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Abstract—We consider trajectory planning for an underac-
tuated 3DOF helicopter, using the virtual holonomic constraint
approach. First we choose constraint functions that describe the
configuration variables along a desired motion in terms of some
independent parametrization variable. This lets us describe
the closed-loop system by some reduced order dynamics, the
solution of which gives a feasible trajectory for the desired
motion. By using the method of transverse linearization for
controller design, we achieve exponential orbital stability to a
desired trajectory. Numerical simulations confirm this property
and show good convergence to a desired periodic motion when
initialized from a resting state.
Index Terms—Motion Planning and Control, Virtual Holo-

nomic Constraints, Reduced Dynamics

I. INTRODUCTION

Motion planning and stabilization of underactuated me-
chanical systems is a classical control problem. Applications
can be found in control of surface vessels, underwater
vehicles, spacecraft and aircraft, see e.g. [8], [2], [4] and
references therein. Underactuation may appear from actuator
failure in fully actuated systems or by design. In the first case,
a control strategy for underactuated systems can be applied to
still allow some motions to be carried out. The latter occurs
when restrictions in cost, weight, size, or efficiency favors a
smaller number of actuators.
An underactuated system with non-linear dynamics that

presents interesting challenges in motion planning and con-
trol is the 3DOF helicopter developed by Quanser [9], shown
in Fig. 1. The system has been used as experimental platform
for evaluation of various control methods, e.g. robust predic-
tive control [7], neural network-based adaptive control [3]
and multiple-system motion synchronization [10].
The most typical approach to stabilization of motions

in underactuated systems is to stabilize some integrals of
motions present in the control-free system and corresponding
to some natural rotations. The reason for such an approach
is to avoid dealing with careful motion planning which is not
trivial, since the lack of control inputs makes it impossible
to prescribe arbitrary time-evolutions of the generalized
coordinates. The restriction of the family of targeted motions
to the natural ones may not allow achieving certain desired
characteristics of the executed motions.
Our approach to motion planning is based on the idea of

representing a desired trajectory in time-independent form,

The authors are with the Department of Applied Physics and
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Fig. 1. The 3DOF helicopter setup by Quanser [9].

with the evolution of the generalized coordinates specified
as geometric functions of some synchronization variable.
We compute the reduced dynamics that describes possible
dynamics along the path independent on the control signals.
We then select a solution to the reduced dynamics that
provides the specified motion with its desired characteristics.
Stabilization is done using a special coordinate transfor-

mation in a vicinity of the feasible trajectory, which is con-
structed using the synchronization function and a conserved
quantity for the reduced dynamics.
The rest of the paper is organized as follows. The dynami-

cal model of the 3DOF helicopter is introduced in Section II.
In Section III we describe the virtual holonomic constraint
approach to motion planning and how a trajectory is obtained
from reduced order dynamics. This is illustrated with three
periodic motions of different complexity. Section IV presents
the design of a controller based on transverse linearization, as
well as results from numerical simulations. The paper ends
with concluding remarks.

II. DYNAMIC MODEL

The model we consider is a 3DOF helicopter produced
by Quanser [9], as shown in Fig. 1. The helicopter is a
rigid body attached with a spherical joint at a suspension
point, around which it can rotate freely in any direction. It
has two control inputs in the form of individually controlled
rotors, leaving one degree of freedom unactuated. The rotors
are symmetrically attached at one side of the body. At the
opposite end, a counterweight is attached to reduce the effect
of the gravitational forces.
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The dynamics of the helicopter can be modeled using the
Newton-Euler equation[14]:

Iω̇ + ω × (Iω) = τ, (1)

where ω = [ωx, ωy, ωz]
T is the angular velocity, I =

diag(Ix, Iy, Iz) is the inertia matrix for the rigid body and
τ = [τx, τy, τz]

T is the total amount of torques acting on
the body. Note that all of these variables are expressed
in the body attached frame. We use Z-Y-X Euler angles
q = [ψ, θ, φ]T as generalized coordinates for the orienta-
tion of the rigid body. They describe consecutive rotations
about the current body axis, also known as yaw-pitch-roll
transformation. A graphical description of the generalized
coordinates of the 3DOF helicopter model is shown in Fig. 2.

Fig. 2. Graphical representation of the generalized coordinates of the 3DOF
helicopter model.

The transformation of a vector from the body attached
frame to the inertial frame is performed by multiplication
with the following rotation matrix
R = Rz,ψRy,θRx,φ

=

⎡
⎣ cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

⎤
⎦ ,

(2)
where c. and s. denote cos(·) and sin(·) respectively. The
columns of the matrix R specify the axes of the body
attached frame, in which the elements in (1) are expressed.
The angular velocity expressed in the fixed inertia frame,

ωI , is related to the rates of change of the individual elements
of q as

ωI = Bzyx q̇ =

⎡
⎣ 0 −sψ cψcθ
0 cψ sψcθ
1 0 −sθ

⎤
⎦

⎡
⎣ ψ̇

θ̇

φ̇

⎤
⎦ (3)

In body frame the angular velocity ω can be expressed as

ω = RTωI = RTBzyx(q)q̇. (4)

The dynamical model is simplified by not taking air
resistance or friction into account. Thus, the torque τ can
be divided into two components, τ = τu + τg , where τg is
the torque introduced by the gravitational force and τu is
the vector of controlled torques. Let r = [lx, 0, 0]

T be the
center point between the two rotors. We introduce the vector
Γ = [Γx,Γy,Γz]

T as the vector of gravitational force, acting
on the point r, expressed in body frame coordinates, i.e.

Γ = RT

⎡
⎣ 0

0
−mg

⎤
⎦ (5)

where m is the effective mass at r, and g is the gravitational
constant. The torque τg can now be calculated as

τg = r × Γ =

⎡
⎣ 0
lx Γz
lx Γy

⎤
⎦ . (6)

The body is not actuated about the yaw-axis making the
vector of controlled torques to be

τu = [τux
, τuy

, 0]T , (7)

so the 3DOF helicopter described above is of underactuation
degree one.
The forces that need to be applied at each rotor in order

to induce the torques in (7) are

FA = −
1

2

(
τux

ly
+
τuy

lx

)
, FB =

1

2

(
τux

ly
−
τuy

lx

)
. (8)

The physical model parameters for the 3DOF helicopter
setup are listed in Table I, along with some constraints of
the configuration space as well as limitations on the available
control forces.

TABLE I
PARAMETERS AND CONSTRAINTS OF THE 3DOF HELICOPTER.

Parameters Values
Inertias [kgm2] Ix = 0.042, Iy = 1.203, Iz = 1.203
Lengths [m] lx = 0.67

ly = 0.177
Effective mass at r [kg] m = 0.127
Gravitational constant [m/s2] g = 9.81
Position constraints [rad] ψ ∈ [− inf, inf]

θ ∈ [−0.6, 0.39]
φ ∈ [−π/2, π/2]

Force constraints [Nm] FA ∈ [0, 2.1]
FB ∈ [0, 2.1]

III. MOTION PLANNING

A. Concept of Virtual Holonomic Constraints and Reduced
Dynamics
The virtual holonomic constraints approach is a generic

tool for motion planning and control, especially for under-
actuated systems. The main idea is to parametrize feasible
motions by a geometric function of the generalized coor-
dinates defining their synchronization [1]. If this function
is preserved by some control action along solutions of
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the closed-loop system, it is called a virtual holonomic
(geometric) constraint [12], [15].
We choose to illustrate this approach for the helicopter

model (1)–(4) by planning some motions about the yaw axis.
We also incorporate additional desired characteristics of the
motions into the motion planning process by constraining the
motions to be periodic. An alternative restriction could e.g.
be a desired completion time of the motion.
Let us chose the coordinate ψ as an independent variable

used to parameterize such a motion. The other two gener-
alized coordinates shall be geometrically related to ψ, such
that a path is determined in the configuration space. Hence,
the virtual holonomic constraint takes the form

q =

⎡
⎣ ψ

θ

φ

⎤
⎦ := F (ψ) =

⎡
⎣ ψ

f1(ψ)
f2(ψ)

⎤
⎦ . (9)

Note that the function (9) can be derived either by observa-
tion of some real motion, by analytical design procedures,
or by some numerical search.
Suppose that there exists a control law τu = τ�(t) for the

controlled input torque τu of the underactuated system (1)–
(4) that makes the virtual holonomic constraint (9) invariant.
Then, the overall closed-loop system can be represented by
the reduced order dynamics of the form [13], [11]

α(ψ) ψ̈ + β(ψ) ψ̇2 + γ(ψ) = 0 . (10)

The solutions of this virtually constrained system define
achievable motions of the body with precise synchronization
given by (9). It means that the whole motion is parameterized
by the evolution of the chosen configuration variable ψ. The
smooth functions α(ψ), β(ψ) and γ(ψ) are given in Table II.
It is important to observe that the reduced order dynam-

ics (10) is always integrable, provided α(θ) �= 0. Specifically,
the integral function [11], [13]

I(ψ, ψ̇, ψ0, ψ̇0) = ψ̇2 − exp

{
−2

∫ ψ

ψ0

β(τ)

α(τ)
dτ

}
ψ̇2

0

+

ψ∫
ψ0

exp

{
−2

∫ ψ

s

β(τ)

α(τ)
dτ

}
2 γ(s)

α(s)
ds

(11)
preserves its zero value along the solution of (10), initiated
at (ψ(0), ψ̇(0)) = (ψ0, ψ̇0). Note that (11) can serve as a
measure of distance to a desired trajectory [11].
Eventually, one can also compute the nominal control

input τ� required to generate a desired solution ψ = ψ�(t)
of (10) assuming perfectly imposed virtual holonomic con-
straints (9):

τ∗ =

[
1 0 0
0 1 0

]
[Iω̇ + ω × (Iω)− τg]

∣∣∣ q = F (ψ∗)

q̇ = F ′(ψ∗)ψ̇∗

q̈ = F ′′(ψ∗)ψ̇2

∗

+ F ′(ψ∗)ψ̈∗

(12)
In the following sections we illustrate the approach of

using virtual holonomic constraints for motion planning of
the 3DOF helicopter, applied to three periodic motions of
different complexity.

B. Motion 1: constant pitch and roll
The first motion we consider is the simple case of period-

icity about the yaw axis, where roll and pitch are constant,
described by the following virtual holonomic constraint

θ = f1(ψ) ≡ c1 ,

φ = f2(ψ) ≡ c2 .
(13)

By substituting (13) into the functions of Table II, we get
the following expressions for reduced dynamics coefficients:

α(ψ) = Iz cos(c1) cos(c2) ,
β(ψ) = (Ix − Iy) sin(c1) sin(c2) cos(c1) ,
γ(ψ) = mglx cos(c1) sin(c2) .

(14)

Due to the influence of gravity, we cannot always expect
periodicity for the trajectories that are obtained as solutions
to (10) even if the constraint functions are periodic. For
simplicity, assume that c1 = 0. By substituting (14) into
the integral function (11) it can be derived that

ψ̇ =

√
ψ̇2

0 −
2mlxg sin(c2)ψ

Izcos(c2)
. (15)

along the trajectory, given some initial velocity ψ̇(0) = ψ̇0.
Periodicity in our case implies that ψ̇(2nπ) = ψ̇(0) for any
n ∈ 1, 2, 3, .... This motion is thus only periodic provided
that c2 = 0, i.e. when the gravity torque vector τg and the
controlled input torque vector τu are parallel. In this case
the velocity will be constant during the motion. If c2 < 0,
however, the counteracting force from the rotors includes a
component that is perpendicular to the gravity vector Γ and
thereby adds to the energy of the system by increasing the
velocity ψ̇. Conversely, if c2 > 0, energy will be dissipated
from the system.

C. Motion 2: cyclic pitch, constant roll
As a second example we consider a more complicated

motion where the pitch (θ) is described by a cyclic function
while the roll (φ) is kept constant. This can be achieved by
constructing the following virtual constraint

θ = f1(ψ) ≡ c1 · cos(n · ψ) ,
φ = f2(ψ) ≡ c2 .

(16)

As with our first motion, we only achieve periodicity when
c2 = 0. We hence choose the parameters c1 = 0.25, c2 = 0,
with n = 4, and select the following trajectory for the path
given by (16):

ψ∗(t) ∈ [0, 2π] rad ,
for t ∈ [0, T ] with T = 16.21 s , and
(ψ∗(0), ψ̇∗(0)) = (0 rad, 0.4 rad/s)

(17)

which gives the following scalar coefficient functions for the
reduced dynamics

α(ψ) = Iz cos(c1 cos(nψ)) ,
β(ψ) = −c1n(Ix − Iy − Iz) sin(nψ) sin(c1 cos(nψ)) ,
γ(ψ) = 0 .

(18)
The fact that γ = 0 implies that the reduced dynamics is not
influenced by gravity and the solution (trajectory) to (10) is
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TABLE II
SCALAR COEFFICIENT FUNCTIONS OF THE REDUCED DYNAMICS (10).

α(ψ) = Iz(cos(f1(ψ)) cos(f2(ψ))− f ′
1
(ψ) sin(f2(ψ)))

β(ψ) = −Iz sin(f2(ψ))f ′′
1

(ψ) + ((Iy − Iz − Ix)f ′
2
(ψ) + sin(f1(ψ))(Ix − Iz − Iy)) cos(f2(ψ))f ′

1
(ψ)+

((Iy − Iz − Ix)f ′
2
(ψ) + sin(f1(ψ))(−Iy + Ix)) cos(f1(ψ)) sin(f2(ψ))

γ(ψ) = mglx cos(f1(ψ)) sin(f2(ψ))

identical to a solution for the rotating body in gravity-free
conditions. The trajectory corresponding to this solution is
shown in Fig. 3. However, the full dynamics (1) is affected
by the gravity and corresponding terms still appear in the
torques required for compliance to the trajectory. Gravity
shifts the torque away from a zero mean. Individual rotor
forces are shown in Fig. 4.
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Fig. 3. Velocity profile for the trajectory of the second motion, parametrized
by (16).
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Fig. 4. Required individual rotor forces for motion 2.

D. Motion 3: constant pitch, cyclic roll
For our third motion, we let the pitch be constant while

varying the roll in a cyclic fashion, by choosing the virtual
constraint function as

θ = f1(ψ) ≡ c1
φ = f2(ψ) ≡ c2 · cos(n · ψ)

(19)

with the parameters c1 = 0, c2 = 0.5, and n = 4. Along the
path specified by (19), we select the following trajectory:

ψ∗(t) ∈ [0, 2π] rad ,
for t ∈ [0, T ] with T = 14.55 s , and
(ψ∗(0), ψ̇∗(0)) = (0 rad, 0.5 rad/s)

(20)

The scalar coefficient functions for the reduced dynamics
become
α(ψ) = Iz cos(c1) cos(c2 cos(nψ))
β(ψ) = (nc2(Ix+Iz−Iy) sin(nψ) + sin(c1)(Ix−Iy))·

sin(c2 cos(nψ)) cos(c1)
γ(ψ) = mglx cos(c1) sin(c2 cos(nψ))

(21)
and its solution gives a trajectory with the velocity profile
as shown in Fig. 5. The time evolution of this trajectory can
be seen in Fig. 6. The forces required from the rotors during
the motion are shown in Fig 7.
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Fig. 5. Velocity profile for the trajectory of the third motion, parametrized
by (19).

IV. CONTROLLER DESIGN
The design step following the motion planning is the

synthesis of a feedback controller with the objective to
achieve exponential orbital stability to the desired trajectory
and to diminish effects of disturbances, uncertainties in
modeling, errors in parameter estimates, etc. Here, we show
a controller design based on a transverse linearization [11]
of the system dynamics along the desired trajectory.
At first, let us introduce new independent coordinates for

the 3DOF rigid body (1)–(4):

y =

[
θ − f1(ψ)
φ− f2(ψ)

]
and ψ , (22)
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Fig. 6. Time evolution of the generalized coordinates for the trajectory of
the third motion.
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Fig. 7. Required individual rotor forces for motion 3.

where y gives the synchronization error for the virtual
holonomic constraints defined by (9). It is clear that the first
and second time derivatives of y and ψ are related to the
original coordinates q and their time derivatives. With the
change of generalized coordinates (22), the dynamics of y
takes the form

ÿ = R(y, ψ, ẏ, ψ̇) +N(y, ψ) τ = v ,

where v is introduced as a virtual control input that is used
for stabilization of a preplanned trajectory. The feedback
transformation1

τ = N−1(y, θ)
[
v −R(y, θ, ẏ, θ̇)

]
(23)

associates v with the corresponding input torque τ . For
perfectly invariant constraints q = F (ψ�), q̇ = F (ψ�)ψ̇�, the
virtual control variable v is zero and (23) gives the nominal
torque (12). As shown in [12], [11], in the new coordinates
the dynamics of the system is given in partly linear form:

α(ψ)ψ̈+β(ψ)ψ̇2+γ(ψ) = gy(ψ, ψ̇, ψ̈, y, ẏ)y+

+gẏ(ψ, ψ̇, ψ̈, y, ẏ)ẏ + gv(ψ, ψ̇, y, ẏ)v

ÿ = v ,

1We check that the matrix N is non-singular in the vicinity of our
preplanned motions.

where the left-hand side of the upper equation corresponds
to the one for the virtually constrained system (10), while
the right-hand side is rewritten in the new coordinates (22)
and is equal to zero along the target motion.
With the reduced dynamics (10) being integrable, we can

define dynamics transversal to the solution as follows:
d
dt
I(·) = 2ψ̇

α(ψ) [gy(·)y + gẏ(·)ẏ + gv(·)v − β(ψ)I(·)]

ÿ = v .
(24)

Thus, the transverse coordinates for a given trajectory are

x⊥ =
[
I

(
ψ, ψ̇, ψ�(0), ψ̇�(0)

)
, yT , ẏT

]T

with dimension 2n − 1, where n = dim q. Eventually, the
controller design can be based on the linearization of the
transverse dynamics (24) along a desired solution ψ�(t)—
a linear time-variant comparison system called transverse
linearization given in the form [11]:

d
dt
z = A(ψ�(t), ψ̇�(t))z +B(ψ�(t), ψ̇�(t))w
z = [δI, δy, δẏ]T .

(25)

Exponential orbital feedback stabilization within a vicinity
of the desired trajectory can be achieved by using w =
−Γ−1B(t)TR(t)z, where R is a solution of the continuous
time-periodic matrix Riccati equation

Ṙ(t)+A(t)TR(t)+R(t)A(t)+Q = R(t)B(t)Γ−1B(t)TR(t)

with appropriately chosen weighting matrices Q ≥ 0 and
Γ > 0. This method used to find this solution is presented
in [5], [6]. The explicit dependence of time is removed by
an operator that relates a point in the phase plane (ψ, ψ̇) to
the desired trajectory such that the corresponding stabilizing
solution R(t) can be used in the control law for the nonlinear
system, see [11] for details. It should be also noted that
one can often find a constant feedback gain that provides
acceptable rate of convergence.
A. Simulation Results
In order to illustrate the exponential convergence prop-

erties of a transverse linearization based controller, we
performed numerical simulations with a constant feedback
gain designed for the third motion, i.e. constant pitch and
cyclic roll, parametrized by (19)–(20). The system dynamics
were initialized at a considerable distance away from the
desired trajectory. The elements of the initial state vector
x(0) = [q(0), q̇(0)]T were chosen as

q(0) = [0, 0.5, 0] = [ψ�(0), θ�(0) + 0.5, φ�(0)− 0.5]

q̇(0) = [0, 0, 0] = [ψ̇�(0)− 0.5, θ̇�(0), φ̇�(0)] ,
(26)

which corresponds to the helicopter being positioned at a
resting state on the table. As can be seen in Fig. 8, the
controller manages to recover the preplanned motion after
some time, compare Fig. 6. Fig. 9 shows the velocity profile
of the resulting trajectory, with initial conditions at ψ =
0, ψ̇ = 0, as stated by (26), showing convergence to the
trajectory of Fig 5. Another measure of the performance of
the controller can be seen in Fig. 10, which shows the vector
norm of the transverse coordinates x⊥ over time.
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Fig. 8. Time evolution of the simulated closed loop system.
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Fig. 9. Phase space trajectory for closed loop simulation, initiated at ψ =
0, ψ̇ = 0, showing convergence to the preplanned periodic trajectory.

V. CONCLUSIONS

We have considered the problem of trajectory planning
for an underactuated 3DOF helicopter. We used the concept
of virtual holonomic constraints to plan feasible motions.
The procedure was illustrated by the planning of different
motions about the yaw axis, using the yaw configuration
variable as parametrization. By selecting a certain solution
to the reduced dynamics, the motions were designed to be
periodic. The range of motions feasible to plan with this
approach is however not in any way limited to this class of
motions.
A controller was designed for one of the periodic motions.

Numerical simulations using the resulting controller show
convergence to the preplanned motion, even when initialized
at a resting position away from the trajectory, without vio-
lating position or force constraints.
We are currently in the process of conducting experiments

on a physical setup, in order to practically validate our
results. A further interesting extension to the current problem
would be to apply this approach to a more complex helicopter
system with additional translational degrees-of-freedom.
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Fig. 10. Controller performance in simulation of the closed-loop system
initialized away from the trajectory. The norm of the vector of transverse
coordinates x⊥ is shown.
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