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Abstract— A collective of robots can together complete a 

task that is beyond the capabilities of any of its individual 

robots.  One property of a robotic collective that allows it to 

complete such a task is the shape of the collective.  One 

method to form that shape is to form it at a size proportional 

to the number of robots in that collective, i.e. scalably. 

In our previous work, scalably forming the shape of the 

collective required that each robot know the total number of 

robots in the collective.  In this work we present a method 

called S-DASH, which now allows a collective to scalably form 

a shape without knowing how many robots are in the 

collective.  Furthermore, S-DASH will change the size of the 

shape to reflect the addition or removal of robots from the 

collective.  This paper also provides demonstrations of S-

DASH running on a simulated collective of robots.   

I. INTRODUCTION 

N this paper we present a distributed solution to the 

problem of choosing the shape size for a collective of 

distributed robots (sometimes referred to as a swarm, 

group, or ensemble).  It is possible for this robotic 

collective to complete a goal that cannot be completed by 

any of the individual robots, if the collective forms a 

specific shape.  For example, imagine a single S-BOT [1] 

reaches a canyon-like obstacle with a goal on the other 

side.  By itself, a single S-BOT is not capable of crossing 

the canyon to reach the goal on the other side.  However, if 

the S-BOT joins a collective of other S-BOTs, and forms a 

collective shaped like a bridge, the collective’s shape 

enables it to cross the canyon and reach the goal.  In 

another example, a single Superbot robot [2] needs to 

locomode as far as it can until its battery pack empties.  As 

a solitary Superbot, it can only travel 200 meters until the 

battery is empty.  If this single Superbot can form a 

collective with five other Superbot robots in the shape of a 

wheel, then it can move over 1000 meters until its battery 

pack depletes.  In this case, the shape of the Superbot 

collective enables the collective to travel five times as far 

as any single Superbot can travel. 

When the collective forms a shape, one challenge is to 

determine the size of the collective’s shape.  During the 

self-assembly process, or in certain types of damage, 

namely the addition and subtraction of robots, there are 

two options for the collective to choose a shape size.  
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Those options are fixed size, or scalable. 

The first option for determining the size of the collective 

shape, fixed size, used in [3], is to keep the size of the 

shape constant, but either change the density of robots as in 

[4], or grow new robots until the fixed scale is reached, 

like [5].  Current robotic technology can only self-replicate 

in very controlled environments, for example [6], so 

growing new robots is generally not feasible.  In biological 

systems however, growing replacements is possible, and is 

seen in many cases of animal self-healing. 

With regards to the approach of changing the density of 

robots in a collective, there is an upper limit to this robot 

density (one can only fit so many robots in a fixed area), so 

there is a maximum number of robots that can fit inside the 

collective shape.  If the collective grows beyond that 

number, it cannot correctly form the desired shape.  

Another drawback to the idea of changing robot density is 

that, for many collective robotic systems, such as 

reconfigurable robots [7], the robots require a close 

physical connection to neighboring robots.  This means 

that in general, it is advantageous for the density of robots 

in the collective to remain the same, irrespective of the size 

of the collective. 

The second option for determining the size of the 

collective shape is to adapt the size to the number of robots 

in the collective, known as scalable size selection.  This 

option adjusts the size of the shape proportional to the 

number of robots in the collective, keeping the robot 

density constant.  This scalable self-healing is seen in 

nature, for example [8], where a small invertebrate, the 

hydra, will reform its original shape after being cut in half, 

but at half the size.  The hydra does this using 

morphallaxis, where the remaining cells move to repair the 

damaged shape.  

Without requiring the production of more robots, this 

scalable size selection lends itself nicely to robotic 

collectives.  For example scalable size selection has been 

used in [9-11], however only for a limited class of shapes.  

A difficulty with scalable size selection is that because 

the size is proportional to the number of robots in the 

collective, the robots must either directly or indirectly 

determine this number.  This number is hard to find in a 

distributed collective, especially if the number of robots 

can change unexpectedly at any time. 

The task of choosing the size of the collectives shape is 

further complicated once properties of a robotic collective 

are considered.  For example, to keep costs down, the 

individual robots generally have limited sensing range, so 
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directly counting the number of robots is difficult or not 

possible.  Furthermore, many collectives are homogenous, 

even lacking a unique ID for individual robots.  This lack 

of ID can hinder multi-hop communication between distant 

robots, making coordination between robots difficult. 

In the work presented in this paper, we use a fully 

distributed method to scalably select the size of the 

collective shape, called S-DASH (scalable, distributed self-

assembly and self-healing) for a large class of possible 

shapes.  S-DASH builds upon our previous work called 

DASH (distributed self-assembly and self-healing), which 

is summarized in section 2 and can be found in [12].  

Section 2 will also summarize the assumed properties and 

capabilities of the robots in this paper.  The method of S-

DASH is then presented in section 3.  Next, in section 4, 

and examples S-DASH in use is demonstrated in a 

simulated collective.   

II. DASH 

The following section will first discuss the assumed 

properties and capabilities of the robots in this paper.  Next 

it will summarize DASH, a distributed method to control 

each robot in a robotic collective, so that they form a 

desired shape at a given fixed scale. 

A.  Assumptions 

The robots are simple and homogeneous.  Each robot 

is shaped like a simple 2D circle, with radius Rrobot.  They 

exist in a 2D planar environment.  The robot is capable of 

moving in its local x direction, at velocity Vrobot, as well as 

rotating about its center, perpendicular to the plane.  A 

robot cannot share the same space as another robot, and is 

not capable of pushing any robots.  All robots in the 

collective are identical and indistinguishable from each 

other in every way, even lacking a unique ID.      

Communication and ranging between neighboring 

robots is possible.  Each robot can communicate to any of 

its neighbors who are within a certain distance (Rcom).  

During this communication, the range between the two 

robots can also be measured 

Robots have a consistent coordinate system.   The 

collective has a shared coordinate system that is known by 

all robots.  This enables each robot to precisely know its 

location in the coordinate system, in terms of (X,Y).  This 

coordinate system is developed from a local, distributed 

method based on robust quadrilaterals [13].  The details of 

how this coordinate system is produced are omitted from 

this paper for the sake of brevity.  When the robot moves, 

it can also determine the angle between its local x direction 

and the x direction of the shared coordinate system, as 

described in [12].  

B. DASH 

The following is a summary of DASH, which guarantees 

that a collective of robots can form any given simply 

connected shape at a fixed scale.  For a more detailed 

description see [12].  The DASH control method uses an 

identical controller that runs in each robot.  Each robot 

controller is given a full description of the desired 

collective shape, in the form of a picture, or pixel map.  

When DASH is run on each robot in the collective, the 

robots will self-assemble to form the desired shape at a 

fixed size, and self-repair if the shape is damaged.  Initially 

there is no information about how large to form the shape, 

so an initial guess of shape scale, Sf_start is used. 

Running on each robot separately, DASH takes as its 

inputs: the location of the robot in the coordinate system, a 

description of the desired shape, the scale of the desired 

shape, and communication with neighboring robots.  Using 

those inputs, DASH generates a commanded movement for 

the robot, so that each robot will move to a location that is 

inside the desired shape at the given scale.  At the same 

time, this movement will not prevent other robots from 

entering the desired shape. 

The movement of robots using DASH also provides two 

locations in the desired shape that are important for S-

DASH.  The first location is called the shape seed.  This 

shape seed location will be the last location inside the 

shape to be occupied with robots.  This means that if there 

is any other location in the shape that is not occupied by 

robots, then that unoccupied location will become filled by 

robots before the shape seed is filled with robots.  The 

second important location for S-DASH is the location, 

called the external seed.  This is the first location outside 

the shape that will be filled by robots if there is no room 

for any more robots inside the desired shape.  For example, 

if there is no empty space in the desired shape, and there is 

one robot located outside the desired shape, that robot will 

move to the external seed location. 

III. S-DASH 

 Scalable distributed self-assembly and self-healing, or  

S-DASH, is a method that runs in each robot, in addition to 

DASH, to dynamically vary the scale of the shape in order 

to reflect the number of robots that are currently in the 

collective.  It does this by providing DASH an appropriate 

scale value, instead of the fixed scale value used in   

section 2.  To accomplish this scalable self-assembly and 

self-healing, this S-DASH controller has three main parts.  

The first part is a method to come to a consensus with the 

other robots in the collective as to the scale of the shape.  

The second part of S-DASH is a way to reduce the scale of 

the shape if the shape is too big for the current number of 

robots in the collective.  The final part of S-DASH is to 

increase the scale of the shape if the shape is too small for 

the current number of robots.  

A.  Scale 

 Each robot has a variable, Sf, which represents that 

robot’s belief as to the appropriate scale of the shape.  

Specifically, each pixel in the given picture of the desired 

shape will have dimensions of Sf • Rrobot when formed by 

the collective.  To properly form the shape, this value of Sf 
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must be updated so that it is consistent among all robots; 

i.e. every robot agrees to the same scale.   Furthermore, the 

Sf value should be able to change, so that the scale can fit 

the number of robots.  To accomplish this consistency and 

the flexibility of Sf, its value will be updated as follows.  

Every time step, each robot sets its value of Sf to be the 

average Sf value of all its neighbors, including its own 

value.  After this update, each robot will communicate its 

new Sf value to its neighbors.  This update, summarized in 

Fig. 1 is applied every cycle of the robot’s main controller 

loop, unless the conditions described in sections III.B or 

III.C apply.       

 
Total_scale = Sf 

Number_neighbors = 0 

For( all neighbors i) 

{  

 Total_scale = Total_scale+neighbor_i’s_Sf 

 Number_neighbors = Number_neighbors + 1 

} 

Sf = Total_scale / (Number_neighbors + 1) 

Figure 1.  Pseudo code for scale update. 

B. Scale Reduction 

 For the reduction of the scale, S-DASH uses the fact that 

when using DASH to form a shape, the shape seed is the 

last location to be filled in the desired shape.  This means 

that if the shape is too big, then the shape seed location 

will continuously be un-occupied by robots.  For example, 

consider the desired shape given in Fig. 2(A).  In this 

shape, the shape seed is located at the very top of the 

desired shape, which in this case is the lid of the teapot.  

When the scale is too big for the number of robots, as 

shown in Fig 2(B), then there will not be any robots near 

the shape seed.  

 

A                            B  

C  

Figure 2.  (A) The desired shape, a teapot.  (B) The collective 

forming the desired shape at too large a scale.  (C) The collective 

forming the desired shape at too small a scale. 

 

 To reduce the scale after observing the continuously 

unoccupied shape seed, S-DASH must do three things.  

First, it must have a distributed mechanism to alert all 

robots when the shape seed is not occupied.  Second, it 

must have a way to determine how long to wait before the 

shape seed is considered continuously un-occupied.  

Thirdly, it must have a mechanism for reducing the scale 

by an appropriate amount. 

1) Detecting Un-Occupied Shape Seed  

The distributed mechanism for detecting an un-occupied 

shape seed is based on a variable called Tun-occupied.  This 

variable is updated in the following way.  Every loop of 

each robot’s controller main loop, a robot’s value of       

Tun-occupied is compared to that of all its neighbors.  If any 

neighbor has a value lower than the robot’s, the robot will 

set its Tun-occupied value to be its neighbors’ value + 1.  If 

none of the neighbors’ values are lower, then the robot will 

set its new value of Tun-occupied to be 1 plus its old value.  If 

the robot’s body overlaps into the shape seed location, then 

it sets its Tun-occupied value to be zero.  A robot uses its 

location in the coordinate system to determine if this 

overlap occurs.  Fig. 3 summarizes how Tun-occupied is 

updated.  After Tun-occupied is updated, the new value is 

communicated to all neighboring robots.     

Updating Tun-occupied in this manner will give the 

following effects.  If any robot is in the shape seed 

location, then every robot in the collective will have a 

value of Tun-occupied which is equal to the number of 

communication hops from that robot to the one in the 

shape seed location.  If no robots are in the shape seed 

location, then every robot in the collective will start 

increasing its value of Tun-occupied by one, for every loop of 

its main controller.  Eventually one or more robots in the 

collective will have their Tun-occupied value reach the value 

Tun-occupied-max.  Once this occurs, the seed has been un-

occupied for long enough for S-DASH to consider the 

shape too big.  How Tun-occupied-max is chosen is explained in 

the next section.   
 

 

Figure 3. Flow chart for updating Tun-occupied. 

           

2) Wait Time 

Before reducing the scale of the shape because the shape 

seed does not contain any robots, S-DASH must first make 

sure that all the robots in the collective have had a chance 
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to move into the shape.  If any robots are outside the shape 

and moving to get into the shape, then the method in 

section III.B.1. might pre-maturely decide that the scale of 

shape is too big, where in fact, if those robots moved into 

the shape, it would be the right scale.  S-DASH makes sure 

all robots are in the shape by giving them ample time to 

move into the shape.  The time is set through the use of the 

Tun-occupied-max variable.  The value of Tun-occupied-max is based 

on three factors, and represents the upper bound of the time 

a robot will take to get into the shape.  The first factor is 

the current scale value, or Sf.  The second factor is the 

speed of robot movement, Vrobot.  The third factor is the 

maximum external path length, or Lexternal_path, which is 

defined as follows.  For all locations that are on the 

external boundary of the shape, find the shortest path 

between that location and the location of the shape seed, 

which stays outside of the shape, and set Lexternal_path to be 

the largest of these shortest paths.  An example of the 

longest, shortest path for the shape in Fig. 2(A) is shown   

as the red line in Fig 4(A).  With these three               

factors known, Tun-occupied-max is computed to be                                        

Tun-occupied-max = (Sf ∙ Lexternal_path) / (Vrobot ).  This is the worst 

case distance that a robot must travel to get into the empty 

space in the shape seed, (Sf ∙ Lexternal_path) divided by the 

average speed at which the robot travels, Vrobot.   

 

A  B  

Figure 4.  (A) Visualization of Lexternal_path.  (B) Visualization of 

Linternal_path.                

3) Reducing Scale  

Once the collective has waited long enough for the 

starting seed location to be filled, the collective should go 

ahead and reduce the scale.  This scale reduction is 

initiated by any robot whose Tun-occupied ≥ Tun-occupied-max.  

The robot or robots that initiate the scale reduction do two 

things.  The first thing they do is set their Tun-occupied value 

to zero.  This has the effect of inhibiting other robots from 

further trying to reduce the scale by resetting the Tun-occupied 

values in the collective.  The second thing that the robot or 

robots initiating scale reduction do is that for                  

Tun-occupied-max / 2 cycles of the main controller loop, they 

don’t use the scale update from section III.A; instead they 

report to their neighbors that their scale is a new, lower 

scale, Sf_new, the value of which will be shown shortly.  

This has the effect of decreasing the Sf values of all the 

robots in the collective.  After the Tun-occupied-max / 2  cycles, 

the scale update returns to the method from section III.A. 

When the scale is being reduced, it is known that at least 

the shape seed location is un-occupied by robots.  From 

[12], it is known that the area this location takes up in the 

environment is equal to (Sf_old ∙        
2
, where Sf_old is the 

scale of the shape prior to the start of reduction, and        

is the radius of a robot.  Because this location is un-

occupied, the scale of the shape can safely be reduced so 

that the area of the shape at the new scale is equal to the 

area at the old scale, minus (Sf_old ∙        
2
, the area of 

shape seed.  The area of the shape at the old scale is just 

NUM_PIX ∙ (Sf_old ∙        
2
, and the area of the shape at 

the new, smaller scale is just NUM_PIX ∙ (Sf_new ∙        
2
.  

Therefore, the new scale, Sf_new, should be                      

Sf_old ∙   
 

       
, where NUM_PIX is the number of 

pixels of the desired shape, in the given picture describing 

the shape. 

This process of reducing the scale when the shape seed 

is unoccupied will continue until the shape seed is 

permanently occupied.    

C.  Scale Increase 

To increase the scale of the shape, S-DASH uses the fact 

that when using DASH to form a shape, the external seed 

is the first location to be filled by robots if the shape is 

completely filled by other robots.  This means that if the 

shape is too small, then the external seed will continuously 

be occupied by robots.  For example, consider the desired 

shape map given in Fig. 2(A).  In this shape, the external 

seed is located just above the very top of the desired shape.  

When the scale is too small for the number of robots, as 

shown in Fig 2(C), then as a result of DASH there will 

continuously be robots in the external seed location, trying 

to get into the shape.         

 To increase the scale after observing the continuously 

occupied external seed, S-DASH must do three things.  

First, it must have a distributed mechanism to alert all 

robots when the external seed is occupied.  Second, it must 

have a way to determine how long to wait before the 

external seed is considered continuously occupied.  

Thirdly, it must have a mechanism for increasing the scale 

an appropriate amount. 

1) Detecting Occupied External Seed 

The distributed mechanism for detecting a continuously 

occupied external seed is based on a variable called 

Toccupied.  This variable is updated in the following way.  

Every loop of the controller main loop, a robot checks its 

location in the coordinate system to see if it is located in 

the external seed.  If so, it increases its Toccupied value by 

one.  If the robot receives a message called 

“moved_into_shape_message”, then the robot will set 

Toccupied to zero.  Furthermore, when a robot’s Toccupied is 

greater than Toccupied-max, then the external seed is 

considered to have been occupied for long enough, and that 

robot will initiate a scale increase, as well as transmit the 

“moved_into_shape_message” to all its neighbors. 

The “moved_into_shape_message” is initiated by one of 

two events.  The first event is when a robot moves from 

outside the shape to inside the shape.  The second event is 
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when a robot’s Toccupied is greater than Toccupied-max.  In both 

these events, the purpose of this message it to reset the 

Toccupied value of robots outside the desired shape.  

Furthermore, to prevent infinite loops of this message, it 

contains a hop count value, which is used to give the 

message a limited life time.  Whenever a neighbor receives 

a “moved_into_shape_message”, it will decrease the hop 

count in the message by one, and then only if the hop count 

is greater than zero, will it re-transmit the message.         

2) Wait Time 

Before increasing the scale of the shape because the 

external seed contains robots, S-DASH must first make 

sure that enough time is given for DASH to fill any empty 

locations in the desired shape.  This is because if there are 

any empty spaces in the shape, then the method in section 

III.C.1 might pre-maturely decide the scale of shape is too 

small, where in fact if robots where given time to move 

into those empty spaces, it would be at the right scale.       

S-DASH makes sure there are no empty spaces in the 

shape by giving DASH ample time to move robots into 

those spaces.  This time is set through the use of the 

Toccupied-max variable.  

The value of Toccupied-max is based on three factors, and 

represents the upper bound of the time DASH will take to 

fill empty locations in the desired shape with robots.  The 

first factor is the current scale value, or Sf.  The second 

factor is the speed of robot movement, Vrobot.  The third 

factor is the maximum internal path length, or Linternal_path, 

which is defined as follows.  For all locations on the 

outside edge of the desired shape, find the shortest path 

between that location and the external seed location which 

stays inside the shape, and set Linternal_path to be the largest of 

these shortest paths.  An example of the longest, shortest 

path for the desired shape in Fig. 2(A) is shown as the     

red line in Fig 4(B).  With these three factors            

known, Toccupied-max is just computed to be                               

Toccupied-max = (Sf ∙ Linternal_path) / (Vrobot ).  This is the worst 

case distance that a robot must travel to get into the empty 

location in the shape, (Sf ∙ Linternal_path) divided by the 

average speed at which the robot travels, Vrobot .  See figure 

5 for a summary on the update for Toccupied.    

1) Increasing Scale 

Once the collective has waited long enough for the 

empty volumes in the shape to be filled, the collective 

should go ahead and increase the scale.  This scale increase 

is initiated by any robot whose Toccupied ≥ Toccupied-max.  The 

robot or robots that initiate the scale increase do two 

things.  The first thing they do is send out a 

“moved_into_shape_message”.  This has the effect of 

inhibiting other robots from further trying to increase the 

scale by resetting the Toccupied values of robots in the 

collective.  The second thing that the robot or robots 

initiating scale increase do, is that for Toccupied/2 cycles of 

their main controller loop, they don’t use the scale update 

from section III.A; instead they report to their neighbors 

that their scale is a new, larger scale, Sf_new, the value of 

which will be shown shortly.  This has the effect of 

increasing the Sf values of all the robots in the collective.  

After the Toccupied/2  cycles the scale update returns to the 

method from section III.A. 

 

Figure 5. Flow chart for updating Toccupied  

 

When a robot decides to increase the scale, it should 

increase it by enough so that there will be room in the 

shape for an extra robot.  The amount of room this extra 

robot takes up is π ∙       
2
, so the area of the shape should 

be increased by that amount.  To increase the area of the 

shape by that amount, the scale Sf must change from the 

old value, Sf_old, to a larger value, Sf_new, where             

Sf_new         
             

 

       
 . 

This process of increasing the scale will continue as long 

as robots occupy the external seed location.  

IV. DEMONSTRATION IN SIMULATION 

To demonstrate the behavior of S-DASH, it is run on a 

simulated collective of robots.  In this simulation, each 

robot is running its own DASH controller to form the 

desired collective shape, and its own S-DASH controller to 

determine what the scale of that shape should be.  Each 

robot is shown as a black circle, which is not allowed to 

overlap with any other robot’s circle.  All robots meet the 

assumptions given in section II.A.  During each time step 

of the simulation, the robots are stepped in a random order.  

During a robot step, that robot reads the messages it has 

received since its last step, runs DASH and S-DASH, 

commands its movement, and communicates messages to 

its neighbors.            

In Fig. 6, a simulated collective of robots are tasked to 

form a five pointed star.  Initially, the starting scale, Sf_start 
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is too small for the number of robots in the collective, as 

shown in Fig. 6(A).  Fig. 6(B-C) show the size of the shape 

increases, as S-DASH increases the scale.  Finally, in Fig. 

6(D) the shape is large enough to fit all robots, so the scale 

stops increasing.  Next, in Fig. 6(E) the top half of the 

collective is removed completely, and as a result the scale 

of the shape is now too big for the current number of 

robots in the collective.  S-DASH will then reduce the 

scale of the shape, as show in Fig. 6(F-G), until the shape 

again is at the correct scale to fit all the remaining robots of 

the collective, Fig. 6(H).  This demonstrates the ability of 

S-DASH to automatically scale the shape to the number of 

robots, even if that number changes.       

 

 

 

Figure 6.  A demonstration of S-DASH adjusting collective scale 

for the desired shape of a star.  (A) An initial formation at too 

small a scale.  (B-C) S-DASH increasing the scale.  (D) The 

shape reaches the correct scale.  (E)  Half the robots are removed.  

(F-G) S-DASH reduces the scale.  (H) The shape reaches a new 

correct scale.   

   

Using the simulation, it is also demonstrated that S-

DASH stably finds a correct scale, irrespective of the 

starting scale guess, Sf_start.  To do this, the simulator is run 

four times, and in each run S-DASH is given a different 

value of Sf_start.  Fig. 7 shows that in these four runs, the 

average value of Sf for the collective will reach the correct 

value, irrespective of the starting value Sf_start.  

CONCLUSION 

This paper presented S-DASH, a method for 

automatically adjusting the scale of a collectives shape.  In 

the future, we hope to implement S-DASH in conjunction 

with DASH on a collective of real robots.  Additionally we 

would like to adapt S-DASH for self-reconfigurable robots.     

 

 

Figure 7.  The scale value vs. time for the same collective with 

four different values of Sf_start.   
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