as design decisions
that aim at CRAM being a very pragmatic software infras-
tructure for reliable, sensor-guided feedback control.

Maybe the biggest difference is the plan language. In most
architectural approaches where plan languages are designed
to be reasoned about, these languages are typically restricted
to a very limited set of control structures to avoid that the
reasoners have to automatically understand, reason about,
and revise general robot control programs. As a consequence,
most plan languages only consider plans as partially ordered
sets of atomic actions. Concurrency, action synchronization,
failure handling, loops and reactiveness exist only in rudi-
mentary forms, if at all. This is most obvious in the so-called
3T architectures, in which software engineers introduce a
middle layer into the architecture that is responsible for
translating partially ordered plans into flexible and reliable
execution routines, for translating the feedback back into the
abstract plan language, trigger replanning and handle errors
locally. The biggest problem with these architectures is that
it is hard to find abstractions that are suitable for planning in
time: On the one hand, they must reduce complexity enough
to make planning feasible, but on the other hand, they should
not abstract away information that is necessary for decision
making.

In contrast, CRAM provides CPL, a plan language that
is designed to specify flexible, reliable, sensor-guided robot
behavior. It merges the features found in the upper two
layers of 3T architectures by providing control structures
for parallel execution and the partial ordering of sub-plans,
support for sophisticated failure handling and the semantic
annotation of the control program to allow for reasoning
about it without the need to completely understand the
program.

1014

TABLE I
SOME CPL CONTROL STRUCTURES AND THEIR USAGE.

Control Structure Example of its usage
in parallel do p1 ...pn in parallel do navigate(〈235,468〉)

build-grid-map()
try in parallel p1 ...pn try in parallel

detect-door-with-laser()
detect-door-with-camera()

with constraining plan
p b

with constraining plan relocalize-
if-nec()

deliver-mail()
plan with name N1 p1

...
with name Nn

pn
order ni < nj

plan with name S1 put-ontable(C)
with name S2 put-on(A,B)
with name S3 put-on(B,C)

order S1 ≺ S3,
S3 ≺ S2

The abstract machine provides the same control structures
as RPL [11] for reacting to asynchronous events, for coordi-
nating concurrent control processes, and for using feedback
from control processes to make the behavior robust and
efficient. Table I lists several low-level control structures
that are provided by CPL and can be used to specify
the interactions between concurrent control sub-plans. The
control structures differ in how they synchronize sub-plans
and how they deal with failures. What makes them different
from a multi-threading library is that these control structures
generalize the concept of a hierarchical (sequential) program
to sub-routines that may run in parallel and still form a tree.
This allows for complex synchronization, partial orderings,
blocking and in particular for clean failure handling that
propagate from a sub-plan to its parent.

The in parallel do-construct executes a set of sub-plans
in parallel. The sub-plans are activated immediately af-
ter the in parallel do plan is started. The in parallel do
plan succeeds when all of his sub-plans have succeeded.
It fails after one of its sub-plans has failed. An example
use of in parallel do is mapping the robot’s environment
by navigating through the environment and recording the
range sensor data. The second construct, try in parallel,
can be used to run alternative methods in parallel. The
compound statement succeeds if one of the sub-plans suc-
ceeds. Upon success, the remaining sub-plans are terminated.
with constraining plan P B, the third control structure,
means “execute the primary activity B such that the execution
satisfies the constraining plan P.” Policies are concurrent
sub-plans that run while the primary activity is active and
interrupt it if necessary. Finally, the plan-statement has the
form plan STEPS CONSTRAINTS, where CONSTRAINTs have
the form order S1 ≺ S2. STEPS are executed in parallel
except when they are constrained otherwise. Additional con-
cepts for the synchronization of concurrent sub-plans include
semaphores and priorities.

B. KNOWROB

Knowledge processing and reasoning services in CRAM
are provided by KNOWROB [10], a highly modular knowl-
edge processing system especially developed for the needs
of mobile robotics. It consists of a small core system and a
large set of optional modules.

The KNOWROB core system is based on Prolog and
contains methods for loading knowledge bases, for reasoning
on their content, and for interfacing the system with the
CPL plan language. KNOWROB provides functions that
accept queries and return a set of bindings that satisfy the
query. From the plan implementor’s point of view, queries
to KNOWROB are most often needed to make an if-then-else
like decision, or to use the result of a query, bound to a
variable, as a parameter. For the former case, we define the
method knowrob-query(q) which returns a boolean value
depending on whether or not q is implied by the knowledge
base. The latter case is realized by the method knowrob-
query-var(var, q) that returns the bindings of the query
variable var which render the logical expressions of the query
true.

Knowledge inside KNOWROB is represented in description
logic in OWL. This declarative knowledge defines in some
way the terms the robot describes the world in, for example
the type of an object, its properties, and possible relations to
other objects.

This rather static knowledge is extended by the so-called
computable predicates which integrate external sources of
information into the knowledge base. Computable predicates
are evaluated by calling external procedures, for instance by
querying the vision system, by calling specialized reasoning
procedures, or by executing a small function that just com-
putes if one object stands on top of another one. The result
of the computation is linked to the semantic relation, e.g. the
method computeObjectOnTop is linked to the OWL relation
on-Physical.

There may be none, one, or several computable predicates
attached to one relation, which facilitates adding and remov-
ing modules from the system. If a module is loaded, it just
provides an additional way of computing some semantic re-
lations. Modules in KNOWROB can contain extensions to the
KNOWROB ontology, e.g. provide additional encyclopedic or
common-sense knowledge, they can contribute specialized
reasoning methods, or provide interfaces to external data
sources. Some of the main modules in KNOWROB are:

• Knowledge imported from the Cyc ontology [13] and
the OpenMind Indoor Common Sense database [14] that
equips the robot with a detailed ontology of objects,
actions, and events, as well as a reasonable amount of
common-sense knowledge.

• The semantic map [15] represents objects in the en-
vironment in terms of OWL instances and allows for
reasoning on their properties.

• An interface to the ProbCog system [16] integrates
probabilistic reasoning into the system, so that relations
can be computed using learned statistical relational
models. As a result, KNOWROB receives either a prob-
ability distribution over different alternatives, or simply
the most likely result.

The KNOWROB distribution provides many more modules
for spatial and temporal reasoning, for loading information
from the perception system and other ROS nodes, for clus-
tering and classification, or for calculating the results of an

1015

action by running simulations in a physical simulator. A
graphical visualization module accepts object instances or
observed action sequences and displays them.

IV. COGITO

The COGITO system adds a reasoning layer on top of the
CRAM kernel. While the components of the CRAM kernel
realize robot plans that include reasoning about the belief
state and observations of the environment, the COGITO sys-
tem performs reasoning about these plans in order to examine
how well they perform, where they encounter problems, or
when the robot’s belief state was wrong. This information is
then used to find flaws in plan execution, explain the outcome
of plans and transform these plans in order to fix the detected
flaws and improve the plan [17], [18]. For enabling this
kind of “meta-reasoning”, CPL represents all aspects of a
plan, like tasks, failures, descriptions of objects and abstract
entities like locations or trajectories, as first-class objects.
That means that a plan is not only a piece of compiled code
that is executed, but also a data structure that can be accessed
during run-time or recorded to create a persistent execution
trace. Information that is stored in such an execution trace
includes the values of plan parameters at any point in time,
results of sub-plans, their status, failures etc.

Plan execution dynamically creates a tree of task objects,
each containing the information mentioned above. This in-
formation is stored as a first-order representation that allows
to make inferences and answer queries, e.g. for variable
values at a particular plan state. This explicit representation
of goals, perception tasks, and beliefs enables the robot to
reason about the plan and the roles of sub-plans. It can,
for example, infer how it achieved a goal by extracting the
subgoal hierarchy out of the plan, or it can infer why tasks
are performed, namely to achieve certain super-tasks.

V. CRAM−EM

The CRAM kernel contains only the very basic, gen-
eral functionality. Extension modules equip the system with
application-specific cognitive capabilities. CRAM−EM
(CRAM for Everyday Manipulation) is a set of extension
modules for robots that perform everyday manipulation tasks,
providing methods for recognizing and localizing objects, for
reaching towards and grasping them, and for determining a
good robot base location for manipulation.
Designators: When acting in the real world, the robot needs
to resolve the abstract, symbolic object descriptions used
in its high-level planning system to physical objects in the
environment. For this task, it needs information about their
properties, e.g. the object recognition algorithm that can best
identify this kind of object. The robot also needs to determine
if two entities, perceived at different points in time, are
the same object. On the action generation side, the robot
needs information about action properties, e.g. parameters
of trajectories or places where objects are stored.

Such information is stored using designators for objects,
locations, or other entities like trajectories. Which physical
object a designator corresponds to, or which trajectory should

be chosen for an action, can change over time when addi-
tional information becomes available. For instance, when the
robot is to grasp a mug and the perception routines detect that
the mug is filled with coffee, the ongoing manipulation action
needs to be reconfigured to take the additional constraint
into account that the mug is to be kept upright. CRAM uses
an implementation of the Rete [19] algorithm to propagate
updates in designator properties. The Rete algorithm imple-
ments a network of designators that connects input tokens to
productions. Whenever an input token is asserted or retracted,
it propagates through the network, and matching productions
(combinations of tokens) are executed.
Object perception: When interacting with objects, a robot
needs a powerful perception system that can recognize these
objects and determine their poses in space. CRAM uses the
K-COPMAN [20] cognitive perception system that comprises
techniques for active perception of the task-relevant objects,
as well as passive perception of the robot’s environment that
builds a memory of perceived objects.
Prediction: Being able to predict the effects of actions is
important for verifying that they lead to the desired state,
for checking their safety and optimizing their execution.
CRAM includes a powerful projection module that uses
detailed, realistic, physical simulation to execute a plan and
record log data [18]. The recorded execution traces can be
accessed through a first-order representation that is computed
on demand, similar to computables, and enable the system to
both reason on past experiences and predict future situations.

VI. COGNITIVE EXTENSIONS

CRAM can be equipped with a set of extension modules
that provide additional cognitive capabilities for improved
perception, learning, and adaptation.
Action awareness: Tools for the observation, interpretation
and analysis of human actions are provided by the AM-
EVA [21] system. It contains a marker-less human motion
capture system, techniques for segmenting human motions
and building hierarchical action models, and algorithms for
learning statistical models of complete activities.
Learning and adaptation: The Robot Learning Lan-
guage [22] provides methods for logging experience data
and performing learning on these data for improving the
performance of the planning system.
Transformational planning: The transformational planning
system TRANER [23] extends CPL with methods for trans-
forming plans. Abstract transformation rules can be applied
to plans to re-order actions, to insert or remove actions, and
to change their parameters. Examples of such transforma-
tions are to stack plates or to use a container for transporting
objects. Observations of humans can be used for determining
which combination of transformations is likely to lead to
good performance [24].
Web-enabled robot control: Plans [25] and object mod-
els [26] can be imported from the World Wide Web in order
to extend the task repertoire and the set of objects the robot
can recognize.

1016

Fig. 2. The TUM Rosie robot that is controlled by the CRAM architecture
presented in this work.

VII. EXPERIMENTS

The CRAM system is being developed on the TUM Rosie
robot platform shown in Figure 2. TUM Rosie is a mobile
robot designed to perform everyday manipulation tasks in a
kitchen environment. While the whole system is still under
development, CRAM has already shown to be useful for
the control of a complex robotic system performing object
manipulation activities. Please have a look at the following
video that shows the robot manipulating household objects:
http://www.youtube.com/watch?v=MFVBoIzHcjo.

VIII. CONCLUSIONS

With CRAM, we presented a toolkit and language for
specifying complex behavior of cognitive mobile robots. The
CRAM kernel provides methods for synchronizing parallel
behavior, handling execution failures and reacting to changes
in the world. The plan language is tightly integrated with a
knowledge representation system that provides the common-
sense knowledge required for successful operation in human
environments. CRAM is designed in a very modular way:
There is a stack of extension modules called CRAM−EM
for everyday manipulation tasks, and several other mod-
ules for resolving abstract entity descriptions, for cognitive
perception, for interpreting human actions, transforming the
robot’s plans, or for retrieving task descriptions from the
web. The system is available as open-source software and
can be downloaded for free. We demonstrate its capabilities
in the accompanying video that shows our robot performing
everyday manipulation tasks controlled by CRAM.

IX. ACKNOWLEDGMENTS

This work is supported in part within the DFG excellence
initiative research cluster Cognition for Technical Systems –
CoTeSys, see also www.cotesys.org.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in In IEEE International Conference on Robotics and Automation
(ICRA 2009), 2009.

[2] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th International Conference on Advanced Robotics (ICAR),
2003, pp. 317–323.

[3] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[4] R. Smits, T. D. Laet, K. Claes, P. Soetens, J. D. Schutter, and
H. Bruyninckx, “Orocos: A software framework for complex sensor-
driven robot tasks,” IEEE Robotics and Automation Magazine, 2008.

[5] D. Vernon, G. Metta, and G. Sandini, “A survey of artificial cognitive
systems: Implications for the autonomous development of mental capa-
bilities in computational agents,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 2, pp. 151–180, 2007.

[6] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack,
“Experiences with an architecture for intelligent, reactive agents,”
Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
no. 1, 1997.

[7] P. Langley and D. Choi, “A unified cognitive architecture for physical
agents,” in Proceedings of the National Conference on Artificial
Intelligence, vol. 21, no. 2. 2006, p. 1469.

[8] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The iCub
humanoid robot: an open platform for research in embodied cognition,”
in PerMIS: Performance Metrics for Intelligent Systems Workshop.
Aug, 2008, pp. 19–21.

[9] “Perception, Action and Cognition through learning of Object-action
complexes,” http://www.paco-plus.org/, 2005.

[10] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing for
Autonomous Personal Robots,” in IEEE/RSJ International Conference
on Intelligent RObots and Systems., 2009.

[11] D. McDermott, “A Reactive Plan Language,” Yale University,” Re-
search Report YALEU/DCS/RR-864, 1991.

[12] M. J. Schoppers, “Universal plans for reactive robots in unpredictable
environments,” in Proceedings of the Tenth International Joint
Conference on Artificial Intelligence (IJCAI-87), J. McDermott, Ed.
Milan, Italy: Morgan Kaufmann publishers Inc.: San Mateo, CA,
USA, 1987, pp. 1039–1046.

[13] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, “An intro-
duction to the syntax and content of Cyc,” Proceedings of the 2006
AAAI Spring Symposium, pp. 44–49, 2006.

[14] R. Gupta and M. J. Kochenderfer, “Common sense data acquisition
for indoor mobile robots,” in In Nineteenth National Conference on
Artificial Intelligence (AAAI-04, 2004, pp. 605–610.

[15] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue
on Semantic Knowledge), 2008.

[16] D. Jain, L. Mösenlechner, and M. Beetz, “Equipping Robot Control
Programs with First-Order Probabilistic Reasoning Capabilities,” in
International Conference on Robotics and Automation (ICRA), 2009.

[17] A. Müller, “Transformational planning for autonomous household
robots using libraries of robust and flexible plans,” Ph.D. dissertation,
Technische Universität München, 2008.

[18] L. Mösenlechner and M. Beetz, “Using physics- and sensor-based
simulation for high-fidelity temporal projection of realistic robot
behavior,” in 19th International Conference on Automated Planning
and Scheduling (ICAPS’09)., 2009.

[19] C. Forgy, “Rete: A fast algorithm for the many pattern/many object
pattern match problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17–
37, 1982.

[20] D. Pangercic, M. Tenorth, D. Jain, and M. Beetz, “Combining
perception and knowledge processing for everyday manipulation,”
in IEEE/RSJ International Conference on Intelligent RObots and
Systems., Taipei, Taiwan, 2010.

[21] M. Beetz, M. Tenorth, D. Jain, and J. Bandouch, “Towards Automated
Models of Activities of Daily Life,” Technology and Disability, vol. 22,
2010.

[22] A. Kirsch, “Robot learning language — integrating programming and
learning for cognitive systems,” Robotics and Autonomous Systems
Journal, vol. 57, no. 9, pp. 943–954, 2009.

[23] A. Müller, A. Kirsch, and M. Beetz, “Transformational planning for
everyday activity,” in Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS’07), Providence,
USA, September 2007, pp. 248–255.

[24] M. Tenorth and M. Beetz, “Priming Transformational Planning with
Observations of Human Activities.” in IEEE International Conference
on Robotics and Automation (ICRA)., 2010.

[25] M. Tenorth, D. Nyga, and M. Beetz, “Understanding and Executing
Instructions for Everyday Manipulation Tasks from the World Wide
Web.” in IEEE International Conference on Robotics and Automation
(ICRA)., 2010.

[26] U. Klank, M. Z. Zia, and M. Beetz, “3D Model Selection from an
Internet Database for Robotic Vision,” in International Conference on
Robotics and Automation (ICRA), 2009.

1017

