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Abstract— In this paper we present an approach to trans-
fer human-like reflex behavior to robots by utilizing leaky
integrate-and-fire neurons. For the acceptance of robots in
general and humanoid robots, which are even closer to people’s
daily life, in particular a main aspect is their appearance and
how they act and move in human centered environments. Espe-
cially safety strategies are crucial for a widespread acceptance
of these machines. In our work we target this safety aspect
by approaching this issue from the direction how humans
respond to external stimuli. To achieve such human-like reflexes
a general reflex unit, based on special variants of the leaky
integrate-and-fire neuron model has been built. Instances of this
reflex unit are adapted to special reflex types and connected to
form dependent reflex behaviors. The concept of these neural
structures and its evaluation by means of several experiments
are presented in this paper. The results are depicted in detail
and future aspects of our ongoing work are addressed.

I. INTRODUCTION AND MOTIVATION

Like many other research projects about humanoid
robotics the collaborative research project ”Humanoid
Robots” (SFB-588) of the German Research Foundation
(DFG: Deutsche Forschungsgemeinschaft) has the goal to
enable anthropologically designed robots to work in human
centered environments. One key issue for a better acceptance
of humanoid robots by the users and human environment
is the safety aspect. A robot has to act without harming
anyone or damaging objects. For this task different strategies
can be applied and they range from motion capturing based
techniques to programming by presentation.

In this paper a different approach to the afore mentioned
is presented, targeting the subject of human like movements
and safety strategies from the neurobiological point of view.
A human-like reflex behavior has been simulated by leaky
integrate-and-fire neurons, a special variant of an artificial
neuron model, and was tested successfully.

Other works in this area are the research of Folgheraiter [1]
who applied a neural control to an anthropomorphic hand to
control the stiffness and to emulate myotatic human reflexes.
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Yigit [2] used a more technical approach to applying low
level behaviors to a robot arm, in order to achieve motions
comparable to human reflexes. Kawasaki and Mouri [3] de-
veloped specialized reflexes for their anthropomorphic hand
based on force and velocity control, and Shimoda [4] used
biological control features to realize bipedal walking without
trajectory planning. In our work, we designed a special type
of artificial neural circuit which is capable to function as
a reflex on a humanoid robot, especially the demonstrator
platform ARMAR III (Fig. 1) [5]. The chosen approach is a

Fig. 1. Robot ARMAR IIIa of the SFB-588

very general one, which enables the specialization of the
reflexes to different tasks and makes it possible to build
complex reflex networks in which the reflexes depend on
each other.

This work is part of our research to build a cognition
architecture for humanoid robots [6], based on a Petri-net
based supervisory control concept [7, 8].

In Section II the leaky integrate-and-fire neuron model is
introduced, as well as two specialized variants of this model
which best suit our purposes. Section III introduces how
these reflexes are built, based on the more general prototype,
and several examples are shown. In addition to that a
dependency network consisting of three reflexes is shown.
Section IV describes the hardware of the demonstrator plat-
form at the Fraunhofer IOSB and specifies the performed
experiments. The evaluation and the achieved results are then
presented in Section V followed by Section VI in which this
paper is concluded and a lookout to our future work is given.
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II. METHODS

Several different neural models exist that are suitable for
the task of modeling the behavior of biological neurons. An
overview of different models is given in [9] which ranges
from Hodgkin-Huxley models (HH) to leaky integrate-and-
fire models (LIF). The HH model [10] uses several coupled
differential equations to simulate biological neurons very
realistic, but this rises the computation time and restricts the
possibilities for applications. The FitzHugh-Nagumo model
(FN) [11] is a simplified variant of HH model but regarding
the task we are looking for it is still too complex. Another
simplification of the HH model is the leaky integrate-and-
fire model (LIF) [12] which relies on the variability of the
current. This model is just event triggered and different
specializations exist. The Spike-Response model (SRM) [13,
14] is a generalization of the LIF model and integrates the
activation as well as the refractability into its computations.
For the task of building reflex behavior the LIF model fits
the requirements best, such as it only relies on the variability
of the current and its event triggered behavior [15].

The basic structure of the integrate-and-fire neuron can be
described as a circuit consisting of a capacity C in parallel
with a resistor R [14]. These are driven by current I(t) as
external input of the neuron i with τm =RC as a time constant
”Leakage Integrator”. For nonlinear models follows:

τm
dui

dt
= F(u)+RG(u)Ii(t) for all i (1)

In this RG(u) represents the current dependent resistor and
F(u) is a nonlinear function to describe the membrane
potential. The components RG(u) and F(u) can be defined
as time dependent functions. If a neuron can be exited not
only by external influences but also by neighboring neurons,
the synaptic connections have to be simulated as well. The
mathematic representation of these synaptic currents is given
by Ii(t) and described as follows with v(t) as threshold:

Ii(t) =∑
j

wi j ∑
f

α(t− t( f )
j ) with t( f )

j : u(t( f )
j ) ≥ v(t( f )

j ) (2)

wi j is used as weighting factor for the effectiveness of the
synaptic connections. At time t( f )

j the activation of neuron
j takes place, saying that, if the presynaptic neuron j fires,
the postsynaptic neuron i registers a current, too. The value
of this current α(t− t( f )

j ) can be calculated by:

α(t− t( f )
j ) =−g(t− t( f )

j )(ui(t)−Esyn,i j) (3)

where g(t− t( f )
j ) is the conductance, which is changing over

time.
The reverse potential Esyn,i j depends on the synaptic

type in use. For excitatory synapses Esyn,i j is much higher
than the reset potential ur. For ui(t) < Esyn,i j, α will be
positive, which induces a positive presynaptic voltage and
the membrane potential rises. The higher the voltage, the
lower the amplitude of the input. For inhibitory synapses the
reverse potential lies closer to the reset potential. If an action
potential arrives at an inhibitory synapse the membrane

potential is driven in the direction of the reverse potential.
Ergo, if a neuron is reset the inhibitory input has only
little influence on the membrane potential. In contrary, if
the membrane potential is much higher than ur, a strong
inhibitory effect is applied.

A LIF model is described implicitly by the form of its
action potentials. Spikes are now called ”fire-event” and the
threshold represents the time at which such a fire-event takes
place:

t( f )
i : u(t( f )

i ) = ϑ with v(t) = const = ϑ (4)

The membrane potential will fall to the new value ur < ϑ

after time point t( f ). The refractability describes the ability
of these artificial neurons to lay silent after an activation
for a certain time tsilent . In this time, the neuron can not
be activated and the input I(t) is suppressed, the membrane
potential without any input converges to zero. Shortly after
an activation the potential falls to the reset potential and
then converges to the zero point, while input signals arrive
constantly. The suppression is mathematically represented
by:

τm
du
dt

=−u(t) (5)

With this, the membrane potential for a regular LIF neuron
can be described completely as:

ui =


ϑ for t = t( f )

i ;
uspike for t = t( f )

i + ε, ε → 0;
(5) for t ∈ [t( f )

i , t( f )
i + tsilent ];

(1) else

(6)

uspike is the spike potential, to which the membrane potential
jumps if the neuron fires. The ability to adapt dynamically is
a core attribute of neurons. The intervals between activation
and transmission of information depend on the correlation
between spikes [16].

In our work, two different specializations of the LIF
model are used to build a general reflex unit which then
can be specialized to specific, different reflexes. The first
specialization is the LIF model with dynamical threshold [16,
17] and the second is the LIF model with adaptive current
[18] which gives an alternative to the first one, but was not
used do build the reflexes introduced here. Simplifications
have been integrated to increase the performance of the
computations [15].

The LIF model with dynamical threshold takes into ac-
count that the membrane potential as well as the threshold
change over time. The changing of the threshold is coupled
with the spike signals to represent the dependency regarding
the activation frequency. One simple model for this is that in
addition to the membrane potential, like in (1), the threshold
is adapted during activation:

τv
dvi

dt
= −(vi(t)− v0)+u f (t) (7)

This changes the calculation of the membrane potential ui

when the neuron reaches the threshold v(t) at t = t( f )
i , with

2573



δ (t) Dirac delta impulse:

v(t) =
{

(7) with u f = uspike ·δ (t) t = t( f )
i

(7) with u f = 0 else
(8)

In Fig. 4 the potential signal of the LIF neuron with dy-
namical threshold of the tactile sensor is shown. The more
it is activated after seconds 9 and 13, the more the threshold
increases which aggravates the reaching of it. The activation
signal is triggered each time the threshold is reached. If the
threshold is updated with the input signal I(t) and not with
the activation signal u f (t) the calculation of the membrane
potential ui(t) during the refractory phase is done according
to (1) and the threshold v(t) is computed as shown in (7)
with u f = RG(u)I(t).

If the threshold v(t) is connected to the input signal
I(t). τm and τv describe the conductances of the membrane
potential and the threshold. If the input signal I(t) has a
constant value I the membrane potential u(t) converges to I
and the threshold v(t) to I+v0>I, because the zero point of
the threshold is greater than zero. With this ability a neuron
can suppress the activation after a limit cycle with constant
input. One problem of this modification is, that the membrane
potential can start to oscillate if the input signal is big. In
this case the suppression fails, because of the dependency
between activation potential and reset potential. This makes
the application of a signal buffer necessary which stores the
signals on activation for replacing the reset potential.

III. THE REFLEX SYSTEM

To apply this general form of reflex to a real robot, specific
reflexes need to be defined. For a humanoid robot, such as
ARMAR III, the capability of handling different objects is
a key functionality. Grasping and slipping reflexes are two
of the main reflexes involved here. To guarantee safety in
the human-robot-interaction, also a collision reflex has been
implemented but it will not be described in further detail
in this paper. After that, the built reflex network and its
dependencies are explained. To realize these reflexes special
sensors are necessary to detect if an object is placed into
the fingers respectively gripper and if slipping occurs. In
addition, forces and torques in the wrist have to be recorded
to detect collisions and to adapt the motor control if an object
is manipulated.

A. Specific reflexes

Grasp reflex: The grasp reflex focuses on the execution
of automatic grasping actions which even infants are capable
of. If a finger is placed onto the palm of an infant it closes
the hand autonomously. This human reflex reaction has a
latency of approximately 0.5-1.5 sec. [19]. This is why this
reflex should be not too sensitive.

Slip reflex: Once an object is grasped the slip reflex comes
into play. This reflex detects the slipping of a grasped object
and tightens the grip to prevent the object from slipping out
of the grip. This reflex completely depends on a successfully
performed grasp of an object. Otherwise it is deactivated.

Collision reflex: This reflex takes care of handling un-
foreseen collisions of the robot arm with its environment
triggering a retraction of the robot arm.

All reflexes have in common, that the values of the
according sensors are merged, and, if applicable, stored to a
buffer. After that they are transmitted to the neuron model of
the reflex which triggers the reflex based on the calculation
of the membrane potential and if it reaches the threshold. As
an example, the slip reflex records the positioning signals of
a grasped object and compares them to the previous position.
The focus of attention lies on the changing of these values.
Additional considerations regarding the other two reflexes
can be found in [20].

B. Reflex system

Taking into account the existing dependencies between
the introduced reflexes a coordination framework has to be
designed. In general a reflex model depends on the incoming
sensor signals and the decision, if a reflex is triggered or not
is based on the values of these signals. This decision can
be handled by single neuron models, e.g. the triggering of
a collision reflex, but also more complex reflex systems can
be built by combining several neuron models. An example
for this is grasping and holding an object. Depending on
the relevancy of different reflexes, priorities are assigned and
coordination is necessary to prevent the system from conflicts
which might occur during activation of different reflexes at
the same time.

The dependencies of the three reflexes are described
below. The structure of the reflex system is shown in Fig. 2.
Sensor signals are filtered and stored to a buffer. Then they
are forwarded to the LIF neurons. If the threshold is reached,
the neuron fires and the according signal is triggered. This
leads to the decision process ”Make Decision” where the
reflex model decides, based on the actual environment if
the reflex signal is processed further. The decision functions
depend on the according reflex models. The reflex is trig-
gered as soon as its conditions are met. These conditions are
explained in the following.

C. Decision functions

Slip reflex: The slip reflex is only allowed to be activated
after the grasp reflex has finished its task successfully (state
”grasp end” is active). If the reflex model of the slipping
sensor is activated again after finishing the grasping task,
the activation signal is forwarded to the slip reflex and the
gripper is closed tighter.

Grasp reflex: Because of its complexity the grasp reflex
uses two different sensors. One is a tactile sensor, the other a
sensor which is capable of detecting movements of grasped
objects. Two state buffers are used to detect the actual
grasping situation. Grasping is started if one of the relevant
sensors is activated. Depending on which sensor is activated,
the state ”grasp reflex (S)” (for the slip sensor) or ”grasp
reflex (T)” (for the tactile sensor) is set to true and the gripper
is closed continuously. As soon as the second sensor sends
its firing signal, the closing of the gripper is stopped and the
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Fig. 2. Reflex coordination

state ”grasp reflex (S)” or ”grasp reflex (T)”, respectively,
change to ”grasp end”. As long as this state is active no other
grasp reflex is allowed. The state buffer is reset as soon as
the tactile sensor ceases sending signals. The development of
the force-torque signals during the grasping process is stored
to calculate the mass of the grasped object.

As soon as an activation signal is sent by a neuron, it
is hyperpolarized for a short time and the refractory phase
is imminent. That is why a counter is integrated into the
neuron model, called ”reset status”. The counter starts at
zero and accumulates over time as long as the condition
”reset status < silent time” is valid. During this time the
neuron is locked and can not be activated.

IV. EXPERIMENTS

For the experimental testing of the proposed reflex system,
the robot platform of the Fraunhofer IOSB was used (Fig. 3).
This demonstrator platform is built of two 7-Degrees-of-
Freedom (DoF) AMTEC robot arms and one 2-DoF pan-tilt
sensor head. The arms are anthropomorphic in their design
and built of five rotation modules and one pan-tilt unit for
the wrist. The modules are actuated by electronically com-
mutated motors and harmonic drives. A two finger gripper
and an anthropomorphic robot hand [21] are attached to the
robot arms, each equipped which a force torque sensor that
records the applying forces and torques in direction of X-,
Y- and Z-directions. The fingers of the two finger gripper are
equipped with one tactile sensor array with 6×14 measuring
textels and one optical slip sensor, which was developed

Fig. 3. Robot at IOSB

and patented at the IOSB [22]. This sensor is able to detect
relative movements between the surface of the grasped object
and the gripper. In principle it works like an optical computer
mouse where a light source (LED) illuminates the objects
surface so that its movement in X- and Y-direction can be
detected. In addition to tactile, slipping and force-torque
information, the position and the velocities of the robot arms
are used as inputs for the developed reflex system.

A. Determination of optimal threshold values

The most important parameter of each neuron model is
its threshold v based on which the reflex is triggered. The
lower the threshold, the easier the membrane potential u(t)
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reaches the threshold and the reflex becomes more sensitive
to input signals. To determine the thresholds of the neuron
models tests have been performed using preliminary recorded
data. At first, because of the fact, that no threshold is known,
the activation of the model is secondary. The signals of the
potentials have been simulated in this way and following
results have been obtained:

The threshold of the grasp and slip reflex is determined
by the measurement data. Regarding the fact, that these data
is not as noisy as the one from the force-torque sensor,
the thresholds can be set to lower values which increases
the sensitivity of the reflexes. The thresholds used in the
presented results are set to ϑ = 2, and the threshold for the
two layer spiking neuron in the grasp reflex model are set
empirically.

If the slip sensor detects a second slipping of the object,
after the slip reflex has been active, this reflex is activated
again immediately. For these tests, the silent time has been
set to tsilent = 0.05s.

B. Testing the grasp and slip reflex

All three reflexes described above have been tested experi-
mentally by placing objects of different nature (e.g. a wooden
cylinder or a paper box) into the opened robot gripper.
Grasping starts with either the tactile or the slip sensor
triggering the grasp reflex. The slip reflex is activated after an
object has been grasped successfully. In our testing scenario,
no grasp planning was done, but only the mentioned reflexes
have been used. Once an object is grasped, the signals of
the slip sensor are used to detect unintentional movement
of the grasped object. Two different possibilities exist which
may result in this movement. The first is that the grip is
too loose which results in a slipping of the object because
of its mass, the other is that an external force other than
gravitation is effecting the object. Those two situations have
been simulated during the experiments by applying random
forces to the grasped objects. If no object is grasped, the slip
reflex is deactivated.

V. EVALUATION

Because of the fact that the slip reflex depends on a
successful grasping operation, this reflex is tested in combi-
nation with the grasp reflex. All recorded data was evaluated,
using the Matlab-Toolbox Gait-CAD [23]. For the slip reflex
the changing of the sensor values has been under continuous
observation. The silent time is set to a very low value because
the slipping shall be detected at any time.

The grasp reflex uses the tactile sensor as well as the
slip sensor. To realize this reflex the leaky integrate-and-fire
model with dynamic threshold was used.

In this work we applied the single neuron model with
relative input which works together with the slip reflex.
In Fig. 4, a complete grasping operation is depicted. An
activation signal is generated by the slip reflex at 2.5s
caused by placing an object into the gripper. Then the robot
closes the gripper carefully until the first response by the
tactile sensor is recorded at 9s. As long as the grasping is

performed, no activation peak of the slip sensor is taken
into account. This is changed after a successful termination
of the grasping process. In response to a slip of the object
of ca. 0.08mm (1 count) the slip reflex is activated at 13s
and tightens the grasp preventing any further slipping of the
grasped object. In Fig. 4 can be seen, that the activation
signal u f occurs as soon as the gripper has contact to an
object which starts the grasping process. At the end of the
grasping, it can be seen, that, the higher the tactile signal, the
more often fires the neuron. The adaption of the threshold
suppresses unnecessary further firing of the neuron.

Negative in this scenario is, that the input depends on the
area of contact in the gripper. This brings up some problems
if very small objects should be grasped.

One possible effect, if the grasping was started by the slip
reflex is, that the grasping stops with the first signal from
the tactile sensor. At this moment, a secure grasp can not
yet be guaranteed. That is why the grasping should not end
at the first tactile sensor signal but depend on the frequency
with which these sensor data arrives. Once the contact area
does not increase any further and the threshold is adapted
the neuron stops firing. This is when the grasping reflex is
terminated.

Grasping also depends on the sensitivity of the material
the tactile sensor is made of. In our case the stiffness was
so high, that every object was already grasped tightly when
the first sensor signal was recorded, but for further research
and other sensors the above mentioned strategy may apply.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we presented a general framework for reflexes

in humanoid robots. The design is based on leaky integrate-
and-fire neurons and can be specialized on any specific task.
To test and evaluate this design in practice we chose three
different reflexes known from humans and applied these to
the general reflex module. In addition a reflex network was
built that took the dependencies between different reflexes
into account.

With these general reflex modules and its capability to
form many kinds of different specialized reflexes we have
a very flexible and general approach on applying reflexes
to humanoid robots. This is part of our ongoing research
and work is in progress to broaden the range of available
reflexes and to show the significance of this approach against
conventional techniques.

For the future we aim at combining these reflexes with
neural structures called ”Central-Pattern-Generators” (CPG)
[24, 25] to synthesize movement trajectories and to trigger
and adapt these by reflexes. CPGs have already been used
successful for passive dynamic walkers [26, 27]. Together
with a Petri-net based system control this is part of a whole
body control for humanoid robots.
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Fig. 4. Evaluation of slip and grip reflex
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N. Vahrenkamp, and R. Dillmann, “ARMAR-III: An Integrated Hu-
manoid Platform for Sensory-Motor Control,” in IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids 2006), 2006.

[6] C. Burghart, R. Mikut, R. Stiefelhagen, T. Asfour, H. Holzapfel,
P. Steinhaus, and R. Dillmann, “A Cognitive Architecture for a
Humanoid Robot: A First Approach,” in Proc., IEEE-RAS Conference
on Humanoid Robots, Tsukuba, Japan, 2005, pp. 357–362.

[7] A. Lehmann, R. Mikut, and T. Asfour, “Petri Nets for Task Supervision
in Humanoid Robots,” in Proc., 37th International Symposium on
Robotics (ISR 2006), München, 2006, pp. 71–73.

[8] G. Milighetti and H. Kuntze, “Fuzzy Based Decision Making for the
Discrete-Continuous Control of Humanoid Robots,” in Proc., IROS
2007, San Diego, California, 2007.

[9] L. F. Abbott and T. B. Kepler, “Model neurons: From Hodgkin-
Huxley to hopfield,” in Statistical Mechanics of Neural Networks, ser.
Springer, 1990, vol. 368, pp. 5–18.

[10] A. Hodgkin and A. Huxley, “A Quantitative Description of Membrane
Current and its Application to Conduction and Excitation in Nerve,”
The Journal of Physiology, vol. 117(4), pp. 500–544, 1952.

[11] R. FitzHugh, “Impulses and Physiological States in Theoretical Mod-
els of Nerve Membrane,” Biophysical Journal, vol. 1 (6), pp. 445–466,
1961.

[12] J. Feng, “Is the Integrate-and-Fire Model good enough?–A Review,”
Neural Networks, vol. 14 (6-7), pp. 955 – 975, 2001.

[13] W. M. Kistler, W. Gerstner, and J. L. van Hemmen, “Reduction of the
Hodgkin-Huxley Equations to a Single-Variable Threshold Model,”
Neural Computation, vol. 9 (5), pp. 1015–1045, 1997.

[14] W. Gerstner and W. Kistler, Spiking Neuron Models - Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[15] J. Benda, L. Maler, and A. Longtin, “How to Model Spike-Frequency
Adaptation in Integrate-and-Fire Neuron,” in Bernstein Symposium,
2008.

[16] M. J. Chacron, K. Pakdaman, and A. Longtin, “Interspike Interval
Correlations, Memory, Adaptation, and Refractoriness in a Leaky
Integrate-and-Fire Model with Threshold Fatigue,” Neural Computa-
tion, vol. 15 (2), pp. 253–278, 2003.

[17] R. Azouz and C. M. Gray, “Dynamic Spike Threshold reveals a
Mechanism for Synaptic Coincidence Detection in Cortical Neurons
in vivo,” in Proc., National Academy of Sciences of the United States
of America, 2000, vol. 97 (14), pp. 8110–8115.

[18] R. Brette and W. Gerstner, “Adaptive Exponential Integrate-and-Fire
Model as an Effective Description of Neuronal Activity,” Journal
Neurophysiology, vol. 94 (5), pp. 3637–3642, 2005.

[19] S. Wieser and K. Domanowsky, “Greifreflex und Stellmechanismus
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