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Abstract— A vision based exploration algorithm that invokes
semantic cues for constructing a hybrid map of images - a
combination of semantic and topological maps is presented in
this paper. At the top level the map is a graph of semantic
constructs. Each node in the graph is a semantic construct
or label such as a room or a corridor, the edge represented
by a transition region such as a doorway that links the two
semantic constructs. Each semantic node embeds within it a
topological graph that constitutes the map at the middle level.
The topological graph is a set of nodes, each node representing
an image of the higher semantic construct. At the low level the
topological graph embeds metric values and relations, where
each node embeds the pose of the robot from which the image
was taken and any two nodes in the graph are related by
a transformation consisting of a rotation and translation. The
exploration algorithm explores a semantic construct completely
before moving or branching onto a new construct. Within each
semantic construct it uses a local feature based exploration
algorithm that uses a combination of local and global decisions
to decide the next best place to move. During the process of
exploring a semantic construct it identifies transition regions
that serve as gateways to move from that construct to another.
The exploration is deemed complete when all transition regions
are marked visited. Loop detection happens at transition
regions and graph relaxation techniques are used to close loops
when detected to obtain a consistent metric embedding of the
robot poses. Semantic constructs are labeled using a visual
bag of words(VBOW) representation with a probabilistic SVM
classifier.

I. INTRODUCTION

Mobile robot exploration is a vital cog in the automation

of the mapping process. In recent years, lot of work has

been done on image based navigation along the lines of

appearance based mapping [3] and topological SLAM[4].

Image based navigation algorithms such as [2] have shown

a framework for navigating from one node to another in

a topological map based based on images. However these

methods do not describe in detail the process of automating

the map construction.

While range sensor based exploration has been well under-

stood, the amount of literature on vision based exploration

is indeed sparse. One of the first papers in this area [1]

adapted the frontier exploration technique [5] to occupancy

grid maps constructed through a stereo camera. The maps

created had a metric representation. Later frontier exploration

technique dovetailed to an image based mapping technique
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in [2]. Very recently an image based exploration method that

reduced the number of nodes in the topological graph through

a combination of local and global decision making strategies

was presented in [14] by current authors. Apart from these

there isn’t any other literature on exploration that is purely

guided by visual perception.

The above vision based exploration approaches utilized

the image as a provider of dense range information as

in [1] or as a characterization of the vicinity around the

robot pose as in [2] [14]. It is possible to glean lot more

from an image, for example one can obtain the semantic

construct in which the robot operates and use this higher level

understanding to formulate an effective exploration strategy.

Such semantic understanding of places is particularly apt in

an indoor and personal robotic context where the robot can

communicate with humans through such semantic constructs,

take commands from humans in terms of such constructs and

on the whole facilitate better interaction between robots and

humans.

In this paper we come up with a strategy that provides

the robot with hybrid understanding of its surroundings

from the lower metric characterizations to higher semantic

recognition. The robot explores and constructs a hybrid map

that reflects such an understanding. At the highest or top

most level the map is a graph whose nodes are semantic

constructs such as labs or corridors and the edges represent

transition regions(TRs) such as doorways or intersections.

At the intermediate or middle level each semantic construct

is further detailed as a topological graph of images. At the

lowest level the topological graph embeds metric values and

relations, where each node embeds the pose of the robot from

which the image was taken and any two nodes in the graph

are related by a transformation consisting of a rotation and

translation. The exploration algorithm first explores the cur-

rent semantic construct completely before moving to another.

Within a semantic construct it builds a topological graph of

images by adapting our earlier method delineated in [14].

During this process it identifies gaps as possible gateways of

moving from one semantic construct to another. Out of these

gaps only few are valid gateways or TRs such as doorways.

Gaps are identified using laser data and the confirmation of

a gap as a valid TR is through image data. Once a semantic

construct is considered completely explored the algorithm

moves through one of the TRs to begin exploration of the

new construct. The exploration terminates when all gaps are

visited and graph relaxation techniques are used to close

loops when detected to obtain a consistent metric embedding

of the robot poses. Semantic labeling or classification of an
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image is through a probabilistic SVM classifier that runs over

a bag of words characterization of the image.

The advantages of the method are as follows. Since TRs

represent gateways to move from one semantic place to

another, loop detection and closure can be done solely based

on these TRs, instead of comparing a currently acquired

image with all previously obtained images. This significantly

reduces the number of comparisons and the computations

thereof as well as the number of false loop detections due

to reduction in amount of image data being used for such

task. Secondly and perhaps most importantly, understanding

the larger semantic context within which the robot operates

can result in context specific exploration. For example the

exploration strategy for a room and corridor can differ if the

higher semantic understanding is present.

The novelties of this work arise from advantages men-

tioned in the previous paragraph, and the advantages that

accrue from a semantic understanding in home robotics

setting mentioned earlier. Also, this is one of the first efforts

that demonstrates a vision-based exploration algorithm that

builds hybrid maps.

II. RELATED LITERATURE

Range sensor based exploration became popular in the

last decade due to the frontier approach [5] and was fur-

ther extended to a multi-robotic framework in [6], [7].

[15] presented a decision theoretic approach to multi robot

exploration that also included localizing one robot in the

map built by the other as an aid to the exploration process.

Later Sawhney and others [8] came up with a new per-time

visibility metric using which they could explore an unknown

area in faster time.

With vision as the primary sensing modality the work of

Sim and Little [1] was first of its kind that circumvented

the requirement of range sensors for exploration. Frontiers

were computed from occupancy grid map just as in [5]

and the best frontier to move to was decided through a

cost function that trades off distance to reach a frontier

with the information gained at that place. Later an image

based exploration approach was presented in [2] that once

again computed frontiers from images. More specifically they

computed frontiers as horizons which are detected as the

end of the ground floor segmented from the image. Since

this method relies on the assumption that the ground is flat

and of a similar texture when compared with other obstacles

around its reliability where the ground is undulating such

as in outdoors could be in question. Very recently an image

based exploration method that reduced the number of nodes

in the topological graph through a combination of local and

global decision making strategies was presented in [14].

In recent years there have been a lot of approaches tackling

the problem of visual topological SLAM [4], visual homing

[9] and loop detection [10] where the robot is either guided

to acquire the images for learning as in [9] or made to move

along predefined paths [10]. An exploration algorithm in such

scenarios could limit user intervention as well as extend

the range of robot operation as it dynamically expands its

workspace of operation acquiring more images for learning

as well as for mapping.

III. METHODOLOGY

This work extends on the topological exploration al-

gorithm of [14] and builds a semantic understanding of

the environment. The topological exploration proceeds by

a combination of local and global decision making and

explores a particular semantic construct, thereby creating a

topological graph of images. Further explanation and results

for algorithm can be found in [14]. In this paper, we explain

how the topological exploration algorithm is adapted within

the context of semantic exploration. We then delineate the

strategy for identifying gaps and go on to briefly explain how

the true gaps are identified as TRs through the probabilistic

SVM classifier that learns class labels from images that

are characterized through the visual bag of words(VBOW)

paradigm [11]. We then describe how loops are detected from

TRs and closed by graph relaxation.

A. Semantic Exploration for Semantic Mapping

The semantic exploration strategy is built over the topo-

logical exploration strategy as explained below. Each image

acquired at a node is classified in terms of previously learned

class labels, namely labs(LAB), corridors(CORR), transition

regions(TRs), hard to classify(HTC). HTC was included

because, when a robot is moving autonomously, not every

image will have a distinctive or characteristic view of the

place. This was highlighted in [16]. During the exploration

process, gaps are identified through the laser readings in

a manner explained in the section III-B below. The gaps

are represented by their midpoints and identified by their

(x,y) co-ordinates and the node in which they are seen at

the closest range.Once the current semantic class/construct

is sufficiently explored as seen by saturation of the weights

[14], each of the gap is visited and checked if it is a TR

such as a doorway. Visiting a gap becomes trivial as the

shortest path from the current node and the node where the

gap was seen in the topological graph can be found. Upon

reaching the gap, an image is taken and VBOW+SVM is

used to classify the image. Those images(correspondingly

gaps) that are not classified as TRs are rejected as false gaps.

The robot then picks up one of these TRs to explore, moves

across this TR, identifies the new semantic construct and

begins exploration of this construct through its underlying

topological exploration algorithm. The process continues till

all valid TRs are marked visited at which time the exploration

halts.

If the semantic construct is a corridor the underlying

topological exploration could have the weight of all nodes

saturated before the corridor is fully explored due to strong

perceptual aliasing due to lack of differentiating features

along a corridor. Hence when the robot reaches one end

of the corridor, there is no next best node (global decision

making as explained in [14]) to choose because of saturation

of weights and the exploration stops. To overcome this,

knowledge of the higher semantic understanding of the
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environment is made use of. Once an image is classified as a

corridor the exploration strategy is to simply move towards

both the ends of the corridor. The rest of the procedure

consists of identifying all other gaps that occur during the

exploration and marking out the actual TRs amongst those.

B. Detection of Transition regions (TRs)

TR detection occurs in two steps - Gap identification and

Gap verification. For gap identification, the laser readings

(r, θ) are converted to (x, y) and the points are clustered

(figure 1(a)) based on euclidean distance and line segments

are fit for each cluster. Line segments with similar slope

are then grouped. Figure 1(b) shows line segments of the

same group marked with the same colour. The connecting

line segment between adjacent pair of line segments within

a group are considered as potential TRs and a visibility check

is made. Visibility check is done by generating points on the

connecting line segment and computing the corresponding r,

θ for those points. This r, is compared with the actual laser

reading r′ at θ. (r′ − r) > threshold for all points implies

that the gap is visible and hence could be a transition region.

Figure 1(b) shows an example where the visibility check

helps in discarding false gaps. The points generated on the

connecting line segments are shown in black and the final gap

detected. This approach sometimes results in false gaps, for

which an example is shown in figure 1(c). The line segments

constituting the gap is superimposed on the image in red.

The connecting line segment corresponding to false gap is

shown in blue. To eliminate these false gaps, we do a gap

verification step.

Gap verification occurs after a room has been explored

completely. The robot visits the gaps identified(in the first

step) within a room at a close proximity and takes an image

at that position to verify if it is a TR or not. Figure 1(c)

is the image taken at one of the false gaps. Figure 1(d)

is the image taken at a transition region. The probabilistic

SVM classified 1(c) as a lab (Pr(LAB)= 0.43, Pr(TR) =

0.21) and 1(d) as a TR (Pr(LAB) = 0.23, Pr(TR) = 0.46).

Thus false gaps are completely eliminated by the second step

of our approach.Once the gap has been verified, the robot

moves through the gap(TR), turns 180o and takes an image

from the other side of the TR. The image of the TR thus

taken and the midpoint of the TR are used to detect loops.

Loop detection is explained in detail in Section III-D. The

gap identification method used here is geometric and works

well for structured indoor environments. To detect gaps in

complex and unstructured environments could entail some

form of machine learning techniques as in [12].

C. Semantic Classification of Images

SURF feature descriptors in the training set are extracted

and a dictionary of words [11] comprising these features

is formed. The frequency of occurrence of these words in

every image of the dataset is computed and a vector of such

frequencies is formed. A probabilistic SVM uses this vector

of frequencies as the lower dimensional input representation

of an image and the associated class label as the output vector

(a) Clustering a single scan (b) Visibility check after fitting line
segments to each cluster

(c) False gap (d) Transition region

Fig. 1. Detection of Transition Regions

TABLE I

VBOW+SVM PERFORMANCE

Class Label No. of train images No. of test images Accuracy %

Lab 900 160 100
Corridor 683 123 100

and trains over this input-output pair to form class boundaries

and obtain the probability of each image belonging to a

semantic class. Upon presenting a query image obtained

during exploration the trained SVM outputs the probabilities

of each semantic class for this query image and the class

with the highest probability is the semantic class or construct

of that image. The exploration algorithm makes use of this

probabilistic SVM and bag of words combine to classify an

image online in terms of previously learned semantic class

labels.

Transition probabilities along the lines of [12] could be

used to accelerate the identification process when the robot

has transitioned to a new construct through a transition

region. However in our experiments we did not find any

tangible advantage by incorporating transition probabilities

and thus the identification proceeds by the probabilities as

assigned by the SVM classifier.

The training set comprises of 1583 images collected in

a particular floor of our college. To validate the eficiency

of VBOW+SVM classifier, we tested it against the images

taken from [18]. [18] didn’t have the classes TR and HTC.

So, we tested against only two classes corridor and lab. We

selected 283 images randomly from [18] coresponding to

the two classes and achieved 100% accuracy. This proves

the efficiency of VBOW+SVM in semantic classification.

Results are shown in Table I.

D. Loop Detection and Graph Relaxation

Loop detection and closure occurs at the semantic level

through the TRs. As mentioned in section III-B each TR is

represented by its midpoint and the uncertainty of the robot
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TABLE II

DETECTION OF TRANSITION REGIONS(TRS)

Semantic construct No. of runs Total no. of TRs TRs detected

Lab-1 10 2 2
Lab-2 10 2 2

Corridor 10 3 3
Lab-3 5 1 1

projected onto this point along with the measurement error

in form of the innovation covariance matrix S. Whenever a

TR is seen during the course of exploration, the NIS distance

between the current TR and every other TR seen already is

computed. If the NIS distance to the closest mapped TR

is within a range(gate1 < nis < gate2), then the image

corresponding to that particular TR (which was taken by

moving through the gap and taking a 180o turn) and the

current image are compared for similarity. Similarity between

images I1 and I2 is defined as

S(I1, I2) =
No. of matching SURF descriptors

min( SURFcount(I1), SURFcount(I2) )
(1)

where SURFcount(I) is the number of SURF features in

image I. If the similarity check is positive(35%), it implies

detection of a loop and graph relaxation is run to distribute

the error. Graph relaxation is done by treating the midpoints

of TRs as nodes in the graph. A TR seen at two nodes

(representing robot poses) in the graph during loop detection,

will have edges connecting it to both the nodes, thus forming

a loop.Thus running graph relaxation now changes the (x,y)

co-ordinates of the robot as well as the TRs. We use the

graph relaxation algorithm proposed by [13]. [13] corrects

only displacement error and not the orientation error.Our

orientation estimates were quite accurate. This is evident

from the laser plots of figure 3, where the laser scans

corresponding to the TR involving a loop appears parallel.

Thus, [13] was good enough for graph relaxation in our

setup. [17] discusses a method to correct both displacement

and orientation errors, which can be used if the orientation

estimates are not accurate

E. Localization

Localization is done by searching for the nearest im-

age(say image 1) in the topological graph. The nearest image

is found by the count of the matching SURF descriptors.

The image in the adjacent node(say image 2) is taken and

the matching descriptors in image 1 and image 2 are trian-

gulated and their world co-ordinates are found upto scale.

The descriptors corresponding to the world co-ordinates are

matched in the current view and thus we obtain a relationship

between 2D images points and 3D world points, which can

now be used to find the extrinsic parameters (R and T). This

R and T localizes the robot corresponding to the nearest node

in the topological graph.

IV. EXPERIMENTAL RESULTS

All experiments were carried out on a P3DX robot with a

wide angle stereo and SICK laser in an environment spanning

labs and corridors. We used a wide angle stereo(for far

feature strategy in topological exploration) and so it was

sufficient for us to take only 3 images at a node. We have

presented results showing exploration, loop detection and

closure. Semantic grouping of nodes to form a semantic

map is also shown. Obstacle avoidance was done by enabling

VFH in Player library.

A. An Exploration run

Figure 2 shows the sequence of images captured during

exploration, and the probabilities of their corresponding class

labels is also shown.Figure 3(a) shows the path taken by the

robot during exploration. Initially the robot is in LAB-1 and

does a far-feature based topological exploration, and finds

TRs. Figures 2(a) and 2(b) shows the images captured in

the lab along with their probabilities. 3 gaps were detected

during the process, which are show in figures 2(c) and

2(e). These were then given to the gap verification routine

which classified 2(c) and 2(d) as TRs. Within a semantic

construct there is no confusion between TRs because the

odometry error doesn’t grow so much that the uncertainty

ellipses overlap. Even when it overlaps, a similarity check

of the images captured in the TRs helps us in resolving the

ambiguity.

The robot then moves out of the two transition re-

gions(TR1 and TR2), turns 180o and takes images. These

are the images which will be used for loop detection when

the same transition regions are visited from the other side of

the transition region.

The robot then decides to further explore by moving out

of transition region TR2 (figure 2(d)), marking it as visited.

The new semantic construct is a corridor and the robot

explores this semantic construct using a “corridor specific

exploration strategy”. The images taken during exploration

of the corridor is shown from figures 2(f) to 2(g). Gap

identification in the corridor is quite robust in our approach,

because the corridor environment is usually uncluttered, and

there are no false gaps. So, we don’t do gap verification

if the semantic construct being explored is a corridor. The

robot identifies two transition regions(TR2 and TR3) within

the corridor and decides to move into TR3 as TR2 is already

marked as visited. After exploring the corridor, it moves

into the unvisited TR3 and starts exploring LAB-2 based

on far-feature based strategy. The robot first moves to the

right, hits a dead end and finds the next best node(global

decision making) and starts exploring towards the other side

of the lab. The images taken in the LAB-2 during exploration

is shown from figures 2(h) and 2(i). During the course

of exploration, it detects a gap whose uncertainty ellipse

overlaps with a transition region(TR1) seen already. The

current image(figure 2(i)) and the image captured on the

other side of the gap(figure 2(j)) are compared which look

similar, hence the loop is detected (explained in more detail

in section III-D). A transition region is marked visited when
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(a) Pr(LAB)=0.45 (b) Pr(LAB)=0.46 (c) Pr(TR)=0.44 (d) Pr(TR)=0.40 (e) Pr(LAB)=0.45 (f) Pr(CORR)=0.85

(g) Pr(CORR)=0.85 (h) Pr(LAB)=0.45 (i) Pr(LAB)=0.45 (j) (k) TRs in corridor

Fig. 2. Exploration

(a) Before graph relaxation (b) After graph relaxation

Fig. 3. Loop closure during exploration

a loop is detected on it, thus making TR1 visited. Graph

relaxation algorithm is run at this stage and the loop is closed.

At this point all transition regions(TR1, TR2 and TR3) have

been marked visited and the robot also reaches the end of

LAB-2. Hence exploration is terminated.

B. The Role of Transition Regions

Transition Regions are used for terminating the explo-

ration, serve as gateways to move from one semantic con-

struct to another to expand exploration and as well as for

loop detection.

The ability to differentiate between TRs within and across

semantic constructs without confusion helps us in loop

detection at the level of TRs. This is definitely faster than the

loop detection methods that compare a current image with

most of the previously acquired images during exploration.

Here we present arguments as well as empirical results to

substantiate about TRs being effective loop detection agents.

For being such effective agents they must be detected when

present and not be falsely associated with another TR.

Within a semantic construct that is being explored TRs

never get falsely associated. In a room construct the number

of TRs are very small (one or two at most) and far apart

to get easily discerned by both distance and image features.

Within a corridor despite being visually similar and being

close enough they are not falsely associated since one can

exploit the semantic understanding of being within a corridor.

That the TRs occur only on either side of a corridor results in

a simple but robust enumeration of such regions. For example

in figure 2(k) during the upward journey of a corridor two

TRs were detected on the left followed by two on the right.

Hence it is evident on the return the same TRs would be

detected on the reverse order and in the opposite directions.

This simple reasoning scheme effectively exploits the seman-

tic understanding of the corridor to correctly associate TRs

even if they are close enough to cause confusions at the level

of odometry.

Table II shows detection performance of TRs within a

semantic construct. The experiments were conducted by

running the exploration algorithm within a particular se-

mantic construct by starting the robot from different places.

The table shows experiments in 3 labs and a corridor, the

number of transition regions involved in each of the semantic

construct and the number of TRs detected. It can be seen

from the table that all the TRs within a semantic construct

were detected.

The question then arises how well are the TRs detected

across constructs. This pertains to loop detection situation

where a TR seen previously from one semantic construct

is now viewed from a different construct. We explain the
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loop detection process and present empirical results in the

subsequent subsection.

C. Loop closure at transition regions

Figure 3 shows loop detection and closure occurring in

the experiment described in the above section.Figure 3(a)

shows loop detection. The same TR(marked in blue) is seen

at node 4 and end node. The (x,y) co-ordinate of the TR seen

at both nodes are not same because of odometry errors. The

odometry drift can be seen in the laser plot in figures 3(a)

and 3(a). The NIS distance between the TRs seen at node 4

and end node is within a range, hence invoking the image

comparison as described in section III-D. The images used

for comparison are shown in 2(j) and 2(i). The images match

and hence a graph relaxation algorithm is run. We modelled

the uncertainty of nodes/TRs as an ellipse and not as a circle

as discussed in [13]. This extension was trivial. Figure 3(b)

shows the corrected graph after running the graph relaxation

algorithm. Graph relaxation was run after detecting loop.

Few runs were taken by manually guiding the robot to test

our loop detection method. In all these runs we found the

loops were effectively detected through TRs thus showing

their ability as effective loop closure agents. The corridor

was blocked on two ends by us in all our experiments

because of height discontinuities. This is why both the ends

of the corridor appear as dead ends in our results. Height

discontinuities in our corridors prevents our testing in larger

environments, which would be taken up in future. Nonethe-

less the framework for semantic exploration presented in this

paper with vision as the chief sensing modality is novel and

appropriate for indoor and home robotic settings.

D. Deriving a semantic map from a topological map

Once the robot crosses a TR and enters a new semantic

construct, all images/nodes seen in the previous semantic

construct are labelled with the same semantic label and

hence a semantic map can be derived by grouping nodes

of semantic constructs and their connecting TRs.

The semantic map for the exploration explained in IV-A

is shown in figure 4(b).

V. CONCLUSIONS

An novel exploration framework was presented to build a

hybrid map of the environment - topological map of images

at a lower level and semantic grouping of nodes in the

topological graph to form a semantic map at a higher level.

This was done using vision as the main sensing modality

with laser being minimally used for obstacle avoidance and

gap identification. Loop detection was done at the level of

transition regions between two semantic constructs and the

loops were closed using graph relaxation techniques thus

averaging out the odometry and measurement errors. Results

show the efficacy of the proposed exploration framework.

The scale of the test environment is bigger than a typical

home setting which suggests that the framework is ideal

for home robotics. The current framework is applicable to

larger environments as well, perhaps with more semantic

categories like junctions/intersections etc. Our future work

would address this.

(a) Grouping of nodes (b) Semantic map
constructed

Fig. 4. Semantic Mapping
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