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Abstract— Collaboration of mobile robots and people gener-
ate the need for methods allowing the robot to reliable identify
a person. The robust identification of the user is especially
important in the context of people tracking when there are
frequent occlusions. In this paper we present a novel approach
for recognizing the user of a mobile robot. Our approach
assumes that the user wears a mobile footstep sensor whose
data are fused with footstep data extracted from leg movements
of people. It relies on a recursive Bayesian estimation scheme to
calculate a posterior about the potential associations between
the different footstep perceptions. Our approach has been
implemented and tested on real data. In simulated experiments,
in which we use ground truth leg movement data recorded with
a motion capture suite, and with a real robot we demonstrate
the robustness of our method even when multiple people are
present.

I. INTRODUCTION

People detection and tracking is an important ability

for mobile robots in populated environments. Besides safe

navigation it is fundamental for most kinds of collaboration

between robots and humans. For user-centered tasks, such as

guiding or following, person detection is insufficient. Rather,

the robot must be able to recognize its user especially when

he or she enters the field of view or re-appears after an

occlusion. In practice, it is furthermore useful if the robot

can robustly identify a previously unknown person. A typical

example are robots that have to guide people through exhi-

bitions or markets where the robot should be able to reliably

keep track of the person it is providing service to. In such

applications, the robust identification is further complicated

by the fact that typically multiple people are in the vicinity

of the robot which makes it hard for the robot to identify its

user. Straightforward approaches would be to define a simple

criterion for the identification like the closest person around

the robot or to include prior knowledge in form of a limited

database of possible users. More sophisticated approaches

as proposed by Fritsch et al. [1] use speaker localization.

However, it remains unclear how such an approach can be

applied in noisy situations and when multiple people are

around. For a realistic collaboration scenario the robot must

be able to reliably detect its user and the recognition itself

should work despite varying environmental conditions. Fur-

thermore, it should work independently of the appearances of

people and should not require any prior such as a database
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Fig. 1. The mobile footstep sensor carried by the user. Dimensions are
8.5 x 5 x 2 cm (width x height x depth).

of possible users. We believe that an approach that offers

these features will tremendously extend the range of possible

applications for a mobile robot collaborating with humans in

crowded environments.

This paper presents a novel approach to identify the user

for a mobile robot and to reliably keep track of it. Our

approach requires that the user wears a small mobile footstep

sensor depicted in Figure 1 and carries it as long as he

or she needs support of the robot. This device includes

an accelerometer and a wireless communication interface

comparable to most modern cell phones. The accelerometer

is used to detect the footsteps of the user. First, a people

tracking module was simulated by data of a motion capture

suite. To work on data comparable to that of a people tracker

based on laser range finders, the fully recorded body posture

was reduced to leg positions on a fixed height. Second,

we made experiments with a real robot. The individual

footsteps extracted from the recorded leg movements of the

people tracker were compared to the footsteps measured by

the mobile footstep sensor. We formulate the problem as

a Bayesian estimation problem and present an appropriate

sensor model to calculate a posterior over the potential

assignments of the leg movements to the footstep sensor data.

II. RELATED WORK

In the area of robotics, there has been extensive research

on person recognition and tracking. Popular approaches use

laser range finders as primary sensor for this task as this

sensor typically is also used for obstacle avoidance and

mapping tasks. People tracking approaches as proposed by

Arras et al. [2] are able to track multiple people even in

the context of short-term occlusions. Lee and Stone [3]

propose a more complex person model which explicitly

models the movements of the individual legs. Additionally,

several authors have demonstrated that the use of multiple
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range scanners reduce the number track losses, especially

when occlusions occur [4], [5]. Person tracking approaches

as proposed by Kobayashi et al. [6] that do not detect legs

are not suited for the problem discussed here because they

offer no means to detect footsteps. This also applies to group

tracking approaches as proposed by Lau et al. [7].

Several approaches combine computer vision and laser

range finders to detect people more reliably. Schulz [8]

tracks the contour of a person in images and with the

aid of laser range data. Zivkovic and Kröse [9] apply an

omnidirectional camera to detect body parts. They fuse the

visual information with leg positions detected with a laser

range finder to improve people detection. A combination of

face recognition and clothing colors has been presented by

Bellotto and Hu [10]. Purely computer-vision-based methods

are not mentioned in detail here, because it is unclear

how these methods could detect footsteps of a person. An

overview and comparison of computer vision approaches and

combinations with laser range finders has been presented by

Schiele et al. [11].

Besides person tracking, a user-centered task needs to dis-

tinguish between a user and others. Most of the approaches

mentioned above can cope with short or partial occlusions. If

continuous tracking cannot be guaranteed, additional effort

must be taken to recognize a reappearing user as such. For

systems purely based on laser range data there, to the best of

our knowledge, exists no approach to distinguish between a

reappearing and an unknown person. Computer vision can in

principle solve this problem, for example by face recognition

as shown by Lee and Stone [12] or by color histogram

matching like by Zajdel et al. [13]. Face recognition can

even allow for the identification but comes with additional

requirements such that a reappearing user must face the

camera. For approaches using color histogram it is unclear

if they are sufficiently robust for real-world applications

with potentially changing lighting conditions and only slight

differences in cloths.

There also has been work on person tracking using devices

attached to the user. Devices as proposed by Nagumo and

Ohya [14] or Gigliotta et al. [15] can be tracked directly.

Besides a fixed position where the device is attached, they re-

quire a direct line of sight, something that cannot be guaran-

teed in general and especially not in crowded environments.

Using radio frequency as done by Arora and Ferworn [16]

allows free orientation but increases the technical complexity

for receivers.

The approach in this paper has several features which

make it suitable for a wide range of scenarios in which

possible users are either unknown, change often or their

appearances are too uniform to distinguish between them.

Compared to computer-vision-based methods we make no

assumptions about the environment or the appearance of the

user. This makes our approach feasible for environments

where people all look the same because of working cloths.

Combined with user identification methods as proposed by

Gafurov and Snekkenes [17] the additional benefit of identifi-

cation that face recognition approaches offer are outweighed.

Fig. 2. A person wearing the motion capture suite which provided ground
truth data to analyze the mobile footstep sensor. We also used this suite to
record the leg movements of people used in the experiments.

Compared to approaches relying on carried devices that

can be located no line of sight is needed. Furthermore

the footstep sensor has no fixed position. Rather it can

even be carried in a pocket. The footstep sensor works

user independently and does not require any adaption for

a specific person. Therefore our approach can be used to

track an arbitrary person carrying the sensor. Our method

allows to identify the correct user at the beginning of a

task and to robustly recognize when the user reappears

after an occlusion. Furthermore, our method has very little

computational requirements as only sparse data need to be

processed.

III. FOOTSTEP SENSOR

Throughout this work, we used a developmental proto-

type of a footstep sensor (see Figure 1). It has a 3-axis

accelerometer, Bluetooth interface, and a micro-processor. In

principle, one could also use modern cell phones that include

accelerometers and Bluetooth or WLAN. The footstep sensor

samples the accelerometer at 100 Hz. The footstep detection

algorithm averages over 5 samples subsampling the signal

to 20 Hz. Then it computes the absolute acceleration value

and detects trend changes of this value. A trend change

from negative to positive is accepted as footstep if it has

a preceding trend change of similar type with gap of less

than 1 second. The footstep sensor sends each footstep

represented by its timestamp over the Bluetooth interface

via a pre-defined protocol to a connected PC. To develop a

sensor model for this mobile sensor we carefully analyzed

the footstep detection procedure.

We recorded sequences of data in which the person

wearing the footstep sensor was walking and also standing

still. Thereby we varied the speed. To obtain ground truth,

we simultaneously recorded data with a motion capture suite

shown in Figure 2. The footstep sensor detects footsteps
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Fig. 3. Distances of legs extracted from body postures of a person starting
to walk recorded with the motion capture suite. Whenever we observe a
maximum above half the stride length succeeding a minimum below the half
stride length we assume that a footstep has been carried out (red crosses).
The footsteps detected by the worn footstep sensor are marked with blue
plus-symbols.

when the heel strikes the ground. We found this to be

equivalent to the maximal distance between the feet as

observed in the motion capture suite data. To detect the

footsteps in the motion capture data, we used a heuristic

approach and assumed that the user has performed a footstep

whenever a local minimum of the distances of the two feet

was followed by a local maximum. A simple false positive

rejection was applied which only accepted footsteps if the

minimum was less and the maximum above half of the

maximal stride length dmax. This heuristic did not detect

steps with a small stride length which was negligible as

the step sensors did not detect these steps either. Figure 3

displays an excerpt of a data set. Whereas the motion capture

suite provides data at 100 Hz, the footstep sensor has a

temporal resolution of 0.05 seconds.

If both data sets detected a footstep, we labeled it as a

true positive. Footsteps only detected by the footstep sensor

or the motion capture suite were labeled as false positive

respectively false negative. To get a comparable rate for a

standing person we divided the overall time a person was

standing by the mean duration of a footstep dt. We computed

dt over pairs of succeding true positive labled footsteps. The

resulting confusion matrix for the used footstep detection is

shown in table I.

When examining the footstep detection as depicted in Fig-

ure 3 more closely one can realize a start-up phase. Looking

at the first 6 footsteps in detail reveals that the footstep sensor

misses the first 3 footsteps more often than later. The true

positive rate for the first 3 footsteps is below 0.1. This is due

to the used footstep detection algorithm which partly relies

on periodic gait characteristics. Secondly, the footstep sensor

reported footsteps with an offset in time. The offset is due

to missing time synchronization between the footstep sensor

and the connected PC. The footstep sensor only provided

the length of intervals between consecutive footsteps. The

absolute timestamp needed for comparison is created at the

PC-side adding the time needed for transmitting the data.

This offset turned out to be a Gaussian distribution with a

mean µoff and varianz σ2

off
.

TABLE I

CONFUSION MATRIX THE FOOTSTEP SENSOR

person walks person stands

footstep detected 1145 (80,98%) 13 (4,18%)

no footstep detected 269 (19,02%) 298 (95,82%)

total 1414 311

IV. USER RECOGNITION

The user recognition works on footstep sequences repre-

sented by timestamps. Spatial information about people is

not used. The footstep sensor carried by the user provides

sequences of footsteps which serve as reference signal.

Comparing this reference to footsteps of tracked people in

the vicinity allows us to maintain a posterior representing

the probability of a person to be the robot’s associated user.

Figure 4 displays the information flow.

Our approach relies on a representation of tracked peo-

ple which allows to calculate the timestamp of a person’s

footstep. Most laser-based people tracker track the position

of the legs of a person. In such timeseries we can find the

timestamp of footstep by look for maximal distances of the

legs. Other people tracking approaches could replace a laser-

based tracker as long as they offer means to calculate the

timestamp of a footstep.

A. Matching footstep sequences

A straightforward approach using only the most recent

footstep of a person proved to be insufficient. Due to the

above-mentioned start-up phase the first footsteps would be

misclassified and thus decrease the probability associated to

the corresponding person. However, for the targeted appli-

cation the first few footsteps are crucial. If it takes too long

to recognize a user, he might have walked away before the

robot will detect him.

The first step of our approach is to match the reference

footsteps coming from the footstep sensor to footsteps of a

tracked person. We use a nearest neighbor filter to match

these series of footsteps. Two footsteps are matched if the

footstep

sensor

user

recognition

people

tracking

1

2

3

4

Fig. 4. Information flow between the components: (1) The footstep sensor
provides timestamps of each detected footstep as reference signal. (2) A
people tracking module detects all surrounding people. This module was
simulated by the motion capture suite for the experiments in this paper. (3)
The states of all tracked person are sent to the user recognition module
which calculates timestamps of footsteps for each person based on their leg
distances. (4) If a person is selected as user, the user recognition provides
the position of the user to the overall system.
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difference in time falls in the 99% confidence interval for

corresponding steps. This interval is defined by µoff and

σoff which we calculated for corresponding footsteps in the

previous section. The result of the matching forms sequences

of events: matched footstep (MA), missed footstep (MF), and

missed reference (MR).

In case of standing people and a standing user no matching

is possible as no footsteps are detected. However a standing

user holds information as valuable as a walking person.

We explicitly model the absende of footsteps to get a

representation for a standing person comparable to that of

a walking. We achieve this by introducing a virtual event

“no-step” (NS) for periods in which a person stands and no

reference signal is present. These events recur in intervals of

length dt as long as no other data is present.

B. Recursive Bayesian estimation

To estimate the posterior distribution over all people we

formulate the task of user recognition as a recursive Bayesian

estimation problem. We calculate the likelihood of event

sequence to represent the user of the robot. The basis of

our filter scheme is

p(Pi | Ei,t) = η · p(Ei,t | Pi) · p(Pi), (1)

where Pi stands for person i, Ei,t is the event t of person i,

and η is a normalizer. We do not use a complex person

model. Rather, people are represented by their footsteps

respectively a sequence of events. Incorporating this person

model in Equation (1) results in

p(Pi | Ei,t) = η · p(Ei,t | Ei,t−1, . . . , Ei,0) · p(Pi). (2)

Besides the most recent footsteps, we consider the de-

pendencies between footsteps insignificant when they are

by 2 or more footsteps apart. The found warm-up phase of

the footstep sensor is the main reason for this remaining

dependency. This assumption allows us to restate Equation

(2) as follows.

p(Pi | Ei,t) = η · p(Ei,t | Ei,t−1, Ei,t−2) · p(Pi) (3)

Taking the dependency of footsteps into account allows

to better classify some sequences. For example the sequence

NS-NS-MA is actually less likely to appear than the confu-

sion matrix from table I would suggest. The opposite is true

for the MF-MF-MA sequence. Because the first footsteps of

a person are very unlikely detected this sequence is very

likely the user starting to walk.

We implement the likelihood p(Ei,t | Ei,t−1, Ei,t−2) in

Equation (3) by a look-up table because it only consists

of discrete events. Having triplets with four values for each

element, creates a total of 64 entries. We model these entries

on basis of the confusion matrix and the characteristics of

the footstep sensor. Sequences like MA-MF-MA (a single

missed footstep) or MA-NS-NS (a stoping person) have

a high likelihood. Sequence most likely coming from a

random person (e.g. MA-MR-MR or MF-MR-MR) have a

low likelihood. Some sequences as NS-NS-MF or NS-MS-

MS could originate from a starting person as well as from

a random person. To reflect this ambiguity these sequences

have a moderate likelihood.

Starting with a uniform distribution as prior, we accept a

person as the user if the assigned probability exceeds a given

threshold τ .

V. EXPERIMENTS

The experiments represent two different scenarios. In the

first one, the user takes the footstep sensor and activates

the robot. When the robot is activated, it starts to detect

the people in its vicinity and seeks to identify the person

which wears the footstep sensor. In the second scenario, the

robot looses track of its user while moving along a corridor

because the user disappears behind a corner. As soon as the

robot has turned around this corner it is confronted with a

group of people from which it has to recognize its user to

correctly resume to its task. In both cases no prior knowledge

can be used to select the user.

A. Simulated experiments

For the experiments we recorded data with the motion cap-

ture suite (see Figure 2). The motion capture suite provided

much richer information as a people tracking module could.

We reduced the complete posture of a person to the positions

of legs at height of 0.25 m above ground. This produced

a data representation comparable to a laser-based people

tracker on a mobile robot. To obtain larger variations, we split

the recorded data whenever a person stood for some time. To

recombine these sequences we normalized the data relative

to time. We furthermore combined different sequences to

simulate a greater variability, which could easily be achieved

because our approach only works with the timestamps of

footsteps. Besides the distance of legs we used no spatial

information.

The only assumption throughout our experiments was that

the robot’s user was present and carried the footstep sensor.

We performed experiments with different group sizes of

2, 3, and 5 people. All people stood and started walking

simultaneously. The synchronous start formed an even harder

task. If people start walking one at a time the estimation

problem can easily be solved since one only has to decide

which persons starts walking almost simultanously to the

footstep sensor reporting steps.

The parameters used for the matching of the footstep

sequences were obtained from the data recorded to analyze

the footstep sensor in section III and are shown in table II

We regard an experiment as correct, if the right person was

selected and remained selected until the end of the sequence.

The remaining cases were divided into three categories:

TABLE II

PARAMETER USED FOR THE EXPERIMENTS

dmax dt µoff σoff
sequence likelihoods

τ
low medium high

0.7 m 0.6 s 0.05 s 0.06 s 0.3 0.5 0.7 0.7
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Fig. 5. Example run with 5 people. The actual user is marked with a star. (top) Footsteps of tracked people (diamonds and bars) extracted from leg
distances and reference footsteps (vertical red lines) from the footstep sensor represented by event sequences resulting from nearest neighbor matching.
(bottom) Posterior distribution p(Pi | Ei,t) as calculated by the Bayesian filter.

• wrong person, when the system selects the wrong

person as its user,

• unable to make a decision, when the probability was

equally spread over 2 or more persons, and

• the selected person changed during the run, when the

system selected a person but canceled its first decision

during the run in favor of a different person.

Whereas we had 1,190 simulated runs for two people,

the number of data sets with three and five people was

1,225 each. For simulated runs with three or five people

we randomly combined recorded walking sequences thereby

making sure of only unique combinations. Since we did only

use abstract data and no spatial information we could simply

merge these tracks. Only for a single track the recorded data

of the footstep sensor was included as reference signal. This

track represented the user. The knowledge of the user was

used for evaluation purposes only. An exemplary run with

5 people is shown in Figure 5.

The results for all experiments are summarized in Figure 6.

As can be seen, our system was able to correctly recognize

the user in 80% of all cases. Additionally a wrong decision

was only made in less than 3% of all runs. The fourth case

in which the system changes its decision could be spread

among the first two. If a person is selected in the first place,

the robot would start following and shift its sensor focus

to this person. This could result in tracking losses of the

other person. Therefore, if the first decision was correct, the

second wrong decision would not have occurred. This is true

for the inverse case as well. For these experiments all the

“decision changes” cases were counted as negative. When

applied in a system with a possibility to give feedback to the

user, a feedback of the robot could solve the third case “no

decision” by informing the user that he is about to be lost.

This corresponds approximately to the fourth case “decision

changes” as well. For this paper both cases were counted as

negative.

Note that the threshold τ for accepting a person as a user

was carefully chosen to obtain the best trade-off between

correct estimates and the mean time needed to make a

decision. Large values decrease the number of false positives

but at the same time increases the mean time required until a

decision can be made. With the used threshold, the average

time needed until the user was selected was 5.5 seconds

or 9 footsteps with a standard deviation of 3.7 seconds

respectively 6 footsteps. This is due to two factors. First,

a newly reported footstep provides only sparse data. This

is intensified as footsteps occur roughly every 0.6 seconds

providing only few updates by the footstep sensor compared

to update rates of other commonly used sensors. Second, the

above-mentioned start-up phase of the footstep sensor which

introduces a certain delay. Switching to a different footstep

detection algorithm that detects footsteps beginning with the

first one would decrease the needed number of observed

footsteps by 3 respectively and thus lead to a mean time

by about 3 seconds.

B. Experiments with a real robot

We carried out first experiments using a Pioneer P3-DX

robot equipped with a Sick laser range finder installed 35 cm
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Fig. 6. Results of the experiments for each scenario. Total number of
experiments were 1,225 for 3 and 5 people each and 1,190 for 2 person
scenarios.
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Robot

Person 1

Person 2*

Fig. 7. Paths of the robot and 2 people walking in a corridor. Footsteps
obtained from leg distances are marked with black crosses. In this example
person 2 carried the footstep sensor.

above ground. As people tracker we used the approach

proposed by Arras et al. [2]. The system was running

at 30 Hz. Due to the higher scanner plane compared to

simulated experiments we set dmax to 0.4 as legs are less

apart at this height. People were reliably tracked up to a

distance of 6 m.

Figure 7 shows a typical example. Two people walked

along the corridor followed by the robot. Although the calcu-

lated leg distances from tracked leg positions contained more

noise, the adjustement of dmax was enough to reliably detect

footsteps. Figure 8 shows an excerpt of the leg distances

of person 2 of that example. Out approach corretly selects

person 2 after 6 footsteps.

To summarize, the simulation experiments demonstrate

that our approach is able to recognize people by their

footsteps. The footstep sensor turned out to work reliably

and seems not to be affected by the way people wear it. In

the experiments, people used different ways of wearing it,

for example at the belt or in the pocket. Experiments using

a real robot showed that our approach can cope with noisy

data. The computational demands of our approach are low

due to the use of sparse data, the efficient matching approach,

and the effective estimation of the posterior.

VI. CONCLUSION

This paper presented a novel approach to recognize the

user of a robot among a group of people. Our approach

assumes that the user carries a mobile footstep sensor and

it calculates a posterior for all people in the vicinity of a

robot that they are the user of a robot. We proposed a sensor

model that we apply in a recursive Bayesian update scheme

to calculate this posterior. We implemented and evaluated

our approach using data recorded with a motion capture suit.

The experiments demonstrate that our approach can robustly

recognize the user of a robot. Compared to other methods

for user recognition, our approach has the advantage that it

is unaffected by environmental factors or user appearance.

Future work will focus on reducing the time needed to

recognize the user. This will be achieved by improving the

sensor model, potentially with regression methods, and by

reducing the startup-time of the footstep sensor through an

improved footstep detection algorithm.
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