



Abstract— A collective of robots can together complete a

task that is beyond the capabilities of any of its individual

robots. One property of a robotic collective that allows it to

complete such a task is the shape of the collective. One

method to form that shape is to form it at a size proportional

to the number of robots in that collective, i.e. scalably.

In our previous work, scalably forming the shape of the

collective required that each robot know the total number of

robots in the collective. In this work we present a method

called S-DASH, which now allows a collective to scalably form

a shape without knowing how many robots are in the

collective. Furthermore, S-DASH will change the size of the

shape to reflect the addition or removal of robots from the

collective. This paper also provides demonstrations of S-

DASH running on a simulated collective of robots.

I. INTRODUCTION

N this paper we present a distributed solution to the

problem of choosing the shape size for a collective of

distributed robots (sometimes referred to as a swarm,

group, or ensemble). It is possible for this robotic

collective to complete a goal that cannot be completed by

any of the individual robots, if the collective forms a

specific shape. For example, imagine a single S-BOT [1]

reaches a canyon-like obstacle with a goal on the other

side. By itself, a single S-BOT is not capable of crossing

the canyon to reach the goal on the other side. However, if

the S-BOT joins a collective of other S-BOTs, and forms a

collective shaped like a bridge, the collective’s shape

enables it to cross the canyon and reach the goal. In

another example, a single Superbot robot [2] needs to

locomode as far as it can until its battery pack empties. As

a solitary Superbot, it can only travel 200 meters until the

battery is empty. If this single Superbot can form a

collective with five other Superbot robots in the shape of a

wheel, then it can move over 1000 meters until its battery

pack depletes. In this case, the shape of the Superbot

collective enables the collective to travel five times as far

as any single Superbot can travel.

When the collective forms a shape, one challenge is to

determine the size of the collective’s shape. During the

self-assembly process, or in certain types of damage,

namely the addition and subtraction of robots, there are

two options for the collective to choose a shape size.

Manuscript received March 10, 2010. Michael Rubenstein and Wei-

Min Shen are with the Information Sciences Institute and Computer
Science Department at the University of Southern California, Marina del

Rey, CA 90292, USA. (website: www.isi.edu/robots phone: 310-448-

8710; fax: 310-822-0751; e-mail: mrubenst@usc.edu , shen@isi.edu).

Those options are fixed size, or scalable.

The first option for determining the size of the collective

shape, fixed size, used in [3], is to keep the size of the

shape constant, but either change the density of robots as in

[4], or grow new robots until the fixed scale is reached,

like [5]. Current robotic technology can only self-replicate

in very controlled environments, for example [6], so

growing new robots is generally not feasible. In biological

systems however, growing replacements is possible, and is

seen in many cases of animal self-healing.

With regards to the approach of changing the density of

robots in a collective, there is an upper limit to this robot

density (one can only fit so many robots in a fixed area), so

there is a maximum number of robots that can fit inside the

collective shape. If the collective grows beyond that

number, it cannot correctly form the desired shape.

Another drawback to the idea of changing robot density is

that, for many collective robotic systems, such as

reconfigurable robots [7], the robots require a close

physical connection to neighboring robots. This means

that in general, it is advantageous for the density of robots

in the collective to remain the same, irrespective of the size

of the collective.

The second option for determining the size of the

collective shape is to adapt the size to the number of robots

in the collective, known as scalable size selection. This

option adjusts the size of the shape proportional to the

number of robots in the collective, keeping the robot

density constant. This scalable self-healing is seen in

nature, for example [8], where a small invertebrate, the

hydra, will reform its original shape after being cut in half,

but at half the size. The hydra does this using

morphallaxis, where the remaining cells move to repair the

damaged shape.

Without requiring the production of more robots, this

scalable size selection lends itself nicely to robotic

collectives. For example scalable size selection has been

used in [9-11], however only for a limited class of shapes.

A difficulty with scalable size selection is that because

the size is proportional to the number of robots in the

collective, the robots must either directly or indirectly

determine this number. This number is hard to find in a

distributed collective, especially if the number of robots

can change unexpectedly at any time.

The task of choosing the size of the collectives shape is

further complicated once properties of a robotic collective

are considered. For example, to keep costs down, the

individual robots generally have limited sensing range, so

Automatic Scalable Size Selection for the Shape of a Distributed

Robotic Collective

Michael Rubenstein, Wei-Min Shen

I

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 508

directly counting the number of robots is difficult or not

possible. Furthermore, many collectives are homogenous,

even lacking a unique ID for individual robots. This lack

of ID can hinder multi-hop communication between distant

robots, making coordination between robots difficult.

In the work presented in this paper, we use a fully

distributed method to scalably select the size of the

collective shape, called S-DASH (scalable, distributed self-

assembly and self-healing) for a large class of possible

shapes. S-DASH builds upon our previous work called

DASH (distributed self-assembly and self-healing), which

is summarized in section 2 and can be found in [12].

Section 2 will also summarize the assumed properties and

capabilities of the robots in this paper. The method of S-

DASH is then presented in section 3. Next, in section 4,

and examples S-DASH in use is demonstrated in a

simulated collective.

II. DASH

The following section will first discuss the assumed

properties and capabilities of the robots in this paper. Next

it will summarize DASH, a distributed method to control

each robot in a robotic collective, so that they form a

desired shape at a given fixed scale.

A. Assumptions

The robots are simple and homogeneous. Each robot

is shaped like a simple 2D circle, with radius Rrobot. They

exist in a 2D planar environment. The robot is capable of

moving in its local x direction, at velocity Vrobot, as well as

rotating about its center, perpendicular to the plane. A

robot cannot share the same space as another robot, and is

not capable of pushing any robots. All robots in the

collective are identical and indistinguishable from each

other in every way, even lacking a unique ID.

Communication and ranging between neighboring

robots is possible. Each robot can communicate to any of

its neighbors who are within a certain distance (Rcom).

During this communication, the range between the two

robots can also be measured

Robots have a consistent coordinate system. The

collective has a shared coordinate system that is known by

all robots. This enables each robot to precisely know its

location in the coordinate system, in terms of (X,Y). This

coordinate system is developed from a local, distributed

method based on robust quadrilaterals [13]. The details of

how this coordinate system is produced are omitted from

this paper for the sake of brevity. When the robot moves,

it can also determine the angle between its local x direction

and the x direction of the shared coordinate system, as

described in [12].

B. DASH

The following is a summary of DASH, which guarantees

that a collective of robots can form any given simply

connected shape at a fixed scale. For a more detailed

description see [12]. The DASH control method uses an

identical controller that runs in each robot. Each robot

controller is given a full description of the desired

collective shape, in the form of a picture, or pixel map.

When DASH is run on each robot in the collective, the

robots will self-assemble to form the desired shape at a

fixed size, and self-repair if the shape is damaged. Initially

there is no information about how large to form the shape,

so an initial guess of shape scale, Sf_start is used.

Running on each robot separately, DASH takes as its

inputs: the location of the robot in the coordinate system, a

description of the desired shape, the scale of the desired

shape, and communication with neighboring robots. Using

those inputs, DASH generates a commanded movement for

the robot, so that each robot will move to a location that is

inside the desired shape at the given scale. At the same

time, this movement will not prevent other robots from

entering the desired shape.

The movement of robots using DASH also provides two

locations in the desired shape that are important for S-

DASH. The first location is called the shape seed. This

shape seed location will be the last location inside the

shape to be occupied with robots. This means that if there

is any other location in the shape that is not occupied by

robots, then that unoccupied location will become filled by

robots before the shape seed is filled with robots. The

second important location for S-DASH is the location,

called the external seed. This is the first location outside

the shape that will be filled by robots if there is no room

for any more robots inside the desired shape. For example,

if there is no empty space in the desired shape, and there is

one robot located outside the desired shape, that robot will

move to the external seed location.

III. S-DASH

 Scalable distributed self-assembly and self-healing, or

S-DASH, is a method that runs in each robot, in addition to

DASH, to dynamically vary the scale of the shape in order

to reflect the number of robots that are currently in the

collective. It does this by providing DASH an appropriate

scale value, instead of the fixed scale value used in

section 2. To accomplish this scalable self-assembly and

self-healing, this S-DASH controller has three main parts.

The first part is a method to come to a consensus with the

other robots in the collective as to the scale of the shape.

The second part of S-DASH is a way to reduce the scale of

the shape if the shape is too big for the current number of

robots in the collective. The final part of S-DASH is to

increase the scale of the shape if the shape is too small for

the current number of robots.

A. Scale

 Each robot has a variable, Sf, which represents that

robot’s belief as to the appropriate scale of the shape.

Specifically, each pixel in the given picture of the desired

shape will have dimensions of Sf • Rrobot when formed by

the collective. To properly form the shape, this value of Sf

509

must be updated so that it is consistent among all robots;

i.e. every robot agrees to the same scale. Furthermore, the

Sf value should be able to change, so that the scale can fit

the number of robots. To accomplish this consistency and

the flexibility of Sf, its value will be updated as follows.

Every time step, each robot sets its value of Sf to be the

average Sf value of all its neighbors, including its own

value. After this update, each robot will communicate its

new Sf value to its neighbors. This update, summarized in

Fig. 1 is applied every cycle of the robot’s main controller

loop, unless the conditions described in sections III.B or

III.C apply.

Total_scale = Sf

Number_neighbors = 0

For(all neighbors i)

{

 Total_scale = Total_scale+neighbor_i’s_Sf

 Number_neighbors = Number_neighbors + 1

}

Sf = Total_scale / (Number_neighbors + 1)

Figure 1. Pseudo code for scale update.

B. Scale Reduction

 For the reduction of the scale, S-DASH uses the fact that

when using DASH to form a shape, the shape seed is the

last location to be filled in the desired shape. This means

that if the shape is too big, then the shape seed location

will continuously be un-occupied by robots. For example,

consider the desired shape given in Fig. 2(A). In this

shape, the shape seed is located at the very top of the

desired shape, which in this case is the lid of the teapot.

When the scale is too big for the number of robots, as

shown in Fig 2(B), then there will not be any robots near

the shape seed.

A B

C

Figure 2. (A) The desired shape, a teapot. (B) The collective

forming the desired shape at too large a scale. (C) The collective

forming the desired shape at too small a scale.

 To reduce the scale after observing the continuously

unoccupied shape seed, S-DASH must do three things.

First, it must have a distributed mechanism to alert all

robots when the shape seed is not occupied. Second, it

must have a way to determine how long to wait before the

shape seed is considered continuously un-occupied.

Thirdly, it must have a mechanism for reducing the scale

by an appropriate amount.

1) Detecting Un-Occupied Shape Seed

The distributed mechanism for detecting an un-occupied

shape seed is based on a variable called Tun-occupied. This

variable is updated in the following way. Every loop of

each robot’s controller main loop, a robot’s value of

Tun-occupied is compared to that of all its neighbors. If any

neighbor has a value lower than the robot’s, the robot will

set its Tun-occupied value to be its neighbors’ value + 1. If

none of the neighbors’ values are lower, then the robot will

set its new value of Tun-occupied to be 1 plus its old value. If

the robot’s body overlaps into the shape seed location, then

it sets its Tun-occupied value to be zero. A robot uses its

location in the coordinate system to determine if this

overlap occurs. Fig. 3 summarizes how Tun-occupied is

updated. After Tun-occupied is updated, the new value is

communicated to all neighboring robots.

Updating Tun-occupied in this manner will give the

following effects. If any robot is in the shape seed

location, then every robot in the collective will have a

value of Tun-occupied which is equal to the number of

communication hops from that robot to the one in the

shape seed location. If no robots are in the shape seed

location, then every robot in the collective will start

increasing its value of Tun-occupied by one, for every loop of

its main controller. Eventually one or more robots in the

collective will have their Tun-occupied value reach the value

Tun-occupied-max. Once this occurs, the seed has been un-

occupied for long enough for S-DASH to consider the

shape too big. How Tun-occupied-max is chosen is explained in

the next section.

Figure 3. Flow chart for updating Tun-occupied.

2) Wait Time

Before reducing the scale of the shape because the shape

seed does not contain any robots, S-DASH must first make

sure that all the robots in the collective have had a chance

510

to move into the shape. If any robots are outside the shape

and moving to get into the shape, then the method in

section III.B.1. might pre-maturely decide that the scale of

shape is too big, where in fact, if those robots moved into

the shape, it would be the right scale. S-DASH makes sure

all robots are in the shape by giving them ample time to

move into the shape. The time is set through the use of the

Tun-occupied-max variable. The value of Tun-occupied-max is based

on three factors, and represents the upper bound of the time

a robot will take to get into the shape. The first factor is

the current scale value, or Sf. The second factor is the

speed of robot movement, Vrobot. The third factor is the

maximum external path length, or Lexternal_path, which is

defined as follows. For all locations that are on the

external boundary of the shape, find the shortest path

between that location and the location of the shape seed,

which stays outside of the shape, and set Lexternal_path to be

the largest of these shortest paths. An example of the

longest, shortest path for the shape in Fig. 2(A) is shown

as the red line in Fig 4(A). With these three

factors known, Tun-occupied-max is computed to be

Tun-occupied-max = (Sf ∙ Lexternal_path) / (Vrobot). This is the worst

case distance that a robot must travel to get into the empty

space in the shape seed, (Sf ∙ Lexternal_path) divided by the

average speed at which the robot travels, Vrobot.

A B

Figure 4. (A) Visualization of Lexternal_path. (B) Visualization of

Linternal_path.

3) Reducing Scale

Once the collective has waited long enough for the

starting seed location to be filled, the collective should go

ahead and reduce the scale. This scale reduction is

initiated by any robot whose Tun-occupied ≥ Tun-occupied-max.

The robot or robots that initiate the scale reduction do two

things. The first thing they do is set their Tun-occupied value

to zero. This has the effect of inhibiting other robots from

further trying to reduce the scale by resetting the Tun-occupied

values in the collective. The second thing that the robot or

robots initiating scale reduction do is that for

Tun-occupied-max / 2 cycles of the main controller loop, they

don’t use the scale update from section III.A; instead they

report to their neighbors that their scale is a new, lower

scale, Sf_new, the value of which will be shown shortly.

This has the effect of decreasing the Sf values of all the

robots in the collective. After the Tun-occupied-max / 2 cycles,

the scale update returns to the method from section III.A.

When the scale is being reduced, it is known that at least

the shape seed location is un-occupied by robots. From

[12], it is known that the area this location takes up in the

environment is equal to (Sf_old ∙
2
, where Sf_old is the

scale of the shape prior to the start of reduction, and

is the radius of a robot. Because this location is un-

occupied, the scale of the shape can safely be reduced so

that the area of the shape at the new scale is equal to the

area at the old scale, minus (Sf_old ∙
2
, the area of

shape seed. The area of the shape at the old scale is just

NUM_PIX ∙ (Sf_old ∙
2
, and the area of the shape at

the new, smaller scale is just NUM_PIX ∙ (Sf_new ∙
2
.

Therefore, the new scale, Sf_new, should be

Sf_old ∙

, where NUM_PIX is the number of

pixels of the desired shape, in the given picture describing

the shape.

This process of reducing the scale when the shape seed

is unoccupied will continue until the shape seed is

permanently occupied.

C. Scale Increase

To increase the scale of the shape, S-DASH uses the fact

that when using DASH to form a shape, the external seed

is the first location to be filled by robots if the shape is

completely filled by other robots. This means that if the

shape is too small, then the external seed will continuously

be occupied by robots. For example, consider the desired

shape map given in Fig. 2(A). In this shape, the external

seed is located just above the very top of the desired shape.

When the scale is too small for the number of robots, as

shown in Fig 2(C), then as a result of DASH there will

continuously be robots in the external seed location, trying

to get into the shape.

 To increase the scale after observing the continuously

occupied external seed, S-DASH must do three things.

First, it must have a distributed mechanism to alert all

robots when the external seed is occupied. Second, it must

have a way to determine how long to wait before the

external seed is considered continuously occupied.

Thirdly, it must have a mechanism for increasing the scale

an appropriate amount.

1) Detecting Occupied External Seed

The distributed mechanism for detecting a continuously

occupied external seed is based on a variable called

Toccupied. This variable is updated in the following way.

Every loop of the controller main loop, a robot checks its

location in the coordinate system to see if it is located in

the external seed. If so, it increases its Toccupied value by

one. If the robot receives a message called

“moved_into_shape_message”, then the robot will set

Toccupied to zero. Furthermore, when a robot’s Toccupied is

greater than Toccupied-max, then the external seed is

considered to have been occupied for long enough, and that

robot will initiate a scale increase, as well as transmit the

“moved_into_shape_message” to all its neighbors.

The “moved_into_shape_message” is initiated by one of

two events. The first event is when a robot moves from

outside the shape to inside the shape. The second event is

511

when a robot’s Toccupied is greater than Toccupied-max. In both

these events, the purpose of this message it to reset the

Toccupied value of robots outside the desired shape.

Furthermore, to prevent infinite loops of this message, it

contains a hop count value, which is used to give the

message a limited life time. Whenever a neighbor receives

a “moved_into_shape_message”, it will decrease the hop

count in the message by one, and then only if the hop count

is greater than zero, will it re-transmit the message.

2) Wait Time

Before increasing the scale of the shape because the

external seed contains robots, S-DASH must first make

sure that enough time is given for DASH to fill any empty

locations in the desired shape. This is because if there are

any empty spaces in the shape, then the method in section

III.C.1 might pre-maturely decide the scale of shape is too

small, where in fact if robots where given time to move

into those empty spaces, it would be at the right scale.

S-DASH makes sure there are no empty spaces in the

shape by giving DASH ample time to move robots into

those spaces. This time is set through the use of the

Toccupied-max variable.

The value of Toccupied-max is based on three factors, and

represents the upper bound of the time DASH will take to

fill empty locations in the desired shape with robots. The

first factor is the current scale value, or Sf. The second

factor is the speed of robot movement, Vrobot. The third

factor is the maximum internal path length, or Linternal_path,

which is defined as follows. For all locations on the

outside edge of the desired shape, find the shortest path

between that location and the external seed location which

stays inside the shape, and set Linternal_path to be the largest of

these shortest paths. An example of the longest, shortest

path for the desired shape in Fig. 2(A) is shown as the

red line in Fig 4(B). With these three factors

known, Toccupied-max is just computed to be

Toccupied-max = (Sf ∙ Linternal_path) / (Vrobot). This is the worst

case distance that a robot must travel to get into the empty

location in the shape, (Sf ∙ Linternal_path) divided by the

average speed at which the robot travels, Vrobot . See figure

5 for a summary on the update for Toccupied.

1) Increasing Scale

Once the collective has waited long enough for the

empty volumes in the shape to be filled, the collective

should go ahead and increase the scale. This scale increase

is initiated by any robot whose Toccupied ≥ Toccupied-max. The

robot or robots that initiate the scale increase do two

things. The first thing they do is send out a

“moved_into_shape_message”. This has the effect of

inhibiting other robots from further trying to increase the

scale by resetting the Toccupied values of robots in the

collective. The second thing that the robot or robots

initiating scale increase do, is that for Toccupied/2 cycles of

their main controller loop, they don’t use the scale update

from section III.A; instead they report to their neighbors

that their scale is a new, larger scale, Sf_new, the value of

which will be shown shortly. This has the effect of

increasing the Sf values of all the robots in the collective.

After the Toccupied/2 cycles the scale update returns to the

method from section III.A.

Figure 5. Flow chart for updating Toccupied

When a robot decides to increase the scale, it should

increase it by enough so that there will be room in the

shape for an extra robot. The amount of room this extra

robot takes up is π ∙
2
, so the area of the shape should

be increased by that amount. To increase the area of the

shape by that amount, the scale Sf must change from the

old value, Sf_old, to a larger value, Sf_new, where

Sf_new

 .

This process of increasing the scale will continue as long

as robots occupy the external seed location.

IV. DEMONSTRATION IN SIMULATION

To demonstrate the behavior of S-DASH, it is run on a

simulated collective of robots. In this simulation, each

robot is running its own DASH controller to form the

desired collective shape, and its own S-DASH controller to

determine what the scale of that shape should be. Each

robot is shown as a black circle, which is not allowed to

overlap with any other robot’s circle. All robots meet the

assumptions given in section II.A. During each time step

of the simulation, the robots are stepped in a random order.

During a robot step, that robot reads the messages it has

received since its last step, runs DASH and S-DASH,

commands its movement, and communicates messages to

its neighbors.

In Fig. 6, a simulated collective of robots are tasked to

form a five pointed star. Initially, the starting scale, Sf_start

512

is too small for the number of robots in the collective, as

shown in Fig. 6(A). Fig. 6(B-C) show the size of the shape

increases, as S-DASH increases the scale. Finally, in Fig.

6(D) the shape is large enough to fit all robots, so the scale

stops increasing. Next, in Fig. 6(E) the top half of the

collective is removed completely, and as a result the scale

of the shape is now too big for the current number of

robots in the collective. S-DASH will then reduce the

scale of the shape, as show in Fig. 6(F-G), until the shape

again is at the correct scale to fit all the remaining robots of

the collective, Fig. 6(H). This demonstrates the ability of

S-DASH to automatically scale the shape to the number of

robots, even if that number changes.

Figure 6. A demonstration of S-DASH adjusting collective scale

for the desired shape of a star. (A) An initial formation at too

small a scale. (B-C) S-DASH increasing the scale. (D) The

shape reaches the correct scale. (E) Half the robots are removed.

(F-G) S-DASH reduces the scale. (H) The shape reaches a new

correct scale.

Using the simulation, it is also demonstrated that S-

DASH stably finds a correct scale, irrespective of the

starting scale guess, Sf_start. To do this, the simulator is run

four times, and in each run S-DASH is given a different

value of Sf_start. Fig. 7 shows that in these four runs, the

average value of Sf for the collective will reach the correct

value, irrespective of the starting value Sf_start.

CONCLUSION

This paper presented S-DASH, a method for

automatically adjusting the scale of a collectives shape. In

the future, we hope to implement S-DASH in conjunction

with DASH on a collective of real robots. Additionally we

would like to adapt S-DASH for self-reconfigurable robots.

Figure 7. The scale value vs. time for the same collective with

four different values of Sf_start.

ACKNOWLEDGMENT

We would like to thank the students at the Polymorphic

robotics lab for their assistance with this work.

REFERENCES

[1] O'Grady et al. "SWARMORPH: Multi-robot Morphogenesis using
Directional Self-Assembly". IEEE Transactions on Robotics 2008.

[2] Chiu, H., Rubenstein, M., Shen, W-M. "Deformable Wheel'-A Self-

Recovering Modular Rolling Track." Intl. Symposium on
Distributed Robotic Systems. Tsukuba, Japan, 2008.

[3] Arbuckle, D., Requicha, A. "Active Self-Assembly." International

Conference on robotics and automation . New Orleans, LA, 2004.
[4] Cheng, J., Cheng, W., Nagpal, R. "Robust and Self-Reparing

Formation Control for Swarms of Mobile Agents." National

Conference on Artificial Intelligence (AAAI '05). 2005.
[5] Kondacs, A. "Biologically-inspired Self-Assembly of 2D Shapes,

Using Global-to-local Compilation." International Joint Conference

on Artificial Intelligence (IJCAI). 2003.
[6] Eno, S., et al. "Robotic Self-Replication in a Structured

Environment without Computer Control." IEEE International

Symposium on Computational Intelligence in Robotics and
Automation. Jacksonville, FL, 2007.

[7] Yim, M., et al. "Modular Self-Reconfigurable Robot Systems:

Challenges and Opportunities for the Future." IEEE Robotics and
Automation Magazine, 2007: 43-52.

[8] Bode, H. "Head Regeneration in Hydra." Developmental Dynamics,

2003: 226:225-36.

[9] Stoy, K., Nagpal, R. "Self-repair and Scale-independant Self-

reconfiguration". IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) Sept. 2004.
[10] Nagpal, R. “Programmable Self-Assembly: Constructing Global

Shape Using Biologically-Inspired Local Interactions and Origami

Mathematics”, thesis june 2001.
[11] Rubenstein, M., Shen, W-M. “A Scalable and Distributed Approach

for Self-Assembly and Self-Healing of a Differentiated Shape”.

AAMAS, May 2008.
[12] Rubenstein, M., Shen, W-M. “Scalable Self-Assembly and Self-

Repair In A Collective Of Robots” IROS, Oct 2009.

[13] Moore, D. Et. al. “Robust Distributed Network Localization with
Noisy Range Measurements”. Sensys 2004.

E

B

C D

A

F

G H

513

